
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 6, NO. 1, MARCH 2011 213

A Robust and Fast Video Copy Detection System
Using Content-Based Fingerprinting

Mani Malek Esmaeili, Mehrdad Fatourechi, and Rabab Kreidieh Ward, Fellow, IEEE

Abstract—A video copy detection system that is based on con-
tent fingerprinting and can be used for video indexing and copy-
right applications is proposed. The system relies on a fingerprint
extraction algorithm followed by a fast approximate search algo-
rithm. The fingerprint extraction algorithm extracts compact con-
tent-based signatures from special images constructed from the
video. Each such image represents a short segment of the video and
contains temporal as well as spatial information about the video
segment. These images are denoted by temporally informative rep-
resentative images. To find whether a query video (or a part of
it) is copied from a video in a video database, the fingerprints of
all the videos in the database are extracted and stored in advance.
The search algorithm searches the stored fingerprints to find close
enough matches for the fingerprints of the query video. The pro-
posed fast approximate search algorithm facilitates the online ap-
plication of the system to a large video database of tens of millions
of fingerprints, so that a match (if it exists) is found in a few sec-
onds. The proposed system is tested on a database of 200 videos in
the presence of different types of distortions such as noise, changes
in brightness/contrast, frame loss, shift, rotation, and time shift.
It yields a high average true positive rate of 97.6% and a low av-
erage false positive rate of 1.0%. These results emphasize the ro-
bustness and discrimination properties of the proposed copy detec-
tion system. As security of a fingerprinting system is important for
certain applications such as copyright protections, a secure version
of the system is also presented.

Index Terms—Content-based fingerprinting, multimedia dupli-
cate detection, multimedia fingerprinting, robust video hashing,
video copy detection, video copy retrieval.

I. INTRODUCTION

T ENS of thousands of videos are being uploaded to the
Internet and shared every day. A considerable number

of these videos are illegal copies or manipulated versions of
existing media, making copyright management on the Internet
a complicated process. Today’s widespread video copyright
infringement calls for the development of fast and accurate
copy-detection algorithms. As video is the most complex
type of digital media, it has so far received the least attention
regarding copyright management. Because videos are available
in different formats, it is more efficient to base the copy detec-
tion process on the content of the video rather than its name,
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description, or binary representation. Multimedia fingerprinting
(also known as robust hashing) has been recently proposed
for this purpose [1]. A fingerprint is a content-based signature
derived from a video (or other form of a multimedia asset)
so that it specifically represents the video or asset. To find a
copy of a query video in a video database, one can search for a
close match of its fingerprint in the corresponding fingerprint
database (extracted from the videos in the database). Closeness
of two fingerprints represents a similarity between the corre-
sponding videos; two perceptually different videos should have
different fingerprints.

A. Properties of Fingerprints

A fingerprint should be robust to the content-preserving dis-
tortions present in a video. It should also be discriminant, easy
to compute, compact, and easy to search for in a large data-
base. In some applications such as copyright protection, the fin-
gerprinting system should also be secure. Robustness of a fin-
gerprint requires that it changes as little as possible when the
corresponding video is subjected to content-preserving oper-
ations, i.e., operations that do not affect the perceptual con-
tent of the video. Content-preserving attacks (distortions) are
changes that are made to the video unintentionally or intention-
ally by users of video-sharing websites. These changes can in-
clude format changes, signal processing operations, changes in
brightness/contrast, added noise, rotation, cropping, logo inser-
tion, compression, etc. The fingerprints should also be discrim-
inant, to ensure that two perceptually different videos have dis-
tinguishable fingerprints. Because a change in the content can
be considered as an extreme distortion of the video, there is a
trade-off between robustness and discrimination. As a finger-
printing algorithm becomes more robust to distortions, it be-
comes less sensitive to changes in the content, i.e., it has less
discrimination ability.

The fingerprint should also be easy to compute. More specif-
ically, for online applications, a fingerprinting algorithm should
be able to extract the signatures as the video is being uploaded. A
computationally demanding algorithm is not suitable for online
applications, where thousands of videos need to be examined si-
multaneously in order to find possible copyright infringements.
For the same reason, fingerprints should be compact as well. If a
fingerprint is not compact, finding a match for it in a very large
database can become a time-consuming process. It should be
noted that the compactness of a fingerprint does not guarantee
that it can be easily matched or found in a large database. The
fingerprint structure should be designed to allow utilization of
fast approximate search algorithms, as will be discussed later.
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For some applications, the fingerprinting system should be se-
cure, so as to prevent an adversary from tampering with it. Se-
curity is specifically important for copy-detection applications.
The more secure a multimedia fingerprinting algorithm is, the
more difficult it is for an adversary to generate similar finger-
prints for different videos and thus manipulate the copy-detec-
tion system. For indexing applications, however, security of a
fingerprinting system does not pose a problem.

B. Types of Fingerprints

Existing video fingerprint extraction algorithms can be
classified into four groups based on the features they extract:
color-space-based, temporal, spatial, and spatio-temporal
(see [2] and [3] for a survey of existing video fingerprinting
methods). Color-space-based fingerprints are among the first
feature extraction methods used for video fingerprinting [2].
They are mostly derived from the histograms of the colors in
specific regions in time and/or space within the video. Since
color features change with different video formats [4], these
features have not been very popular. Another drawback of color
features is that they are not applicable to black and white videos.
For this reason, most of the video fingerprinting systems are
designed so that they can be applied to the luminance (the gray
level) value of the frames. Temporal fingerprints are extracted
from the characteristics of a video sequence over time [5].
These features usually work well with long video sequences,
but do not perform well for short video clips since they do not
contain sufficient discriminant temporal information. Because
short video clips occupy a large share of online video databases,
temporal fingerprints alone do not suit online applications.

