Opcode Graph Similarity and Metamorphic Detection

Neha Runwal* Richard M. Low! Mark Stamp?

Abstract

In this paper, we consider a method for computing the similarity of executable
files, based on opcode graphs. We apply this technique to the challenging problem
of metamorphic malware detection and compare the results to previous work based
on hidden Markov models. In addition, we analyze the effect of various morphing
techniques on the success of our proposed opcode graph-based detection scheme.

Keywords: malware, metamorphic detection, hidden Markov model, similarity de-
tection, opcode graph, directed graph

1 Introduction

Practical detection of metamorphic malware is a difficult challenge. A detection tech-
nique using a hidden Markov model trained on opcode sequences was studied in [33].
While this approach was highly successful at detecting hacker-produced metamor-
phic malware, in [17] it was shown that the detector can be defeated by a properly
designed metamorphic generator.

The paper [1] discusses a malware detection strategy based on weighted directed
graphs derived from opcode sequences. The authors of [1] show that their technique
is effective on many types of malware, including polymorphic viruses. However,
metamorphic viruses are not considered.

In this paper, we develop and analyze a technique that is based on the same opcode
graphs, but our overall approach is simpler and more efficient than that in [1]. In
addition, we apply our technique to the challenging problem of metamorphic malware
detection.

Various similarity measures have previously been applied to the metamorphic
detection problem [21, 33]. In addition, control flow graph analysis has been con-
sidered [5, 8]. But such graph techniques often lead to difficult graph isomorphism
problems. Simpler call graph techniques have also been studied in the context of

*Department of Computer Science, San Jose State University
"Department of Mathematics, San Jose State University
iDepartment of Computer Science, San Jose State University: stamp@cs.sjsu.edu

metamorphic detection [16]. Yet another example of a graph-based malware detec-
tion strategy can be found in [4]. However, there does not appear to be any previous
work involving similarity techniques or graph analysis for metamorphic detection that
is analogous to the approach we discuss here.

The remainder of the paper is organized as follows. In Section 2, we briefly discuss
relevant background material related to malware and malware detection, including a
brief overview of hidden Markov models (HMMs) and other similarity-based detection
methods. We also outline the graph-based malware detection method developed in [1].
Section 3 covers the design and implementation of our graph based similarity measure
and its relevance to metamorphic detection. In Section 4, we present experimental
results showing the potential utility of our technique for metamorphic detection. Then
in Section 5, we analyze the effectiveness of morphing strategies that a virus writer
might employ in an effort to evade our graph-based detection. Finally, Section 6 gives
our conclusions and mentions some directions for future work.

2 Background

In this section, we briefly discuss several topics that are relevant to the remainder
of the paper. First, we consider malware detection in general, with the emphasis on
metamorphic malware. Then we we discuss hidden Markov models and their potential
role in malware detection. We also briefly mention a few other opcode-based similarity
measures that have been applied to the metamorphic detection problem. Finally, we
turn our attention to the graph-based detection technique in [1].

2.1 Malware detection

Malware is software “whose intent is malicious, or whose effect is malicious” [3]. Ex-
amples of malicious activity include damaging data, stealing information, or stealing
computing resources. Increasingly, malware appears to serve as a source of revenue
for the malware writer [19].

The purpose of anti-virus (AV) software is to detect and, ideally, remove malware.
Next, we briefly discuss a few types of malware in the context of the ongoing “arms
race” between malware writers and malware detection. Here, we only provide a very
brief overview with the aim of highlightign the development of metamorphic malware.
Note that throughout this paper, we use the terms virus and malware interchangeably.

Since the dawn of time,! signature scanning has been the most widely used AV
technique [3]. A virus signature can be as simple as a string of bits (possibly, including
wildcards) that appear in a particular piece of malware. Of course, these bits represent
instructions and/or data in the particular virus. Ideally, the signature does not
occur in any other software. However, once a signature has been detected, additional

1Or, at least since the development of the first AV systems.

testing is likely required to be certain that the code is indeed the indicated malware.
Signature scanning is efficient and effective against common types of malware; thus
its popularity.

Of course, virus writers are aware that signature scanning is the most prevalent
form of AV scanning. Consequently, virus writers have developed various techniques
designed to help their creations evade signature detection. As a first line of defense
against signature detection, a virus can be encrypted or “packed” (i.e., compressed).
Here, we consider encryption, but similar comments hold for packed code. The ad-
vantage of encryption is that a signature that is present in the unencrypted code will
not appear in the encrypted version. Furthermore, different keys will yield different
ciphertext, so AV software cannot directly scan for a signature in the ciphertext.
From the virus writers perspective, the disadvantage of encryption is that the code
must be decrypted before it can execute, and the decryption code itself cannot be
encrypted. Consequently, AV software can scan for the signature of the decryption
code.

Polymorphic malware is the next logical step in the arms race between signature-
based detection and malware writers. As with encrypted malware, polymorphic mal-
ware is encrypted. However, polymorphic malware adds a new twist—the decryption
code is morphed and consequently there is no fixed decryption code to search for in a
scan [18]. Ideally, new decryptor code would be generated for each infection. Robust
detection of polymorphic malware is difficult. One approach is to let the code decrypt
itself (via emulation), then scan for a signature in the decrypted code [3, 10].

Metamorphic malware is sometimes said to be “body polymorphic.” That is,
instead of encrypting the virus body and morphing the decryptor (as in polymorphic
malware), metamorphic code does away with encryption and morphs the entire virus
body [15, 29, 31]. Note that the function of the code remains the same, but the
internal structure of the code changes. If the morphing is sufficiently thorough,
no common signature will exist and therefore, no encryption is necessary. It could
be argued that well designed metamorphic code presents the ultimate challenge in
malware detection.

