
Lattice Reduction Attack on the Knapsack

Mark Stamp

1 Merkle–Hellman Knapsack

Every private in the French army carries a Field Marshal wand in his knapsack.

— Napoleon Bonaparte

The Merkle–Hellman knapsack cryptosystem [5] was one of the first pro-
posed public key cryptosystems. This cipher utilizes a few elementary, but
nonetheless clever mathematical ideas. Because of its historical significance
and since it is easy to understand, we examine it first. The cipher is based
on a mathematical problem which is known to be NP-complete [2].

The subset sum or knapsack problem can be stated as follows: Given a
set of r weights

W = (w0, w1, . . . , wr−1)

and a sum X, find x0, x1, . . . , xr−1, where each xi ∈ {0, 1}, so that

X = x0w0 + x1w1 + · · ·+ xr−1wr−1,

provided that this is possible. Note that the xi simply select a subset of the
weights.

For example, suppose that the weights are W = (4, 3, 9, 1, 12, 17, 19, 23)
and the given sum is X = 35. Then, a solution to the subset problem exists
and is given by x = (01011010), since

0 · 4 + 1 · 3 + 0 · 9 + 1 · 1 + 1 · 12 + 0 · 17 + 1 · 19 + 0 · 23 = 35.

For this set of weights, if X = 6, the problem does not have a solution.
While the general knapsack problem is NP-complete, a special type of

knapsack known as a superincreasing knapsack can be solved efficiently. A
superincreasing knapsack is a setW that, when ordered from least to greatest,

1

has the property that each weight is greater than the sum of all the previous
weights. For example,

W = (2, 3, 6, 13, 29, 55, 112, 220) (1)

is a superincreasing knapsack.
It is straightforward to solve a superincreasing knapsack problem. For

example, suppose that we are given the set of weights in (1) and the sum X =
76. Since X is less than 112, we must have x7 = x6 = 0. Then, since X > 55
and we have 2 + 3 + 6 + 13 + 29 < 55, it must be the case that x5 = 1.
That is, if we do not select the weight 55, then we cannot possibly reach the
desired sum, since the sum of all remaining weights is less than 55, due to
the superincreasing property.

Now, let X1 = X − 55 = 21. Since 13 < X1 < 29, we must have
that x4 = 0 and x3 = 1. Continuing in this manner, we find x = (10110100)
which is easily verified to be correct since 76 = 2 + 6 + 13 + 55. This
process yields an efficient (linear time) algorithm to solve any superincreasing
knapsack problem.

Merkle and Hellman’s [5] idea was to disguise a superincreasing knap-
sack S through the use of a mathematical transformation to make it look
like an arbitrary knapsack T . The disguised knapsack T is made public by
Alice and T acts as Alice’s public key. When Alice receives a ciphertext, she
applies the inverse of the transformation to convert the problem back to the
superincreasing case. Alice decrypts by solving the resulting superincreas-
ing knapsack problem. Without knowledge of the transformation, it would
appear that a cryptanalyst must solve a general knapsack, which is a hard
problem. However, there is a shortcut attack, which we describe below. But
first we discuss the the knapsack cryptosystem in more detail.

To create her public and private keys, Alice first chooses a superincreasing
knapsack S = (s0, s1, . . . , sr−1). To convert S into T , she also chooses a
conversion factor m and a modulus n, where gcd(m,n) = 1 and n is greater
than the sum of all elements of S. The transformed knapsack is computed
as

T = (s0m (mod n), s1m (mod n), . . . , sr−1m (mod n))

and T is made public. Alice’s private key consists of S and m−1 (mod n).
Suppose Bob wants to send a message of r bits to Alice. Bob first converts
his plaintext into a binary block B. He then uses the 1 bits of B to select the
elements of T , which are then summed to give the ciphertext block C. Alice

2

recovers the plaintext B, by using the private key to compute Cm−1 (mod n),
and solves using her superincreasing knapsack. To encrypt longer messages,
multiple blocks are encrypted.