Spatial fingerprints are features derived from each frame
or from a key frame. They are widely used for both video
and image fingerprinting. There is a large body of research in
the area of image fingerprinting and many researchers have
extended the concepts developed for image fingerprinting to
the video fingerprinting field [6]–[13]. Spatial fingerprints can
be further subdivided into global and local fingerprints. Global
fingerprints depict the global properties of a frame or a sub-
section of it (e.g., image histograms), while local fingerprints
usually represent local information around some interest points
within a frame (e.g., edges, corners, etc.). These interest-points
are conventionally used in the multimedia retrieval community
mainly for object retrieval purposes. However, with adequate
postprocessing they can also be applied to multimedia copy
detection and many researchers have recently considered them
for this task [14]–[16], and [17]. Many of these works use SIFT
features [18] which are proven to be very robust against many
distortions and have been successfully applied for retrieval pur-
poses. SIFT features provide robustness to content-changing
attacks, which is not achievable with global features. However,
for a short segment (e.g., 1 s) of a video, there are a large
number (thousands) of SIFT features, this makes them imprac-
tical from a memory management point of view when applied
to large video databases containing billions of hours of videos
[19]. Furthermore, the amount of postprocessing required by
these methods makes them less appealing for copy detection
purposes. We thus investigate using of global features in this
paper, as they do not have the above limitations.

C. Summary and Organization of the Paper

One shortcoming of spatial fingerprints is their inability
to capture the video’s temporal information, which is an
important discriminating factor. Spatio-temporal fingerprints
that contain both spatial and temporal information about the
video are thus expected to perform better than fingerprints
that use only spatial or temporal fingerprints. In this paper,
we have adopted spatio-temporal fingerprints because of their
comprehensiveness. Some spatio-temporal algorithms consider
a video as a three-dimensional (3-D) matrix and extract 3-D
transform-based features [20], [21]. Others use spatio-temporal
interest-point descriptors to generate the fingerprints [22],
[23]. Ordinal spatio-temporal features have also been used in
the literature [24]. Applying a 3-D transform to a video is a
computationally demanding process and may pose problems in
online applications. In [25], we propose a method for forming
temporally informative representative images (TIRIs) from
a video sequence. As a TIRI contains spatial and temporal
information of a short segment of a video sequence, the spatial
feature extracted from a TIRI would also contain temporal
information. Based on TIRIs, in [26], we have proposed an
efficient fingerprinting algorithm (TIRI-DCT) and compared it
to that proposed by Coskun et al. in [20] [three-dimensional
discrete cosine transform (3D-DCT)]. We showed that our pro-
posed algorithm outperformed 3D-DCT except when subject to
geometric attacks. We will discuss an improved version of this
algorithm (TIRI-DCT) in Section II-B and demonstrate that
our proposed algorithm yields consistently better performance
compared to 3D-DCT.

Many of the existing algorithms for video fingerprinting
have focused on the extraction of robust and discriminant
features from a video. However, when designing a practical
fingerprinting system for online video databases with a huge
number of videos, the computational bottleneck is the search
time in the matching process rather than the fingerprint extrac-
tion time. So far only few papers have addressed this problem.
In this paper, we also address the search time of our proposed
fingerprinting algorithm. We propose two fast search methods.
The first is a generalization of [1] and the second is based
on a novel approach involving clustering of the fingerprints
in the database. We also show that the second method yields
superior results. Our final proposed fingerprinting system,
i.e., the TIRI-DCT method along with the search algorithm
specifically developed for it introduces a fingerprinting system
that is robust, discriminant, and fast. Fig. 1 shows the overall
structure of this fingerprinting system.

The security of fingerprinting has been addressed by only few
studies so far [20], [27]–[29]. It is, however, important for copy-
right protection applications as the system may be compromised
by fake fingerprints generated by an adversary who knows the
algorithm. By using a secret key, we show in Section V that the
security of our fingerprinting system can be increased. We also
articulate the trade-off between security and robustness.

The organization of the paper is as follows: in Section II, we
briefly discuss how TIRIs that form the basis of the TIRI-DCT
fingerprinting algorithm are generated. We also briefly explain
the 3D-DCT algorithm, and TIRI-DCT in detail. In Section III,
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Fig. 1. Schematic of a complete fingerprinting system.

Fig. 2. Preprocessing steps employed in the discussed fingerprinting algo-
rithms.

two fast search algorithms are proposed and analyzed. Simula-
tion results are then presented in Section IV. In Section V, a
secure version of the proposed fingerprinting system is intro-
duced and analyzed. Finally, the conclusions are discussed in
Section VI.

II. EXTRACTING ROBUST AND DISCRIMINANT FINGERPRINTS

In this section, we first briefly explain an established fin-
gerprinting algorithm [20], which will be used as the basis of
the comparisons in our simulations. We then describe how we
generate TIRIs, and discuss the details of our proposed finger-
printing algorithm. Before extracting the fingerprints, we pre-
process the video signals. Copies of the same video with dif-
ferent frame sizes and frame rates usually exist in the same
video database. As a result, a fingerprinting algorithm should
be robust to changes in the frame size as well as the frame rate.
Down-sampling can increase the robustness of a fingerprinting
algorithm to these changes. As shown in Fig. 2, each video is
down-sampled both in time and space. Prior to down-sampling,
a Gaussian smoothing filter is applied in both domains to pre-
vent aliasing. This down-sampling process provides the finger-
printing algorithm with inputs of fixed size ( pixels) and
fixed rate ( frames/second). We choose ,
(the size of QCIF sequences used widely in the video processing
community), and . These parameter values have been
chosen experimentally. After preprocessing, the video frames
are divided into overlapping segments of fixed-length, each con-
taining frames. The fingerprinting algorithms are applied to
these segments. The amount of overlapping is experimentally
chosen to be 50%. Overlapping reduces the sensitivity of the
fingerprints to the “synchronization problem” which we refer to
as “time shift” in this paper. In Section III, we briefly explain
the algorithm proposed in [20], which we call 3D-DCT in the
rest of the paper.