A wide variety of techniques can be employed to create metamorphic software.
Such techniques include register swapping, general code obfuscation, equivalent in-
struction substitution, code shuffling, and subroutine permutation [15]. Predictably,
virus writers have developed metamorphic “engines” that can be used by the un-
skilled to create metamorphic malware. Often, existing malware is morphed to create
equivalent code that can evade signature detection. Examples of metamorphic en-
gines include the Next Generation Virus Construction Kit (NGVCK), Phalcon/Skism
Mass-Produced Code generator (PS-MPC), Second Generation virus generator (G2),
and the Mass Code Generator (MPCGEN) [32]. According to [33], NGVCK is by far
the most effective of these at creating highly metamorphic code. Therefore, we focus
our attention on NGVCK [28].

Metamorphic detection is a challenging research problem. In [33] hidden Markov
models (HMMs) were used to successfully detect highly morphed NGVCK viruses.

However, in [17] a metamorphic generator was developed that can successfully evade
the HMM-based detector in [33]. Therefore, research into more robust detection
mechanisms is warranted.

The immediate motivation for the research presented here is the paper [1], where
an interesting graph-based technique was applied to the malware detection prob-
lem. Our goal is to analyze a similar (albeit simpler) opcode graph-based detection
algorithm in the context of metamorphic detection. We also compare the results
obtained using our proposed technique to previous research involving HMM-based
detection [17, 33].

In the next subsection, we first discuss HMMs in general. We then consider the
use of HMMSs for malware detection.

2.2 Hidden Markov models

Hidden Markov models can be viewed as a machine learning technique and as a
discrete hill climb [30]. An HMM is a machine learning technique in the sense that the
user only needs to specify some basic parameters. The HMM can then be trained on a
given data set and, if successful, the trained model can be used to detect similar data.
That is, data can be scored against a trained model, with higher scores indicating a
higher degree of similarity to the training data.

The HMM training process can be viewed as a discrete hill climb on a the HMM
parameter space. Training is an iterative process, and during the process, the param-
eters of the HMM “climb” towards an optimal model.

HMMs have been successfully applied in many fields, including language anal-
ysis [30], speech recognition [23], and metamorphic virus detection [33]. Here we
present a classic example that illustrates the strength of HMMs. Specifically, we
train an HMM on English text, as discussed in [30]. But first, we require some
notation.

A generic view of an HMM is given in Figure 1. We assume that there is a Markov
process that is “hidden,” that is, the Markov process is not directly observable. In
Figure 1, the states of the hidden Markov process are denoted X;. For each state X;
of the underlying Markov process, we observe O;. As with any standard Markov
process, the matrix A “drives” the hidden Markov process. The unique feature of a
hidden Markov model is that the states are hidden. But we do have some information
on the hidden states via the series of observations (the O;), since these observations
are probabilistically related to the hidden states by the matrix B.

Markov process: Xo D.¢ - X, - ... ~ X,
B B B B
Observations: O, O, O, e Or_1

Figure 1: Generic Hidden Markov Model [30]

For our discussion of HMMs, we use the following notation:

T = length of the observation sequence

N = number of states in the hidden Markov process
M = number of distinct observation symbols

A = state transition probabilities

B = observation probability matrix

7 = initial state distribution

X = (Xo,X1,...,X7r-1) = hidden states of Markov process

O = (0, 0q,...,0r_1) = observation sequence.

The matrices A, B and 7 are row stochastic, that is, the elements of each row form
a discrete probability distribution [24].

To illustrate the strengths of HMMs, consider the following experiment [30]. We
are given a large body of English text and we remove all punctuation, numbers,
special characters, etc., and convert all upper-case letters to lower-case. The text
then has 27 distinct symbols, consisting of the 26 letters and space. We train an
HMM with this text serving as the observation sequence.

Suppose that we select N = 2, that is, we assume there are two hidden states.
Then M = 27 and the matrix 7 is 1 x 2, the matrix A is 2 x 2, while the matrix B
is 2 x 27. The matrices are initialized so that each element of m and each element of A
are approximately 1/N and each element of B is approximately 1/M subject to the
constraint that each row sum must be 1. For technical reasons, we cannot initialize
the matrices to uniform values [30].

In this case, the HMM training requires about 7" = 50,000 observations to con-
verge. The training algorithm is described in detail in [30].

After training, for this example we find

7= [0.00000 1.00000 |

and
_ | 0.25633 0.74367

A= 0.71195 0.28805 |-

The 7w matrix has converged to the initial state probabilities, while the A matrix
gives the transition probabilities between the two hidden states. Neither of these
matrices tell us anything about what the hidden states might represent. However, the
converged B matrix, does provide some interesting information concerning the hidden
states. For this particular example, the converged B matrix appears in Table 1. Note
that the matrix in Table 1 is actually the transpose of the B matrix.

Table 1: Trained HMM for English Text

Final B matrix (transpose)
0.13956 0.00000
0.00000 0.02306
0.00000 0.05661
0.00000 0.06925
0.21460 0.00000
0.00000 0.03547
0.00016 0.02780
0.00000 0.07321
0.12308 0.00000
0.00000 0.00364
0.00177 0.00708
0.00000 0.07258
0.00000 0.03880
0.00000 0.11439
0.13184 0.00000
0.00000 0.03703
0.00000 0.00153
0.00000 0.10202
0.00000 0.11024
0.00971 0.14483
0.04514 0.00000
0.00000 0.01617
0.00000 0.02298
0.00000 0.00446
0.00000 0.02599
0.00000 0.00110
space 0.33413 0.01178

N“< X g <42 21,00 0BE —~Km—rDZ0@m0b Qo0 T

A careful examination of the B matrix in Table 1 reveals that the two hidden states
essentially correspond to consonants and vowels. Note that no a priori assumption
was made regarding the nature of the hidden states—we simply chose N = 2, which
specified the number of hidden states. The training process proceeded to automati-
cally extract a fundamental property of English from the training data. This example
illustrates the strength of HMMs as a machine learning technique.