To make things more concrete, consider the following example. Suppose
that Alice chooses the superincreasing knapsack

S = (2, 3, 7, 14, 30, 57, 120, 251),

along with m = 41 and modulus n = 491. To transform S into a general
knapsack T , Alice performs the following computations

2m = 2 · 41 = 82 (mod 491)

3m = 3 · 41 = 123 (mod 491)

7m = 7 · 41 = 287 (mod 491)

14m = 14 · 41 = 83 (mod 491)

30m = 30 · 41 = 248 (mod 491)

57m = 57 · 41 = 373 (mod 491)

120m = 120 · 41 = 10 (mod 491)

251m = 251 · 41 = 471 (mod 491).

Then Alice’s public key is

T = (82, 123, 287, 83, 248, 373, 10, 471).

Alice’s private key consists of

S = (2, 3, 7, 14, 30, 57, 120, 251)

and
m−1 (mod n) = 41−1 (mod 491) = 12.

Now, suppose that Bob wants to encrypt the message M = 150 for Alice.
He first converts 150 to binary, that is 10010110. He then uses the 1 bits
to select the elements of T that are summed to give the ciphertext. In this
example, Bob computes the ciphertext

C = 82 + 83 + 373 + 10 = 548

and sends C to Alice. To decrypt this ciphertext, Alice uses her private key
to compute

Cm−1 (mod n) = 548 · 12 (mod 491) = 193.

3

She then solves the superincreasing knapsack S for 193 and she recovers the
message in binary 10010110 or, in decimal, M = 150.

That this decryption process works can be verified by using elemen-
tary properties of modular arithmetic. In the particular example considered
above, we have

548m−1 = 82m−1 + 83m−1 + 37m−1 + 10m−1

= 2mm−1 + 14mm−1 + 57mm−1 + 120mm−1

= 2 + 14 + 57 + 120

= 193 (mod 491).

In general, due to the linearity of the process used to convert from the su-
perincreasing knapsack S into the public key knapsack T , knowledge of m−1

makes it easy to convert the ciphertext to the superincreasing case. Without
Alice’s private key, (S,m−1 (mod n)), the attacker Trudy needs to find a
subset of T which sums to the ciphertext value C. This appears to be a
general knapsack problem, which is intractable.

By converting the superincreasing knapsack into the general knapsack
through the use of modular arithmetic, a trapdoor is introduced into the
knapsack. Without m, it is not clear how to find the conversion factor m−1.
The one-way feature results from the fact that it is easy to encrypt with the
general knapsack, but it is (hopefully) difficult to decrypt without the private
key. But with the private key, the problem can be converted into a super-
increasing knapsack, which is easy to solve and thus enables the intended
recipient to easily decrypt.

However, this cryptosystem was shown to be insecure by Shamir [7] in
1983. It turns out that the “general knapsack” (the public-key) which arises
in the Merkle–Hellman cryptosystem is not general enough. Instead, it is a
highly structured case of the knapsack and Shamir’s lattice reduction attack
is able to take advantage of this fact. Shamir’s ingenious method of attack
is dicussed in the next section.

1.1 Lattice-Reduction Attack

Lattice reduction is a powerful technique which can be used to solve many
different types of combinatorial problems. We first describe the lattice re-
duction method, as discussed in [8], and then illustrate how it can be used

4

to attack the Merkle–Hellman knapsack cryptosystem. Some elementary lin-
ear algebra is used in this section; see the Appendix for an overview of the
necessary linear algebra.

Consider, for example, the vectors

c0 =

[
−1
1

]
and c1 =

[
1
2

]
.

Since c0 and c1 are linearly independent, any point in the plane can be
uniquely represented by α0c0 + α1c1, where α0 and α1 are real numbers. If
we restrict the coefficients to integers, that is, we require that α0 and α1 are
integers, then we obtain a lattice consisting of discrete points in the plane.
Figure 1 illustrates the lattice spanned by c0 and c1. In general, a lattice L
is the set of all linear combinations of a set of column vectors ci with integer
coefficients.

Figure 1: A lattice in the plane.

Given an m × n matrix A and an m × 1 matrix B, suppose we want to
find a solution U to the matrix equation AU = B, with the restriction that U
consists entirely of 0s and 1s. If U is a solution to AU = B, then the block
matrix equation

MV =

[
In×n 0n×1
Am×n −Bm×1

] [
Un×1
11×1

]
=

[
Un×1
0m×1

]
= W (2)

5

holds true, since MV = W is equivalent to U = U and AU − B = 0.
Consequently, finding a solution V to the block matrix equation MV = W is
equivalent to finding a solution U to the original matrix equation AU = B.
Note that the columns of M are linearly independent, since the n×n identity
matrix appears in the upper left and the final column begins with n zeros.