A. Spatio-Temporal Fingerprinting Using 3D-DCT

Coskun et al. in [20] consider a video as a three-dimensional
(3-D) matrix of luminance values. After the preprocessing

Fig. 3. Schematic of the 3D-DCT algorithm proposed in [20].

phase described above, they apply a 3D-DCT to videos to
extract spatio-temporal features. Binary fingerprints are then
derived by thresholding the low-frequency coefficients of the
transform, as shown in Fig. 3. The threshold is the median
value of the selected coefficients. As a result, the generated
fingerprint (hash) has an equal number of 0’s and 1’s. With
this property, the maximum number of different fingerprints
that can be generated from a binary vector of length drops

from to . This property increases the robustness of

the fingerprints; however, it decreases their discrimination. The
robustness and discrimination of a fingerprint also depend on

, which is determined by the size of the low-frequency block.
In [20], the 3D-DCT was shown to be resistant to different
types of distortions that can happen to video signals, including
changes in brightness/contrast, added Gaussian noise, rotation,
spatial/temporal shift, and frame loss. A secure version of the
algorithm, called random basis transform (RBT) was also pro-
posed in [20] based on randomizing the frequency of the cosine
basis functions of the DCT transform. This secure version,
however, had a lower performance compared to the insecure
version. In the rest of this section, we first discuss generating
TIRI images to capture the temporal information in a video.
We then provide the details of our proposed fingerprinting
algorithm based on TIRIs.

B. Spatio-Temporal Fingerprinting Using TIRIs

1) Generating TIRIs: This method (also used in [26]) calcu-
lates a weighted average of the frames to generate a representa-
tive image. The resulting image is basically a blurred image that
contains information about possible existing motions in a video
sequence. The TIRI is thus generated as follows: let be
the luminance value of the th pixel of the th frame in
a set of frames. The pixels of TIRI are then obtained as a
weighted sum of the frames

(1)

We have examined different weight factors (constant, linear,
and exponential) and observed that exponential weighting
generates images that best capture the motion. Fig. 4(a)–(c)
show the first, the middle, and the last frames respectively,
of a 1-s video segment (30 frames) extracted from the se-
quence COASTGUARD-QCIF ([30]). The corresponding
TIRIs using three different weighting functions are shown
in Fig. 4(d)–(f): constant [Fig. 4(d)], linear [Fig. 4(e)], and
exponential [Fig. 4(f)]. As mentioned earlier, Fig. 4 shows
that the exponential weighting function produces perceptu-
ally better results. Our experiments with other videos led to
the same conclusion, thus we have chosen the exponential
weighting function for generating TIRIs. A very
large , or one close to 0, generates a TIRI with detailed spatial
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Fig. 4. Frames (a) 61, (b) 75, and (c) 90 of the sequence COASTGUARD-QCIF
[30] and the resulting TIRIs with different weighting functions: (d) � � �

(constant), (e) � � � (linear), (f) � � ��� (exponential).

Fig. 5. Schematic of the TIRI-DCT algorithm.

information and low temporal information, resulting in a more
discriminant representative. On the other hand, a close to 1
(giving the same weight to all the frames along the time line)
results in a blurred image that is a more robust representative
(containing averaged temporal information). By changing
from 0 to 1, we can move from a single frame selection (high
spatial information) to selecting all frames with equal weights
(high temporal information). The effect of using different

values on the performance of the fingerprinting system is
demonstrated in Section IV.

2) TIRI-DCT Algorithm: Fig. 5 shows the block diagram of
our proposed approach based on TIRIs [26]. Fig. 6 shows the
details of this algorithm. As explained in Fig. 6, features are
derived by applying a 2D-DCT on overlapping blocks of size

from each TIRI (with 50% overlap). The first hori-
zontal and the first vertical DCT coefficients (features) are then
extracted from each block. The value of the features from all the
blocks are concatenated to form the feature vector. Each feature
is then compared to a threshold (which is the median value of
the feature vector) and a binary fingerprint is generated.

A drawback of 3D-DCT is its binarization phase, where co-
efficients of different frequencies are binarized based on their
median value. Fig. 7 shows the range of DCT coefficients be-
longing to different frequencies derived from 200 video frames.
It can be seen that different coefficients have different ranges,
thus having a common threshold for the binarization process is

Fig. 6. TIRI-DCT algorithm.

far from optimal. This problem does not exist with TIRI-DCT.
For TIRI-DCT, all features are in the same frequency range, and
binarization based on a common threshold is thus justified.

III. FAST MATCHING OF FINGERPRINTS WITHIN A LARGE

VIDEO DATABASE

As shown in Fig. 1, in order to determine whether a query
video is an attacked version of a video in a database or not,
its fingerprint is first extracted. The fingerprint database (pre-
viously created from the videos in the video database) is then
searched for the closest fingerprint to the extracted query finger-
print. It should be mentioned that in copy detection, the problem
is to determine if a specific query video is a pirated version of a
video in the database. On the other hand, the problem of finding
all copies of a video in a database is called copy retrieval and
requires a different approach which is not the concern of this
paper.

Fingerprints of two different copies of the same video content
are similar but not necessarily identical. This is why we seek a
close match of the query in the fingerprint database and not an
exact match. This problem is a similarity search problem or a
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Fig. 7. Range of (non-DC) DCT coefficients corresponding to different (nor-
malized) frequencies.

nearest neighbor problem in the binary space [1]. The trivial so-
lution to this problem is to apply an exhaustive search which
unfortunately imposes a large computational load on the fin-
gerprinting system. Therefore, instead of the time-consuming
“exact” nearest neighbor search, a fast “approximate” algorithm
should be deployed.

In real-world applications, the size of online video databases
can reach tens of millions of videos, which translates into a
very large fingerprint database size. This means that even if
the fingerprint of a query video can be extracted very quickly,
searching the fingerprint database to find a match may take a
long time. For online applications, however, a reliable match
should be found in almost real-time. This is why fingerprint
matching forms a practical bottleneck for online fingerprinting
systems.