For more information on HMMs in general, the paper [30] is a readable and
reasonably thorough introduction. Another standard reference is [23].

2.3 HMM-based metamorphic detection

In [33], HMMs were used for metamorphic malware detection. First, several virus
generating kits that claimed to produce metamorphic code were studied. Of these,
only the Next Generation Virus Construction Kit (NGVCK) was found to produce
highly metamorphic code. Consequently, the paper [33] focuses on detecting NGVCK
viruses.

A large number of experiments involving HMMs were conducted in [33], with
a typical result reproduced here in Figure 2. For this example, the authors of [33]
trained an HMM (with two hidden states) on a sequence of opcodes extracted from 160
NGVCK variants. The test results given in Figure 2 were obtained using 40 NGVCK
“family” viruses and 40 “normal” (or benign) files, along with a smaller number
of “non-family” viruses. The 40 NGVCK test files were not among those used for
training. Also, Cygwyn utility files were used as the benign files, and the non-family
viruses consisted of non-NGVCK viruses. The scores are given in the form of log
likelihood per opcode (LLPO) that is, the scores are normalized per opcode so that
files of different lengths can be compared.

+ family
viruses

= non-family
viruses

-1

-1

-1

-1

-180

Score (LLPO)
2 ERRS 83 AN

A normal
files

File number

Figure 2: HMM detection results from [33]

In Figure 2, we could easily set a threshold that would provide complete separation
between the family viruses and the benign files. That is, we can distinguish between
the NGVCK family viruses and the benign files using an HMM trained on opcode
sequences. The only misclassifications come from the set of non-family viruses, some
of which would be classified as family viruses, and some of which would be classified as
benign. The fact that some non-family viruses are also detected could be considered
a feature—as opposed to a flaw—of the technique.

In the paper [17] a metamorphic generator was developed for the purpose of
defeating the HMM-based detection presented in [33]. The metamorphic generator
in [17] relies primarily on inserting dead code extracted from normal files. In effect,
this makes the resulting viruses look more like benign files, thereby making it more
difficult to distinguish the viruses from the benign files.

Figure 3 gives typical test results from the paper [17]. For these results, the same
procedure as in [33], was used, that is, an HMM was trained on extracted opcode
sequences, and viruses and benign files were scored using the resulting model.

File number

1 & 1 16 21 26 3 36

= Family Virus

——maormal Files

Score (LLPO)

Figure 3: HMM detection defeated [17]

The results in Figure 3 show that an HMM-based detector can be defeated by
a properly constructed metamorphic generator. Consequently, there is a need to
consider additional detection techniques for metamorphic malware. In this paper,
we consider an approach based on opcode graphs and compare it to the HMM-based
technique discussed in this section.

2.4 Similarity and metamorphic detection

Software similarity is a potentially useful means for detecting metamorphic malware.
If we can determine a characteristic common to all members of a metamorphic family,
then we can potentially use this characteristic to detect metamorphic code belonging
to this family. Note that such an approach is not limited to metamorphic malware,
but it is one of the few viable options available when dealing with well-designed
metamorphic code.

Various opcode-based similarity measures have been proposed specifically for
metamorphic detection, including n-gram similarity [33], chi-squared (statistical) sim-
ilarity [11], edit distance [21], and pairwise sequence alignment [2, 21]. In addition,
opcode-based machine learning techniques have been applied to the metamorphic
detection problem—examples include hidden Markov models (as discussed above in
Section 2.3) and profile hidden Markov models [2]. These techniques are aimed at
deriving a model that captures the similarity of a given metamorphic family. Yet
another approach to opcode-based metamorphic detection is to employ data mining
techniques, such as cosine similarity [14]. In this paper, we consider a metamorphic
detection strategy based on opcode graph similarity.

2.5 Opcode graph similarity

The paper [1] proposes an interesting graph-based technique for virus detection.
Given an executable file, the sequence of opcodes is extracted and a weighted directed
graph is constructed as follows. Each distinct opcode that appears in the program
opcode sequence is a node in directed graph. A directed edge is inserted from a node
to each possible successor node, that is, each successor opcode. Edge weights give the
probability of the corresponding successor node. To illustrate the process, consider
the program trace in Table 2, where some lines have been abbreviated to save space
(as indicated by “...”).

From the program in Table 2, we extract the opcode sequence and tabulate counts
for pairs of consecutive opcodes. That is, we are interested in opcode digram frequen-
cies. For this particular program, we obtain the counts in Table 3. For example, in the
sample program, the opcode MOV is immediately followed by the opcode CALL three
times (see lines 17, 35, and 43 in Table 2). Consequently, there is a 3 in the MOV row
and CALL column in Table 3.

Using the digram frequency counts in Table 3, we convert the counts to probabil-
ities by dividing the count in each cell by its corresponding row sum. The resulting
matrix appears in Table 4. For example, MOV occurs 18 times, while (MOV,CALL)
occurs 3 times. Therefore, the (MOV,CALL) cell in Table 4 contains the probabil-
ity 3/18 = 1/6.