Let c0, c1, c2, . . . , cn be the n+ 1 columns of the matrix M in (2) and let
v0, v1, v2, . . . , vn be the elements of V . Then

W = v0c0 + v1c1 + · · ·+ vncn. (3)

We have MV = W , where

W =

u0
u1
...

un−1
0
...
0

=

[
U
~0

]
(4)

and we want to determine U . Instead of solving linear equations to obtain
V , we will find U by determining W . Note that because of (3), W is in the
lattice L, spanned by the columns of M .

The Euclidean length of a vector Y = [y0, y1, . . . , yn+m−1]
T is

‖Y ‖ =
√
y20 + y21 + · · ·+ y2n+m−1.

However, the length of a vector W in (4) is

‖W‖ =
√
u20 + u21 + · · ·+ u2n−1 ≤

√
n,

which is much “shorter” than a typical vector in L. Furthermore, W has a
very special form, since its first n entries consist of 0s and 1s with its last m
entries being all 0. Is it possible to take advantage of this special structure
to find W?

In 1982, Lenstra, Lenstra and Lovàsz [4] discovered the so-called LLL
Algorithm, which provides an efficient method to find short vectors in a

6

lattice. In Table 1, we give an outline of their algorithm in pseudo-code,
where GS(M) refers to the Gram–Schmidt process, which returns an or-
thonormal basis for the subspace spanned by the columns of M . The Gram–
Schmidt process appears in Table 2. Note that a small number of lines of
pseudo-code suffices to specify the entire LLL Algorithm.

Table 1: LLL Algorithm

// find short vectors in the lattice spanned
// by the columns of M = (b0, b1, . . . , bn)
repeat

(X, Y) = GS(M)
for j = 1 to n

for i = j − 1 to 0
if |yij| > 1/2 then

bj = bj − byij + 1/2cbi
end if

next i
next j
(X, Y) = GS(M)
for j = 0 to n− 1

if ‖xj+1 + yj,j+1xj‖2 < 3
4
‖xj‖2 then

swap(bj, bj+1)
goto abc

end if

next j
return(M)

abc: continue

forever

With clever insight, Shamir [7] realized that lattice reduction could be
used to attack the Merkle–Hellman knapsack cryptosystem. Suppose that
Bob’s public knapsack is given by T = (t0, t1, . . . , tr−1), and Alice sends
Bob a ciphertext block C, encrypted with Bob’s public knapsack. Since
the attacker, Trudy, knows the public knapsack T and C, she can break the
system if she is able to solve the matrix equation TU = C, where U is an r×1
column matrix consisting of 0s and 1s.

7

Table 2: Gram–Schmidt Process

// Gram–Schmidt M = (b0, b1, . . . , bn)
GS(M)

x0 = b0
for j = 1 to n

xj = bj
for i = 0 to j − 1

yij = (xi · bj)/||xi||2
xj = xj − yijxi

next i
next j
return(X, Y)

end GS

Trudy can rewrite the matrix equation TU = C in block matrix form as

MV =

[
Ir×r 0r×1
T1×r −C1×1

] [
Ur×1
11×1

]
=

[
Ur×1
01×1

]
= W

and apply the LLL Algorithm to the matrix M . The resulting short vectors
which are obtained can be checked to see if they have the special form required
of W , which is a column vector where the first r entries are all 0 or 1 and last
entry is 0. The LLL Algorithm will not always produce the desired vector
and therefore, the attack is not always successful. However, in practice,
the lattice reduction attack is highly effective against the original Merkle–
Hellman knapsack.

To illustrate the lattice reduction attack, suppose Alice constructs her
knapsack key pair from the superincreasing knapsack

S = (s0, s1, . . . , s7) = (2, 3, 7, 14, 30, 57, 120, 251),

with m = 41 and modulus n = 491. Then, m−1 = 12 (mod 491). The corre-
sponding general knapsack T is obtained by computing ti = 41si (mod 491),
for i = 0, 1, 2, . . . , 7, which was found above to be

T = (t0, t1, . . . , t7) = (82, 123, 287, 83, 248, 373, 10, 471).