There is a large body of research on fast and reliable similarity
search. Muja et al. have conducted a comprehensive study on
state-of-the-art similarity search algorithms in Euclidian spaces
[31]. There are a number of studies on similarity search on bi-
nary spaces as well [1], [32], [33]. However, only few papers in
the video fingerprinting area have considered the fast search as-
pect in their design. Most of them have used a simple exhaustive
search method which has a complexity of , where is the
number of the fingerprints in the database. As an example of a
fast search algorithm, Oostveen et al. proposed a search algo-
rithm for their video fingerprinting algorithm, based on the in-
verted file technique [1]. In Section III-A, we develop a modified
version of [1] so that the proposed algorithm can be used in any
fingerprinting search. In Section III-B, we propose a similarity
search algorithm that uses a fingerprint clustering approach. We
show the results of applying these two algorithms on the finger-
prints derived by TIRI-DCT in Section IV-B. We should state
that unlike most fingerprinting algorithms, both 3D-DCT and
TIRI-DCT generate binary fingerprints that do not represent nu-
merical values. This means that the Hamming distance (which
is realizable using XOR binary operation) can be used as a metric
for measuring the similarity of the fingerprints. This has the ad-
vantage of requiring less search time than algorithms that derive
numerical features and subsequently use the Euclidian distance
to measure similarities.

Fig. 8. (a) Dividing the fingerprint into words. (b) Sample inverted file for the
fingerprint database.

A. Inverted-File-Based Similarity Search

This search method is based on the idea that for two finger-
prints which are similar enough to be considered as matches,
the probability of an exact match between smaller sub-blocks
of those fingerprints is high [1]. We divide each fingerprint into
small nonoverlapping blocks of bits. We call these small
blocks words (thus, there are possible words). Words are
then used to create an inverted file from the fingerprints of data-
base. All fingerprints have equal lengths, so the inverted file can
be represented as a table of size , where is the number of
words in a fingerprint of length . The horizontal
dimension of this table refers to the position of a word inside
a fingerprint, and the vertical direction corresponds to possible
values of the word. To generate this table, we start with the first
word of each fingerprint [Fig. 8(a)], and add the index of the
fingerprint to the entry in the first column corresponding to the
value of this word. We continue this process for all the words in
each fingerprint and all the columns in the inverted file table.

A sample of the generated inverted file is shown in Fig. 8(b).
Entry in the table is a list of the indices of all the finger-
prints that their th word is word . To find a query fingerprint
in the database, first the fingerprint is divided into words (of

bits). The query is then compared to all the fingerprints that
start with the same word. The indices of these fingerprints are
found from the corresponding entry in the first column of the
inverted file table. The Hamming distance between these fin-
gerprints and the query is then calculated. If a fingerprint has
a Hamming distance of less than some predefined threshold, it
will be announced as the match. If no such match is found, the
procedure is repeated for the fingerprints that have exactly the
same second word as the query’s second word (the indices of
these fingerprints are read from the corresponding entry in the
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Fig. 9. Histogram of the number of exactly matching words between two sim-
ilar fingerprints. (a) 3D-DCT; (b) TIRI-DCT.

second column of the inverted file table). This procedure is con-
tinued until a match is found or the last word is examined. When
no match is found in the end, it is stated that the query does not
belong to the database. The above algorithm can be used for
finding the nearest neighbor of any binary fingerprint within a
database. To show the validity of the assumption that two sim-
ilar fingerprints have at least one exactly matching word, we ran
some simulations. Fig. 9 shows the experimental probability dis-
tribution of the number of identical words between fingerprints
of two similar videos (two different copies of the same video
content) for both 3D-DCT and TIRI-DCT. It can be seen from
the figure that the probability of not having any exactly matching
words between two similar fingerprints is almost zero for both
algorithms. In Section IV, we will demonstrate the results of
applying the proposed search, to TIRI-DCT and compare the
results to the exhaustive search both in terms of search time and
performance.

If the word length is chosen correctly, then the worst-case sce-
nario where the algorithm examines every word of the query will
require searching queries. For an extremely ro-
bust fingerprinting algorithm that has a very low threshold, a
large can be chosen to reduce the search speed by several
orders of magnitude. However, there is a trade-off between the
speed and the required memory for storing the inverted file table.
It is not practical for word lengths of larger than 16 bits to have
a complete inverted file and only the existing words should be
indexed. An analysis of a similar search algorithm used in a dif-
ferent context can be found in [34].

Assuming that the fingerprinting algorithm is perfect, i.e.,
no two perceptually different videos have fingerprints that are
closer than a Hamming distance of , the algorithm is guaran-
teed to find the correct match, if . However,
if , then the algorithm may generate false negatives
due to the fact that there may exist a mismatch in each word.
To calculate the probability of false negative, we assume that a
fingerprint exists in the database that has a Hamming distance
of with the query fingerprint (i.e., they both belong to the
same perceptual content). We also assume that differences (er-
rors) are uniformly distributed along the fingerprint (a simple
permutation can assure that this assumption holds true). Here,

(the probability of false rejection) can be computed as

(2)

Fig. 10. Probability of false rejection for the inverted-file-based approach for
different word lengths � �� � ���� �� � ���.

which is upper bounded by

(3)

and lower bounded by

(4)

where . Fig. 10 shows the false
rejection (false negative) probability of the inverted-file-based
algorithm, for fingerprints of length bits and a detec-
tion threshold of . Finally, it is worth mentioning
that when the query belongs to the database, the algorithm usu-
ally returns the result after examining the first few words. The
probability that the algorithm continues its search by examining
the second word, i.e., the probability that the first word has an
error (denoted by ) is

(5)

The probability that the algorithm continues its search to the
third word is even lower. For a query that is closer to one of the
fingerprints in the database by , assuming that the algorithm
examines only the first two words, the algorithm searches an ex-
pected number of queries. In Section III-B,
we propose another approximate search algorithm and we com-
pare the estimated run-time of both algorithms in terms of the
expected number of queries that must be searched.

B. Cluster-Based Similarity Search

In this section, we propose another similarity search algo-
rithm for binary fingerprints. Our main idea is to use clustering
to reduce the number of queries that are examined within the
database. By assigning each fingerprint to one and only one
cluster (out of clusters), the fingerprints in the database will
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Fig. 11. (a) Clustering the fingerprints for TIRI-DCT. (b) Expanding a cluster
head to compare it with a fingerprint.

be clustered into nonoverlapping groups. To do so, a centroid
is chosen for each cluster, termed the cluster head. A fingerprint
will be assigned to cluster if it is closest to this cluster’s head
[see Fig. 11(a)]. To determine if a query fingerprint matches a
fingerprint in the database, the cluster head closest to the query
is found. All the fingerprints (of the videos in the database) be-
longing to this cluster are then searched to find a match, i.e., the
one which has the minimum Hamming distance (of less than a
certain threshold) from the query. If a match is not found, the
cluster that is the second closest to the query is examined. This
process continues until a match is found or the farthest cluster
is examined. In the latter case, the query is declared to be out of
the database.