The entries in Table 4 give the corresponding edge weights in the opcode directed
graph. The opcode graph for the program in Table 2 appears in Figure 4. However, for
all computations involving the opcode graph, we use the array of edge weights. That

Table 2: Assembly language instruction trace

1 PUSH ebp 24 MOV ebp, esp
2 MOV ebp, esp 256 PUSH edi

3 SUB esp, 8 26 PUSH esi

4 AND esp, OFFFFFFFOh 27 PUSH ebx

5 MOV eax, ds:dword 404000 | 28 SUB esp, 7Ch

6 TEST eax, eax 29 MOV edi, [ebp+arg0]

7 JZ Short loc_401013 30 MOV esi, [ebptarg-4]

8 INT 3 31 AND esp, OFFFFFFFOh

9 FNSTCW [ebp+var_2] 32 CALL sub_401930

10 MOVZX eax, [ebp+var_2] 33 CALL main

11 AND eax, OFFFFFOCOh 34 MOV [ebp+var_4C], O

12 MOV [ebptvar_2], ax 35 MOV [esp+88h+var_88], ...
13 MOVZX eax, [ebptvar_2] 36 CALL CORBA_exception_init
14 OR eax, 33Fh 37 MOV dword ptr ...

15 MOV [ebptvar_2], ax 38 XOR edx, edx

16 FLDCW [ebp+var_2] 39 MOV eax, offset ...

17 MOV [esp+8+var 8], ... 40 MOV [esp+88h+var_78], edx
18 CALL sub_401960 41 MOV [esp+88h+var_7C], eax
19 LEAVE 42 MOV dword ptr ...

20 RETN 43 MOV [esp+88h+var_88], ...
21 ALIGN 10h 44 CALL poptGetContext

22 PUSH ebp 45 MOV ebx, eax

23 MOV eax, 10h 46 LEA esi, [esi+0]

is, we use the digram probability array in Table 4, not the graphical representation
in Figure 4. This opcode graph is the basis for the graph scoring technique in [1] as
well as the metamorphic similarity measure discussed in this paper.

Next, we give a very brief summary of the opcode graph technique in [1]. First, the
opcode sequence is extracted and the weighted directed opcode graph is constructed,
as discussed above. Graph kernel techniques [9] are then used to obtain a score
corresponding to the graph. Finally, a support vector machine (SVM) is used for
classification. That is, based on training data, an SVM determines whether a given
score corresponds to a virus or a benign file.

The authors of [1] test their approach on a large sample of known malware and
benign files, and they compare their classification results with popular anti-virus
software. Some of the results from [1] are summarized here in Table 5. These results
are based on 615 instances of benign software and 1615 instances of malware. The
graph kernel technique is clearly superior to a standard n-gram model and, in the
sense of overall accuracy, it is far superior to all of the AV software tested. However,
it is apparent from these results that AV software companies designed their products
so as to avoid false positives at all cost—even if that cost includes a large number of

10

Table 3: Assembly language counts for Table 2

%N = [=
F=wmed . e85 S842E8 ¢z
s RSEnsEfegidaEdE 8
PUSH|2 2 1 0 0 0 0 0 O O O O O O O 0 O
movi1 7 1 1 1 0 0O O 1 O 1 3 0 O O 1 1
sssf0 1.0 1.0 0 OO O O OO O OOUOO
AND|O 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 O
TEST/O 0 0 0 0 1 0 OO O O O O O O 0 O
JZ|o o0 o0 0 0 0 1 0 0 0 0 0 0 0 0 0 O
INTYO O OO OO O 1 O0 0 O0 O0OO0O O0O 0O 0 0
FNSTCW| O 0 O 0 0 0 0 0 1 0 0 0O 0 O O 0 O
movzx|o o0 1 0 0 0O O O O 1 0 O O O O 0 O
oR{O 1 0 0 0 OO O OOO O OO O0O 0O O
FLp¢cw 1 O 1 0 0 0 0 0 0 0 0 0 0O O O O 0 O
caLLjo 3 0 0 0 0 0 OO0 0 1 1 0 0 0 0 0
LEAVE|O O 0 0 0 0 0 0 0 0O OO O 1 0 0 O
RETNNO O O O O 0 0 0O 0 0 0 0O 0 O 1 0 O
ALIGN T O O O 0O 0 0 0 0 0 0 0 0 0O 0 0 O
XOR|O 1 0 0 0 OO OO OOO O O0OO0OO0O0
LEA|O O O O 0 0 0 0 0 0 0 0 O O 0 0 O

false negatives. While interesting in their own right, direct comparisons of research
techniques to AV software may not be particularly informative, since any AV software
could certainly improve its accuracy by accepting more false positives. In any case,
the opcode graph technique yields impressive results.

Our proposed graph technique is similar to that in [1], but simpler, and hence
more efficient. In addition, we apply our technique to metamorphic detection and
compare the results to previous related work. In the next section, we discuss the
design of our graph technique in detail.

3 Opcode graph-based similarity

Here, we consider a graph technique base on the same opcode graph used in the re-
search presented in [1]. However our technique is considerably simpler and somewhat
more efficient, and we are focused on the problem of metamorphic detection. Our
goal is to develop a similarity measure—based on extracted opcode sequences—that
can be used to compare executable files. In Section 4 we apply this similarity measure
to the problem of metamorphic detection.