Alice’s knapsack key pair is defined by

Public key: T

8

and
Private key: S and m−1 (mod n).

Suppose Bob wants to encrypt the message M = 10010110 for Alice.
Then, as discussed above, Bob computes

1 · t0 + 0 · t1 + 0 · t2 + 1 · t3 + 0 · t4 + 1 · t5 + 1 · t6 + 0 · t7 = 548

and sends ciphertext C = 548 to Alice.
Now, suppose that Trudy wants to recover the plaintext that corresponds

to ciphertext C = 548. Since Trudy knows the public key T and cipher-
text C = 548, she needs to find a set of ui, for i = 0, 1, . . . , 7, with the
restriction that each ui ∈ {0, 1}, and

82u0 + 123u1 + 287u2 + 83u3 + 248u4 + 373u5 + 10u6 + 471u7 = 548.

This can be written as the matrix equation

T · U = 548,

where T is Alice’s public knapsack and U = (u0, u1, . . . , u7), and the ai are
unknown, but each must be either 0 or 1. This is of the form AU = B (as
discussed above), so Trudy rewrites the matrix equation as MV = W and
applies the LLL Algorithm to M . In this case, Trudy finds

M =

[
I8×8 08×1
T1×8 −C1×1

]
=

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
82 123 287 83 248 373 10 471 −548

.

The LLL Algorithm outputs a matrix M ′, consisting of short vectors in the

9

lattice spanned by the columns of the matrix M . In this example, LLL yields

M ′ =

−1 −1 0 1 0 1 0 0 1
0 −1 1 0 1 −1 0 0 0
0 1 −1 0 0 0 −1 1 2
1 −1 −1 1 0 −1 0 −1 0
0 0 1 0 −2 −1 0 1 0
0 0 0 1 1 1 1 −1 1
0 0 0 1 0 0 −1 0 −1
0 0 0 0 0 0 1 1 −1
1 −1 1 0 0 1 −1 2 0

.

The entries in the fourth column of M ′ have the correct form to be a solution
to this knapsack problem. Therefore, Trudy obtains the putative solution

U = (1, 0, 0, 1, 0, 1, 1, 0).

Using the public key and ciphertext C = 548, she can easily verify that U is
indeed the original plaintext sent by Bob.

1.2 Knapsack Conclusion

Much research has been done on the knapsack problem since the Merkle–
Hellman cryptosystem was broken. Several different knapsack variants have
been created and some of these appear to yield secure cryptosystems. How-
ever, people have been reluctant to use these systems, since “knapsack” con-
tinues to be equated with “broken,” even to this day. For more information
on knapsack cryptosystems, see [1, 3, 6].

References

[1] Y. Desmedt, What happened with knapsack cryptographic schemes?,
Performance Limits in Communication, Theory and Practice,
J. K. Skwirzynski, ed., Kluwer, pp. 113–134, 1988
Cited on page 10

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP–Completeness, W. H. Freeman & Company, 1979
Cited on page 1

10

[3] M. K. Lai, Knapsack cryptosystems: the past and the future,
March 2001, at www.cecs.uci.edu/~mingl/knapsack.html

Cited on page 10

[4] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovàsz, Factoring polynomials
with rational coefficients, Mathematische Annalen, Vol. 261, No. 4, 1982,
pp. 515–534
Cited on page 6

[5] R. Merkle and M. Hellman, Hiding information and signatures in trap-
door knapsacks, IEEE Transactions on Information Theory, Vol. IT-24,
No. 5, 1978, pp. 525–530
Cited on pages 1 and 2

[6] A. M. Odlyzko, The rise and fall of knapsack cryptosystems, at
www.research.att.com/~amo/doc/arch/knapsack.survey.pdf

Cited on page 10

[7] A. Shamir, A polynomial-time algorithm for breaking the basic Merkle–
Hellman cryptosystem, IEEE Transactions on Information Theory,
Vol. IT-30, No. 5, September 1984, pp. 699–704
Cited on pages 4 and 7

[8] M. Stamp, Information Security: Principles and Practice, Wiley-
Interscience, 2005
Cited on page 4

11