The cluster heads should be chosen such that a small change
in the fingerprint does not result in the fingerprint being as-
signed to another cluster. In our general setting, we choose
cluster heads (centers) as all the binary vectors with length

. To assign a fingerprint to a cluster, the fingerprint is first
divided into segments (words) of length . Each word is
then represented by one bit in the -bit cluster head, depending
on the majority of word’s bit values; e.g., it is represented by 1,
if it has more than (or equal to) 1’s and it is represented
by 0, if it has less than 1’s. Equivalently, each bit of
the cluster head can be replicated times and the Hamming

Fig. 12. Comparing the runtime of the clustering-based search method
with that of the inverted-file-based method for different values of ��� �
���� �� � ���. (a) Approximate percentage of queries searched with each
attempt. (b) Probability of failing the first attempt.

distance between the expanded bit version of all the
cluster heads and the fingerprint is calculated. The cluster head
closest to the fingerprint is then assigned to that fingerprint
(at the end of this section, we will explain a version of cluster
assignment developed for TIRIs).

As stated earlier, if the query is not matched to any finger-
print in a certain cluster, the algorithm continues its search over
other clusters starting from the closer ones. For this algorithm,
in the worst-case scenario, all the fingerprints will be searched.
So unlike the case of the inverted-file-based search, the clus-
tering-based search is guaranteed to return a match if it exists.
Thus, in the worst-case scenario, this algorithm has a runtime
of , which is not better than the exhaustive search. How-
ever, similar to the case of the inverted-file-based search, the
algorithm in practice returns a match (if one exists) after exam-
ining the first few clusters, thus reducing the actual number of
comparisons to queries. The probability that the algo-
rithm fails to find the fingerprint in the closest (first) cluster is
upperbounded by the probability that a word in a fingerprint has
approximately an equal number of 1’s and 0’s multiplied by the
expected number of words that have errors. This probability, de-
noted by , can be approximated as

(6)

The first component is derived using a Gaussian
approximation assuming is 7 bits or more. The second com-
ponent is derived by approximating the spatial
distance between two errors by an exponential distribution as-
suming that errors happen rarely and independently with an av-
erage of .

The above approximation is not good for small ’s and the
actual probability has a complicated form. Fig. 12(a) shows the
approximate number of queries that are searched in each at-
tempt for the proposed cluster-based approach as well as the
inverted-file-based approach (assuming that the fingerprints are
spread randomly in the binary space). Fig. 12(b) shows the prob-
ability that each approach fails in the first attempt. The higher
this probability, the more likely it is for the algorithm to con-
tinue its search through other attempts (next clusters, or table
columns). It can be seen that the cluster-based approach is very
likely to find the match in its first attempt when is large (low
probability of failing); however, percentage of the total queries
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TABLE I
ATTACK PARAMETER VALUES USED IN THE EVALUATION OF THE PROPOSED ALGORITHMS

that should be searched in the first cluster is very large com-
pared to when is small. Please note that an exhaustive ap-
proach searches 100% of the queries. For the inverted-file-based
method, this trade-off can also be seen, e.g., when the word
length is small the algorithm is likely to find a match in the first
attempt, but it has to search a larger number of queries.

To increase the performance of the search, an improved
version of clustering for TIRI-based fingerprinting is used
throughout this paper. The cluster heads are chosen as those
binary vectors of even length with an equal number

of 0’s and 1’s. This procedure will result in fingerprints
being divided into clusters. We need to determine which
cluster head is closest to a fingerprint. To compare two binary
vectors of different length, we propose the following procedure
adapted for fingerprints derived by TIRI-DCT. As presented,
to derive an -bit fingerprint, TIRI-DCT divides a TIRI to
overlapping blocks. Two bits are then derived from each block
(one representing a horizontal feature and one representing a
vertical one). To compare a fingerprint to a cluster head, we use
only one of these features for simplicity, e.g., horizontal bits.
We then expand each cluster head of length to a bit vector of
length . To do so, we first assign each adjacent blocks
to a larger block , as shown in Fig. 11(b). We
then assign each bit of the cluster head to one of these larger
blocks. Finally, we assign all the original blocks with a bit
value equal to their corresponding large block and concatenate
all these bit values to form an expanded cluster head of length

. Fig. 11(b) demonstrates how this expansion is done. Fol-
lowing this process, the Hamming distance can be calculated to
measure the closeness of the fingerprints and the cluster heads.
The proposed cluster-based search reduces the search time
approximately proportional to the number of clusters.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithms using a video database. We first compare the raw
performance of TIRI-DCT with 3D-DCT in Section IV-A. For
comparisons, we use an exhaustive search as it gives the most
accurate results. We will show that TIRI-DCT is faster than
3D-DCT while maintaining a very good performance over the
range of the studied attacks. Next, in Section IV-B we evaluate
the performance of the approximate search techniques proposed
in Section III. We have implemented these algorithms as the
search engine for the fingerprints derived by TIRI-DCT, and
compared the results to the exhaustive search. We show that
the cluster-based search method outperforms the inverted-file-
based method both in search time and detection performance.

To evaluate the performance of the proposed algorithms,
a database of 200 videos (collected from ReefVid [35]) was
created. TIRI-DCT and 3D-DCT were separately applied to
each video in the database. A fingerprint database was then
formed from all of the generated fingerprints for each algo-
rithm. Next, videos in the database were attacked (distorted)
to generate query videos. The attacks studied included added
Gaussian noise, changes in brightness/contrast, frame loss, shift
in time/space, and rotation. Table I shows the attacks and their
corresponding parameter values.