11

Table 4: Probabilities from Table 3

VAT
40X
NDITV
NI3Y
JAVAT
TIVO
Moa1d
40
XZAOW
MDLSNA
INI
Zr
LSdL
anv
ans
AOKW
HSNd

00

O -Roc o 0o 0 0O o0 o0 O o o o0 o0 o o O
O HRo o 0O 0 OO0 o0 o0 o0 o0 o o o o O
O OO0 OO0 OO0 OO0 o0 o0 o0 o0 H o o o
SO OO0 O 0O 0O 0O O O O oo H o o o o
O OO0 OO0 0O 0 0 o0 o0 o0 o0 o o o oo
O RO O O O O O O O OO O O O O
O H¥ O HmMO ©O O O O O O o O O O O
O OO0 O 0O 0 0O OO OO0 o0 o0 o o O
O HR o o0 0o 0O H O OO O O o o o O
O OO0 OO0 O H O O OO o o o o o o
SO OO0 OO0 H 0O O O O O o o o o o o
O OO0 0O H O O 0O o0 0 o0 o0 o o o o o
O R o 0O 0 0O o0 o0 o0 o o0 o0 o o o O
O RN O O O O O O O O O O O O O
RO O O O O OO ©O O O O O O O
A =B O O O O O —H oo O O —H O
aw—HR O ©O O O O O O O O O O O H O O
n o858 RNESKNE8IEEE S A
R0 SH Sgs5 83FFEg5C
W = Fry — <

Table 5: Summary of results from [1]

false false

positives

accuracy

technique

negatives

47 33
300

96.41

Graph kernel

98
595
1028
1196
1264
1271

0
1
0
1
1

53.86

82.15
73.32
49.60
43.27
42.96

n-gram
AV0
AV1
AV2
AV3
AV4

12

Figure 4: Weighted directed graph for code in Table 2

As discussed in Section 2.5, given an executable file, we extract the opcode se-
quence and generate a weighted directed graph based on opcode digrams. To this
point, our technique parallels the approach used in [1]. But, instead of using graph
kernels to generate scores and SVMs for classifications, we directly compare the op-
code graphs.

Let IV be the number of distinct opcodes under consideration and map the opcodes
to {0,1,2,...,N —1}. Let A = {a;;} and B = {b;;} be the edge-weight matrices
corresponding to executable files. Recall that an example of such a matrix appears
in Table 4. Note that both A and B are N x N and the opcode numbering is the
same for both. That is, a;; and b;; represent the probability that opcode i is followed
by opcode j in programs A and B, respectively.

Now, to compare these matrices, we compute the score

1 N-—1 2
score(4,5) = 33 (3 iy~ byl) 1)

1,7=0

If A = B, then the minimum score, namely, score = 0, is achieved. Suppose
that a;; = 1 and bj, = 1, with j # k. Then we obtain the maximum possible

row sum,
N—

> lay — by =2.

=

—_

If this maximum row sum is achieved for each row, then we obtain the maximum

13

possible score of 4. Consequently,
0 < score(A4,B) <4

for all A and B.

Other scoring functions were tested, but none proved superior to (1) for our pur-
poses. In addition, various graph comparison techniques were considered, such as
those in [12, 20], but most were costly to compute and none offered a clear advantage
to the straightforward calculation in (1).

To use the score function in (1) for metamorphic detection, we first need to de-
termine a score threshold. To do so, the following process is used:

1. Determine the opcode graphs for a collection of metamorphic family viruses.
2. Determine the opcode graphs for a representative sample of benign files.

3. Using (1), compute the scores for all pairs of metamorphic family viruses from
step 1.

4. Using (1), compute the scores for all pairs consisting of one family virus from
step 1 and one benign file from step 2.

5. Set a threshold based on the scores in steps 3 and 4.

Once we have set a threshold, we can use any randomly selected metamorphic file
from the set in step 1 for scoring. That is, given a file that we want to score, we
first determine its opcode graph, then score the resulting graph against the opcode
graph from a known metamorphic file. If the resulting score is below our threshold,
we classify the file as belonging to the metamorphic family; otherwise it is classified
as benign. Figure 5 shows the flow of our graph technique implementation.

4 Results

Our test set of metamorphic viruses consists of 200 NGVKC files [32]. That is, all
of our metamorphic viruses belongs to the NGVCK family. In [33], these viruses are
shown to be the most highly metamorphic of any of the virus construction kits tested.
In addition, a wide variety of metamorphic detection techniques have been applied
to this set of viruses [2, 7, 11, 21, 22, 27, 33], so we have a basis for comparing the
effectiveness of our technique to previous work.

Our set of benign files consists of 41 cygwin utility files [6]. The cygwin utility
files were used as representative benign files in several previous studies, including [33].
Finally, we also consider a third set containing 25 non-family virus files.

The results in [33], show that this set of metamorphic files can be distinguished
from the benign files using an HMM-based technique. Our initial tests are aimed
are determining whether our graph-based technique is competitive with HMM-based
detection.

14

CYEWIN o Create matrixz
using
i___.-r-—- A instruction Calculate
/‘ traces similarity score
DA . .
metamorphic Provide basic
virus files L~ instruction set

Clazsification
unit

DAY other

wirus files

| Graph technigue

¥
Zimilar § different

Figure 5: Flow of the graph technique

Using the approach outlined in Section 3 we determine a threshold. The viability
of our proposed technique is dependent on there being a useful separation between
scores for the following two cases:

e Metamorphic virus versus metamorphic virus
e Benign file versus metamorphic virus

Although not strictly necessary for malware detection, we also consider the following
cases:

e Benign file versus non-family virus
e Benign file versus benign file

The graphs in Figures 6 and 7 give typical results corresponding to the first two
case listed above, that is, the “metamorphic versus metamorphic” case and the “be-
nign versus metamorphic” case, respectively. Note that the highest score in Figures 6
is 0.525 while the lowest score in Figures 7 is 0.588, and hence we have significant
separation as required for ideal detection. These results show that our graph-based
detection technique is on par with the HMM-based approach in [33], which also
yielded no false positives or false negatives.

Figure 8 gives results for the case where benign files are scored against other
benign files. As mentioned above, this is not directly relevant for malware detection,
but it does illuminate some properties of our similarity measure.

Note that the benign versus benign scores in Figure 8 lie within a similar range
as the metamorphic versus metamorphic scores in Figure 6. These graphs tell us
that, according to our graph similarity measure, NGVCK viruses are typically about
as different from each other as any two randomly chosen benign files. While this

15

MNormal V
Gral

Figure 7: Similarity score for benign versus metamorphic

does indicates a high degree of metamorphism, it is actually considerably less than
some previously studied similarity scores. In other words, according to previous
similarity measures, NGVCK viruses are significantly more different from each other
than benign files are different from each other. For example, for an n-gram based
similarity measure analyzed in [33], pairs of NGVCK viruses are far more dissimilar
than pairs of benign files. It could be considered a strength of our graph-based
approach that the NGVCK viruses appear to be less metamorphic than with other
similarity measures.

Figure 9 gives similarity results when benign files are compared to non-family
viruses. The results are comparable to those in Figure 7 and indicate that our simi-
larity measure is not restricted to metamorphic detection.

16

Figure 9: Similarity scores for benign versus non-family viruses

Figure 10 shows all four of the graphs from Figures 6, 7, 8, and 9 plotted on the
same axes. Also, we note that many additional graphs of results can be found in [25].

5 Attacks on graph-based detection

In this section, we consider the robustness or our proposed metamorphic detection
technique. In particular, we consider two different approaches that a metamorphic
virus writer might follow to try to evade our detection technique. First, we consider
the effect of removing uncommon opcodes from the malware. Second, we turn our
attention to modifying the morphing technique so that the resulting malware is more

17

Metamorphic viruses Ws Metamaorphic viruses, Normal Vs et icviruses, Mormal Vs Mormal, Viruses Vs Viruses

Figure 10: Combined graph

similar to benign files. This latter approach was used in [17] to effectively defeat the
HMM-based detection.

5.1 Uncommon opcode removal

Consider again the opcode graph in Figure 4 or, equivalently, the opcode digram
probability matrix in Table 4. By construction, the outgoing probabilities for each
node sum to one. From the scoring formula in (1), we see that all opcodes are weighted
the same so that, for example, MOV carries no more weight than INT, in spite of the
fact that the former is typically the most common opcode, while the latter is rare.

Consequently, it could be argued that our graph-based similarity score gives ex-
cessive weight to uncommon opcodes. That is, it might seem that the score is little
more than a glorified heuristic that detects malware based primarily on a relatively
few rare opcodes that do not typically occur in benign code. If this is indeed the
case, a virus writer who could remove these rare opcodes would evade detection by
our opcode graph similarity score.

To test this hypothesis, we removed about 80% of all opcodes that appear in the
virus files, but do not occur in the benign files. Figure 11 shows the before and
after results—the upper line is the “metamorphic versus metamorphic” case before
opcode removal (this is the same graph that appears in Figure 6) while the lower
line shows the same case after these rare opcodes have been removed. The scores
are only slightly weaker and Figure 12 confirms that even after removing the vast
majority of rare opcodes, we still have clear separation between the “metamorphic
versus metamorphic” and the “benign versus metamorphic” cases. That is, we still
have an effective detection strategy based on opcode graph similarity.

Note that to remove the rare opcodes, we simply expunged the opcodes from the
directed graph. However, a malware writer would have to modify the virus code so

18

Figure 11: Metamorphic versus metamorphic: Before and after opcode removal

Figure 12: Metamorphic versus metamorphic and benign versus metamorphic after rare
opcode removal

as to avoid these opcodes, which is a much more involved task. In any case, given the
results in Figures 11 and 12, a virus writer appears to have little to gain from such
an effort.

5.2 Modified morphing engine

In [17], a morphing engine was developed for the sole purpose of evading HMM-based
detection. The morphing consists primarily of inserting code from benign files directly
into malware files and the inserted code is largely “dead code,” in the sense that it
is not executed.

The paper [17] shows that inserting dead code from benign files into viruses can
be an effective strategy for evading HMM-based detection. However, it is also shown
that it is much more effective to insert the dead code in blocks, as opposed to having
the dead code more evenly disbursed throughout the morphed virus.

We conducted similar experiments for our proposed graph-based similarity mea-
sure. Two types of morphing are used. In the first case, which we refer to as “block
morphing,” we insert the dead code as a single block. In the second case, which
we refer to as “random morphing,” we distribute the dead code approximately uni-
formly throughout the morphed virus. These strategies represent the extreme cases

19

for inserting dead code. As in Section 4, for all experiments in this section, NGVCK
viruses were selected as our base virus files.

We conducted experiments for both block morphing and random morphing with
various dead code insertion percentages. These percentages are given in terms of the
size of the original virus file. For example, if the source virus file has 100 lines, to
morph it at 20% we extract 20 lines from a randomly-selected benign file and insert
these lines into the virus file. Note that these steps all occur at the assembly code
level, and we make no effort to create a functioning program. To actually use this
technique, a virus writer would have to work much harder, taking care that none of
the dead code was executed. A virus writer would also want to make some attempt
to disguise the fact that the dead code is actually dead code, otherwise it could be
ignored in the scanning process. In addition, unless a virus writer is careful, excessive
dead code insertion might provide a simple heuristic for detecting the morphed viruses
(e.g., an excessive number of JMP instructions used to avoid dead code). By ignoring
these important practical issues, we are, in effect, considering the worst-case scenario
from the virus detection point of view.