Before extracting the fingerprints every video is filtered and
down-sampled to a frame rate of 4 frames/s and a frame size
of 144 176. Videos are then segmented to 50% overlapping
frame sequences. We used , equivalent to 2-s segments.
This value ensures that our fingerprinting algorithm is able to de-
tect clips as short as 2 s. Note that the copyrighted videos may
be cut into smaller clips and used within other videos (called
mash-ups). This is why a fingerprinting algorithm should be able
to recognize very short copies as well. To determine the values
of (the exponential weighting basis for generating TIRIs) and

(half of the width of the blocks in TIRIs), we ran some simula-
tions on a small database of 14 videos, separately collected from
[30]. We generated 280 videos out of these videos by applying
random combined attacks from Table I to them. For different
values of and , the experimental probability distribution of
the Hamming distance between the similar and different videos
was then calculated. Fig. 13(a) shows an example for
and . Fig. 13(b) shows the receiver operating character-
istic (ROC) curve for different values of when

.
The figure also quantifies the trade-off between the robustness

and the discrimination ability of our copy detection system. To
evaluate the system’s performance and to determine the suitable
parameter values, we require a single combined metric. Here,
we used the F-score , defined as follows [36]:

(7)

In (7), defines how much weight should be given to recall
versus precision. Recall is the same as the true positive rate (a
measure of robustness of the system). Precision is a measure of
discrimination and is defined as the percentage of correct hits
within all the detected copies. F-score of a clustering system is
a number between 0 and 1, with 1 representing a perfect classifi-
cation system that is completely robust and completely discrim-
inant (100% precision and 100% recall). A low F-score close
to 0 represents a poor system in terms of both robustness and
discrimination. With a proper choice of , the F-score can be
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Fig. 13. (a) Distribution of the Hamming distance between fingerprints corre-
sponding to similar (copied) and different video sequences. (b) ROC curve for
TIRI-DCT for � � � � �� and � � ����. (c) Maximum � for � � � � 	

and � � 	�. (d) Maximum � for � � � � � � �� and � � ����.

a valuable single measure to summarize the detection perfor-
mance. A copy detection system should have high precision to
minimize the amount of human interaction required. We used

, which gives twice as much importance to precision
as to recall. Fig. 13(c) and (d) shows the maximum for

at and for at .
Our experiments show that and give the best
results, so we used these values for the TIRI-DCT algorithm.
These parameter values result in a 126-bit hash for TIRI-DCT
(ignoring the marginal blocks). For 3D-DCT, the first 6 6 4
low frequency 3D-DCT coefficients were chosen to generate
fingerprints of length 144 bits. 6 6 4 is chosen through sim-
ulations so that both algorithms have approximately the same
fingerprint length and at the same time the performance of the
3D-DCT is maximized. Experiments show that extracting more
features (for 3D-DCT) from the temporal domain did not in-
crease the precision and recall even for time shift attacks. This
is because the temporal domain of a video is basically a low fre-
quency domain (e.g., 3D-DCT’s decreases by 16% if we
used the first 4 4 8 block instead).

To see if a query video is a pirated copy of a premium video
content in the database, first the fingerprint of the query was ex-
tracted and the nearest neighbor of the extracted fingerprint was
then sought in the fingerprint database. If the Hamming distance
of this nearest neighbor with respect to the query fingerprint was
less than some predefined threshold, the corresponding video
was announced to be a match. Using the training database, the
thresholds were set to 0.24 and 0.31 for TIRI-DCT and 3D-DCT
respectively. Each fingerprinting algorithm was then used to lo-
cate all the attacked videos in the video database, and the detec-
tion performance of the algorithm was evaluated.

A. Performance Evaluation of the Fingerprint Extraction
Algorithm

To get the most accurate results, in this section, we compare
the performance of TIRI-DCT and 3D-DCT when an exhaustive

Fig. 14. F-score of 3D-DCT and TIRI DCT for different attack parameters from
Table I: (a) Noise addition; (b) change in brightness; (c) rotation; (d) time shift;
(e) spatial shift; (f) frame loss.

search is used for searching the database. Table II shows the re-
sults of applying TIRI-DCT and 3D-DCT to the test database.
Attacks were mounted independently on the videos to generate
the queries. For each attack parameter, ten equally spaced values
were chosen from the corresponding range in Table I. Table II
reports the average true positive rate (TPR), false positive rate
(FPR), and the over these values. As mentioned, we chose

to give precision twice the importance of recall. Fig. 14
shows the F-score for different attack parameters: noise addi-
tion, change in brightness, rotation, temporal/spatial shift, and
frame loss.

Table II shows that both TIRI-DCT and 3D-DCT have an av-
erage F-score of 0.99. So both algorithms have a very good per-
formance on average, but as it can be seen from the table that
TIRI-DCT maintains this high performance for all the attacks,
while the performance of 3D-DCT is degraded for time domain
attacks. Fig. 14 shows that both algorithms are robust to noise
addition, changes in brightness/contrast, and rotation with high
F-scores. It can be seen from Table II and Fig. 14 that 3D-DCT
is robust to geometrical and signal processing attacks, but is sen-
sitive to time shifts and frame loss, both of which happen fre-
quently when dealing with online video databases. Time shift
can happen regularly when the beginning of a query video seg-
ment is not aligned with the beginning of the reference video
segment in the video database. Frame loss is also a common
type of attack that can happen with online video streams. This
is because 3D-DCT relies on extracting too much detail along
the time axis, which decreases the robustness of the algorithm.



222 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 6, NO. 1, MARCH 2011

TABLE II
COMPARING TIRI-DCT WITH 3D-DCT WHEN EXHAUSTIVE SEARCH IS USED

TABLE III
HASH EXTRACTION TIME (IN mS) FOR DIFFERENT SEGMENT SIZES

TIRI-DCT demonstrates an acceptable performance for all at-
tacks studied here. However, it should be noted that TIRI-DCT
is more sensitive to spatial shifts than 3D-DCT. Again this is
because 3D-DCT relies too much on temporal information and
thus it is more robust to spatial attacks like shift. However, we
should note that with digital transmissions spatial shift does not
occur within online video databases.

The performance (for TIRI-DCT) reported above is achieved
using short fingerprint lengths of 126 bits. By increasing the
fingerprint length to 640 bits, we were able to decrease the FPR
on average by about 70% (to a maximum of about 0.4%) without
affecting the TPR, resulting in a 0.6% increase in the F-score. As
mentioned in Section II-B2, the problem with the binarization
scheme in 3D-DCT limits the number of coefficients and thus
the fingerprint length that can be used with this method. Our
results show that increasing the fingerprint length for 3D-DCT
to about 600 bits has a negative effect on the TPR resulting in
an approximate 7% decrease in the F-score.

Another important property of TIRI-DCT is that it is com-
putationally less demanding than 3D-DCT. The latter applies
a 3D-DCT transform requiring com-
putation time, whereas, TIRI-DCT applies a two-dimensional
block DCT requiring computation time.
The above computational complexities are calculated based on
the assumption that all the coefficients are derived. In practice,
only the coefficients that are used should be computed and
therefore the actual complexity depends on the number of
coefficients used. For -bit fingerprints, the computational
complexity of the 3D-DCT would, therefore, be
whereas the computational complexity of TIRI-DCT would be

.
Table III shows the fingerprint extraction time in mS (for a

practical implementation) of both algorithms for different seg-
ment lengths. Algorithms were run on Matlab R2008b with a
64-bit PC with a 2.4-GHz CPU and 4 GB of RAM. Note that
the proposed algorithms have a primary step of generating TIRIs
that involves weighted averaging, which is also included in the
fingerprint extraction times shown in Table III. It can thus be
seen that TIRI-DCT is more than 3 times faster than 3D-DCT
for 2-S segments used throughout this paper.

Fig. 15. Error versus search time for different search algorithms applied on
fingerprints derived by TIRI-DCT.

B. Performance Evaluation of the Fingerprint Extraction
Algorithm

As discussed earlier, an important property of a fingerprinting
system is its ability to detect and/or reject a query video within
a large database in a fast and reliable fashion. In this section,
we evaluate the performance of the proposed inverted-file-based
search and the cluster-based search algorithms and compare
them with that of the exhaustive search method (as the refer-
ence) when applied to the fingerprints derived by TIRI-DCT.
Fig. 15 shows the speed versus total error-rate (false positive
rate false negative rate) for all the three methods. Each point
is the average over 1800 query fingerprints extracted from the
attacked version of the videos in the database searched in a data-
base of the same size. In the simulations, the words are 4 bits for
the inverted-file-based search, and the cluster heads are 6 bits
for the cluster-based search. It can be seen that both approx-
imate search algorithms are much faster than the exhaustive
search when error rates are low (the desired operation point of
the system). It can also be seen that the proposed cluster-based
approach is faster than the inverted-file-based search.

Table IV presents the average performance of the proposed
approximate similarity search algorithms on the queries used
for generating Table II results. Table IV and Fig. 15 highlight
the trade-off between the system’s performance and its detection
speed, where decreasing the detection time by about 4 times has
reduced the F-score by about 1%. Table shows that both search
methods have a performance close to the exhaustive search for
noise addition, brightness and contrast change, and rotation. The
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TABLE IV
COMPARISON OF THE PERFORMANCE OF EXHAUSTIVE SEARCH (EXH.), INVERTED-FILE-BASED SIMILARITY SEARCH (INV.), AND CLUSTER-BASED

SIMILARITY SEARCH (CLU.)

TABLE V
PERFORMANCE OF THE SYSTEM AFTER ADDING THE POSTPROCESSING MODULE

performance of the search algorithms, however, decreases for
attacks such as time shift or spatial shift.

To further increase the performance of the search algorithms,
we have deployed a simple postprocessing approach. The post-
processing module exploits the existing temporal dependency
between adjacent fingerprints to correct the detection results.
It corrects the index of a video segment (current segment) by
looking at its adjacent segments (here four segments before and
four segments after the current segment). If more than 50%
(here, five or more) of these segments have the same video
index, the segment is assigned the same index. Using this post-
processing approach, we were able to boost the performance as
shown in Table V.

It can be seen from Table V that the applied postprocessing
has boosted the system’s performance by both increasing the
TPR and decreasing the FPR. The effect of the applied post-
processing step can specifically be seen for more severe attacks
such as time shift and spatial shift, where the FPR is decreased
to about half of its original value. Tables IV, V, and Fig. 15
show that the cluster-based search algorithm is faster than the
inverted-file-based approach while it also has a better perfor-
mance. We thus adopt the cluster-based algorithm as the search
engine for our copy detection system. In Section V, we propose
and evaluate a secure version of the proposed fingerprinting al-
gorithm.

V. DISCUSSION AND ANALYSIS OF THE FINGERPRINTS

SECURITY

We mentioned that security of a fingerprinting system is im-
portant for applications such as copyright protection where ad-
versaries compromise the performance. In this section we pro-
pose a secure version of our fingerprinting algorithm, denoted
as Secure TIRI-DCT. To have a secure algorithm, randomness
is introduced to the algorithm via a set of two secret keys. Each

key is a randomly selected vector of integers defining a certain
procedure to be performed. We explained in Section II-B2, that
TIRI-DCT algorithm generates fingerprints by segmenting the
TIRI images into overlapping blocks and extracting two fea-
ture (the first two non-DC DCT coefficients) from each block. In
the Secure TIRI-DCT, one feature is extracted from each block
which is selected from the set of first three non-DC DCT coef-
ficients. The first key defines the coefficient to be selected from
each block. The second key permutes all the selected coeffi-
cients and generates a randomly arranged feature vector. The
feature vector is then binarized using the same method as TIRI-
DCT. Assuming that TIRI is divided to blocks in Secure
TIRI-DCT, there would be different possibilities de-
pending on the selected keys (as there are three choices for each
block, is then multiplied by the number of permutations for

blocks). This randomization procedure results in a highly se-
cure fingerprinting system, which makes it almost computation-
ally impossible for an intruder to extract the same fingerprints
from a video without knowing the keys.