Results for block morphing in the “benign versus morphed viruses” case appears in
Figure 13. Here, the morphing percentage ranges from 10% to 100%. It is important
to note that for each score computation, we scored the morphed virus against the
benign file from which the morphing code was extracted. This is certainly a worst-case
scenario, since we expect these programs to be, in general, much more similar than
if we score the morphed virus against a randomly selected benign file. As expected,
the general trend is that the more code that is copied from a benign file into a
morphed file, the more closely the score approaches that of the “benign versus benign”
case. That is, as the morphing increases, the scores decrease, making detection more
difficult. This is as expected.

Benign file ver stamorphic virus

Figure 13: Block morphing: Benign versus morphed virus

20

In Figure 14 we give detection results when 30% block morphing is used. That is,
we compare the “benign versus morphed virus” results with block morphing of 30%
(as given in Figure 13) to the “morphed virus versus morphed virus” results, again
with 30% block morphing. In this case, we clearly have some misclassifications,
regardless of how we set the threshold. For example, it we set the threshold at 0.5,
there are 4 false positives and 6 false negatives.

Benign file, 3

rmal metamorphic virus
ts

Figure 14: Morphed virus versus morphed virus and benign versus morphed virus: 30%
block morphing

For comparison, we also implemented the HMM-based classification in [33] using
the same 30% block morphed files used to obtain the results in Figure 14. These
HMM results appear in Figure 15.

Using a threshold of —3.8, the HMM detector Figure 15 yields 1 false positive
and 9 false negatives. Consequently, the results for the HMM detection are compa-
rable to those for the graph-based similarity detection in Figure 14. However, it is
worth noting that the HMM has a significant advantage in this case. Recall that for
the graph similarity detection results in Figure 14, for each score computation, we
compared the morphed virus with the benign file from which the morphing code was
extracted. That is, we took the worst-case scenario in each and every score com-
putation. For the HMM, no comparable worst-case scenario is possible. The HMM
is trained on a set of morphed virus files, and then scored against a different set of
morphed files and a set of benign files. That is, the HMM represents an average case,
not a specific case.

Perhaps a fairer comparison would be to select a random benign file for the graph
scoring technique, as opposed to selecting the specific benign file from which the
morphing code was extracted. Figure 16 gives results for this particular case. These
results demonstrate that, in practice, we can likely tolerate significantly higher levels
of morphing than indicated by the results in Figure 14.

21

HMM results for 20% block morphed metamorphic virus files and benign files
Source: Graph Technigue
20| ® Normal files Morphed metamorphic virus |

Different file scores

-40

_GU—S [u] 5 10 15 20 25 30 35 40 45

Number of files
Highcharts.com

Figure 15: HMM 30% block morphed

Other

Figure 16: Metamorphic versus random benign

Next, we consider random morphing. As with block morphing, the morphing code
is extracted from a randomly selected benign file. However, instead of inserting the
code as a block, we disperse the morphing code approximately uniformly through-
out the morphed virus. Again, we ignore the practical issues involved in making a
functioning program out of the resulting morphed file—we simply modify the opcode
sequence. As mentioned above, this is a worst-case scenario from the virus detec-
tion perspective. As an aside, we note that these practical issues are much more
challenging in the case of random morphing than for block morphing.

22

Figure 17 shows the results for this case. Note that this figure is the random
morphing analog of the block morphing case that appears in Figure 13.

Benign file versus ran letamaorphic virus
Gy

Figure 17: Random morphing: Benign versus morphed virus

The results in Figure 17 indicate that as the random morphing increases, the
morphed viruses actually become more different from each other. Initially, this might
seem counterintuitive. However, if we consider the effect of random morphing on the
score calculation, then these result make sense. The score is based on consecutive
pairs of opcodes. With random morphing, we are making essentially random changes
to consecutive pairs of opcodes—increased morphing only increases this effect. Con-
sequently, two randomly-morphed viruses are, in the sense of our score calculation,
almost certainly “farther apart” than before the morphing, and they are also almost
certainly farther from a given benign file. In effect, we are randomizing the weights
in the opcode graph. In contrast, block morphing has the effect of merging the virus
graph with (part of) a benign graph, thereby making the morphed virus more similar
to the benign file, at least with respect to the opcode graph score in (1).

The bottom line is that random morphing would tend to make the detection
problem easier, not more difficult. Finally, we note that a similar effect has been
observed with HMM-based detection. That is, the more random the morphing (in the
sense of being spread uniformly throughout the virus), the less effective the morphing
is at defeating the HMM detector [17].

6 Conclusions

In this paper, we considered a similarity score based on opcode graphs extracted
from executable files. We applied this score to the challenging problem of metamor-
phic malware detection. The score was shown to be effective—under some plausible

23

scenarios it outperformed a previously developed technique based on hidden Markov
models.

Some relevant open questions remain. The score used in the tests discussed here
is given in (1). Alternative scoring functions are considered in [25], where it is noted
that minor modifications to the scoring function tend to have surprisingly large effects
on the results. It would be interesting to explore this more carefully, since it might
be possible to find a stronger scoring function.

A more sophisticated classification scheme might offer a slight improvement in
classification rates. For example, elementary techniques such as linear discriminant
analysis (LDA) or quadratic discriminant analysis (QDA) could be used, or more
advanced methods could be applied.

It might be useful to combine our opcode graph similarity technique with other
techniques, such as the HMM-based detector in [33]. Such a combined approach could
leverage the relative strengths of each of its components to yield a stronger overall
detector.

Finally, it would be useful to have a standard metamorphic malware dataset so
that proposed detection schemes could be compared, based on their performance on
this standard data. This approach has worked well in other security-related research
areas. For example, in the field of masquerade detection—a problem that arises
in intrusion detection—there is a standard dataset that all proposed systems are
tested against; see, for example [13]. Although this masquerade dataset, the so-called
Schonlau dataset [26], is far from perfect, it provides a method for directly comparing
the effectiveness of proposed systems.

References

[1] B. Anderson, et al, Graph-based malware detection using dynamic analysis,
Journal of Computer Virology, Vol. 7, No. 4, November 2011, pp. 247-258

[2] S. Attaluri, S. McGhee, and M. Stamp, Profile hidden Markov models and meta-
morphic virus detection, Journal in Computer Virology, Vol. 5, No. 2, May 2009,
pp. 151-169

J. Aycock, Computer Viruses and Malware, Springer 2006

=Y

E. Al daoud, et al, Detecting metamorphic viruses by using arbitrary length of
control flow graphs and nodes alignment, ICIT 2009 Conference — Bioinformat-
ics and Image, http://www.ubicc.org/files/pdf/2_363.pdf

[5] S. Cesare, Faster, more effective flowgraph-based malware classification,
http://www.ruxcon.org.au/2011-talks/
faster-more-effective-flowgraph-based-malware-classification/

=

Cygwin, Cygwin utility files, http://www.cygwin.com/

=)

P. Desai and M. Stamp, A highly metamorphic virus generator, International
Journal of Multimedia Intelligence and Security, Vol. 1, No. 4, 2010, pp. 402-427

24

8]

[15]
[16]
[17]

[18]

[21]

[22]

M. Eskandari and S. Hashemi, Metamorphic malware detection using control flow
graph mining, IJCSNS International Journal of Computer Science and Network
Security, Vol. 11, No. 12, December 2011, pp. 1-6,
http://paper.ijcsns.org/07_book/201112/20111201.pdf

T. Gartner, et al, On Graph Kernels: Hardness Results and Efficient Alterna-
tives, Springer, pp. 129-143, 2003

B. Halfpap, Artificial immune system virus detector, 2010,
http://resheth.wordpress.com/tag/virus-detection/

A. Hii, Chi-squared distance and metamorphic detection, Master’s report, De-
partment of Computer Science, San Jose State University, 2011

A. Hlaoui and S. Wang, A New Algorithm for Inexact Graph Matching,
http://www.dmi.usherb.ca/"hlaoui/icpr2002.pdf

L. Huang and M. Stamp, Masquerade detection using profile hidden Markov
models, Computers and Security, Vol. 30, Issue 8, November 2011, pp. 732—-747

A. Karnik, S. Goswami, and R. Guha, Detecting obfuscated viruses using cosine
similarity analysis, First Asia International Conference on Modelling & Simula-
tion, 2007, pp. 165-170

E. Konstantinou, Metamorphic Virus: Analysis and Detection, 2008,
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02. pdf

J. Lee, K. Jeong, and H. Lee, Detecting metamorphic malwares using code
graphs, Proceedings of SAC10, 2010

D. Lin and M. Stamp, Hunting for undetectable metamorphic viruses, Journal
in Computer Virology, Vol. 7, No. 3, August 2011, pp. 201-214

C. Nachenberg, Understanding and managing Polymorphic viruses, Symantec
Enterprise Papers, Vol. XXX,
http://www.symantec.com/avcenter/reference/striker.pdf

OECD, Malicious software (malware): A security threat to the Internet economy,
http://www.oecd.org/dataoecd/53/34/40724457 . pdf

H. Ogata, et al, A heuristic graph comparison algorithm and its application to
detect functionally related enzyme clusters,
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC110779

M. Patel, Similarity tests for metamorphic virus detection, Master’s report, De-
partment of Computer Science, San Jose State University, 2011,
http://www.cs.sjsu.edu/faculty/stamp/students/patel_mahim.pdf

S. Priyadarshi, Metamorphic detection via emulation Master’s report, Depart-

ment of Computer Science, San Jose State University, 2011,

http://www.cs.sjsu.edu/faculty/stamp/students/
priyadarshi_sushant.pdf

25

23]

[24]

[25]

32]
33]

L. Rabiner, A tutorial on hidden Markov models and selected applications in
speech recognition, Proceedings of the IEEE, Vol. 77, No. 2, pp. 257-286, Febru-
ary 1989

D. Radev, Lecture 13 — Eigenvectors, Eigenvalues, Stochastic Matrices, 2008
http://wwwl.cs.columbia.edu/~coms6998/Notes/lectureld.pdf

N. Runwal, Graph technique for metamorphic virus detection, Master’s report,
Department of Computer Science, San Jose State University, 2011,
http://www.cs.sjsu.edu/faculty/stamp/students/runwal_neha.pdf

M. Schonlau, et al, Computer intrusion: detecting masquerades, Statistical Sci-
ence, Vol. 15, No. 1, 2001, pp. 1-17

A. Shah, Approximate disassembly using dynamic programming Master’s report,
Department of Computer Science, San Jose State University, 2010,
http://wuw.cs.sjsu.edu/faculty/stamp/students/shah_abhishek.pdf

SnakeByte, Next generation virus construction kit (NGVCK), 2002,
http://vx.netlux.org/vx.php?id=tn02

M. Stamp, Information Security: Principles and Practice, second edition,
Wiley 2011

M. Stamp, A revealing introduction to hidden Markov models, 2011,
http://www.cs.sjsu.edu/ stamp/RUA/HMM. pdf

P. Szor and P. Ferrie, Hunting for metamorphic, Symantec, 2001,
http://wuw.symantec.com/avcenter/reference/
hunting.for.metamorphic.pdf

VX Heavens. http://vx.netlux.org/

W. Wong and M. Stamp, Hunting for metamorphic engines, Journal in Computer
Virology, Vol. 2, No. 3, December 2006, pp. 211-229
http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

26