To analytically evaluate the security of a fingerprinting
system from the point of view of an adversary, Swaminathan et
al. have proposed the use of entropy (or the differential entropy)
of the generated fingerprints [27]. The entropy shows how hard
it would be for an intruder who knows the algorithm but does
not have any information about the secret keys to estimate
the fingerprint. For our proposed secure TIRI algorithm, the
entropy of the intermediate fingerprints (before binarization)
is , which is derived for the case when
the keys are independently drawn from a uniform distribution.
However, the entropy of the final fingerprint , after
binarization, is much lower and is equal to . This
entropy can be found using a recursive formula

(8)
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Fig. 16. F-score for different keys for different parameter values when the
video is attacked by (a) frame loss and (b) time shift.

The entropy of the final stage fingerprints determines the ac-
tual amount of randomness in the generated fingerprints. This
entropy is usually much lower than the entropy of the interme-
diate features studied in [27]. Last but not least, entropy is not
a good measure, because it does not consider the prior knowl-
edge of the adversary. In fact, it should be practically impos-
sible for an intruder who knows the fingerprinting algorithm to
estimate the fingerprints without knowing the secret key even
though he has some sample fingerprints. For example, for Se-
cure TIRI-DCT, the use of the two secret keys mentioned above
decreases the amount of information revealed by the sample
fingerprints about the keys. If only the permutation (first) key
were used, the key could be found with a high probability, given
enough sample fingerprints. When both keys are used, it is much
harder for the intruder to guess them (based on the available
samples) although the entropy does not change (by adding the
second key). We now show that the performance of the system is
independent of the selected keys. Fig. 16 shows the performance
of Secure TIRI-DCT for frame losses of 5%–70% and time
shifts of 0.5 to 0.5 s, when different keys are used (1000 keys
were randomly selected). Each key is used both for generating
the database as well as extracting the query fingerprints from the
attacked videos.

Fig. 16 shows how little the F-score is affected by choosing
different DCT coefficients (features) as the result of using the
selection key. The bars on the plots show the variance of the
F-score for different parameters and different keys. Similar ob-
servations apply to other attacks, which further demonstrates
that Secure TIRI-DCT performance is not significantly affected
by the selected keys.

Fig. 17 quantifies the trade-off between security and the
system’s performance, represented by TPR, FPR, and F-score.
The bars in the chart show the amount of change in TPR, FPR,
and the F-score. On average, TPR decreases by about 3%, FPR
increases by about 1.2%, and F-score increases by about 1.7%.
These results indicate that security is gained at the expense
of a slight reduction in the system’s performance. The gap in
the performance can be decreased further by increasing the
length of the fingerprint. The above results represent the per-
formance of secure 64-bit fingerprints versus that of nonsecure
126-bit fingerprints. When comparing secure and nonsecure
systems with fingerprints of lengths 320 and 640, we observe
that, on average, the TPR of the secure system decreases by
1%, FPR increases by 0.3%, and F-score decreases by 0.5%.
These results show that security can be achieved with a small

Fig. 17. Amount of change in the average TPR, FPR, and � when the secu-
rity is added to the system.

detection performance loss using larger fingerprints length. It
is, however, worth mentioning that larger fingerprints result in
a decrease in detection speed as they require more computation
in calculating the Hamming distances between the fingerprints.

VI. CONCLUSION

This paper proposes a fingerprinting system for video copy
detection. It can be used for copyright management and in-
dexing applications. To the best of our knowledge, this is
the first paper to discuss robustness, discrimination, security,
and fast search of fingerprints simultaneously. The system
consists of a fingerprint extraction algorithm followed by an
approximate search method. The proposed fingerprinting algo-
rithm (TIRI-DCT) extracts robust, discriminant, and compact
fingerprints from videos in a fast and reliable fashion. These fin-
gerprints are extracted from TIRIs containing both spatial and
temporal information about a video segment. We demonstrate
that TIRI-DCT generally outperforms the well-established
(3D-DCT) algorithm and maintains a good performance for
different attacks on video signals, including noise addition,
changes in brightness/contrast, rotation, spatial/temporal shift,
and frame loss. It is shown experimentally that TIRI-DCT
has a high average true positive rate of 98.2% and a low av-
erage false positive rate of 0.97%. We also propose two fast
approximate search algorithms: the inverted-file-based method
which is a generalization of an existing search method, and
another method based on a novel clustering-based approach.
Analytical and experimental studies demonstrates that both of
the algorithms are very fast compared to an exhaustive search
and maintain a good performance. The cluster-based method is
experimentally shown to be superior to the inverted-file-based
method in terms of the detection performance and the query
retrieval time. We have thus adopted the cluster-based method
as the search engine of our fingerprinting system. By applying
a simple postprocessing method, the final system performance
yields a high average TPR of 97.6% and a low average FPR of
1.0%.

As security of the fingerprinting system is important for some
applications such as copyright protection, we also introduced a
secure version of our algorithm, denoted as Secure TIRI-DCT.
We showed that the use of this algorithm makes it extremely dif-
ficult for an adversary to tamper with the fingerprinting system.
The increase in the security was, however, associated with a
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slight decrease in the performance. Security is an area of re-
search that still needs much attention. As part of our future work,
we will conduct a detailed analytical study of the security of fin-
gerprinting algorithms including the one proposed in this paper.

As another part of our future work, we will carry an extensive
comparison study to compare our fingerprinting algorithms to
other state-of-the-art algorithms. We will also evaluate our pro-
posed fast search methods when applied to other fingerprinting
methods. We also plan to study the performance of the system
in the presence of some other attacks, such as cropping, and
logo insertion. Another class of attacks, studied mainly in the
video retrieval community, are content-changing attacks such
as changing the background or picture in picture. Robustness
against such attacks is not achievable via global fingerprints.
Such attacks can only be handled using local fingerprints via
interest point-based algorithms. Including such capabilities is
beneficial for a complete copy-detection system. We also in-
tend to improve the robustness of the global features to large
geometric attacks, and further reduce the required search time,
while maintaining acceptable performance.
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