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Abstract

Metamorphic software changes its internal structure across generations with its
functionality remaining unchanged. Metamorphism has been employed by malware
writers as a means of evading signature detection and other advanced detection strate-
gies. However, code morphing also has potential security benefits, since it can serve
to increase the “genetic diversity” of software.

We have created a metamorphic code generator within the LLVM compiler frame-
work. LLVM is a three-phase compiler that supports multiple source languages and
target architectures. It uses a common intermediate representation (IR) bytecode in
its optimizer. Consequently, any supported high-level programming language is trans-
formed to this IR bytecode as part of the LLVM compilation process. Our metamor-
phic generator functions at the IR bytecode level, which provides many advantages
over morphing at the assembly or source code level. The morphing techniques that
we employ include dead code insertion and transposition, where the dead code is
actually executed within the morphed code, making its detection and removal more
challenging. We have verified the effectiveness of our code morphing using hidden
Markov model analysis.

1 Introduction

Software is said to be metamorphic if multiple copies are structurally different, but
functionally equivalent. Examples of metamorphic malware generators can be found
in [7, 8, 17, 32].

To date, metamorphic code generation has primarily been used by malware writ-
ers, since well-designed metamorphic code can evade signature-based detection and
other advanced detection strategies [17, 32, 38]. However, metamorphism also has the
potential to provide security benefits by increasing the “genetic diversity” of software,
thereby making several types of attacks more difficult and by limiting the damage of
successful attacks [11, 34].

Many metamorphic malware generators are readily available at [25]. Some notable
examples include
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G2 (Second Generation virus generator) [25]
MPCGEN (Mass Code Generator) [37]

NGVCK (Next Generation Virus Creation Kit) [37]
VCL32 (Virus Creation Lab for Win32) [1]

e MetaPHOR [7]

In addition, research morphing engines are presented in [17] and [32]. All of these
metamorphic generators work at the assembly language level. Code morphing of
high-level source code is far simpler, but much less effective, since such morphing
does not provide sufficient control over the resulting executable file.

In this research, we have implemented and analyzed a metamorphic code generator
built on the LLVM compiler framework [14, 21]. LLVM is a three-phase compiler
that supports multiple source languages and multiple target architectures. In the
optimization process, code is converted to intermediate representation (IR) bytecode.
Our code morphing tool functions at this IR bytecode level, which simplifies many
types of morphing (analogous to working at the source code level), but also provides
the necessary fine-grained control over the resulting executable (analogous to working
at the assembly code level).

Related research involving LLVM IR bytecode manipulation includes a malware
encryption technique implemented as optimizer passes [30]. In [24], a “shadow attack”
is developed using LLVM. This attack hides system call behavior for the purpose of
making behavior-based detection of malware more difficult.

We evaluate our morphing technique using a hidden Markov model (HMM) anal-
ysis similar to that in [13], which, in turn, is derived from the HMM-based malware
detector analyzed in [38]. This HMM technique has been used as a baseline for com-
paring other proposed metamorphic detection strategies [3, 17, 28, 29, 32, 36]. This
body of work provides a firm basis for analyzing the effectiveness of our morphing
approach.

The paper is organized as follows. In Section 2.1, we provide relevant background
information. Section 3 covers the design and implementation of our metamorphic code
generator. Experimental results are analyzed in Section 4 while Section 5 contains
our conclusion and suggestions for future work.

2 Background

In this section we briefly discuss the following topics: malware, metamorphic tech-
niques, the LLVM compiler infrastructure, and hidden Markov models. Each of these
topics is relevant to the work presented in Sections 3 and 4.



2.1 Malware

Malware is software that is designed to perform malicious activity [26]. To date, most
development and research into metamorphic code has involved malware. Therefore,
we present a brief introduction to metamorphic malware before turning our attention
to the general case of metamorphic code generation.

2.1.1 Malware Evolution

In this section, we briefly consider the evolution that has led to the development of
metamorphic malware. Below, we use the term virus generically to refer to malware.

Since signature detection is the most common anti-virus (AV) technique, virus
writers have developed a variety of strategies for evading such detection. Perhaps the
simplest method to hide a virus body from static signature detection is to encrypt
or pack the executable. For encrypted malware, simple schemes are generally used,
such as an XOR of each byte with a fixed value [2], which is equivalent to a simple
substitution cipher. The malware writer’s goal is to obfuscate the code, so simple
encryption schemes suffice. However, decryption code must be included, and that
code is not encrypted, which opens the door to signature scanning [9].

To make detection more difficult, malware writers have developed so-called poly-
morphic code, where the virus body is encrypted (or packed) and the decryption
code is morphed between generations. Consequently, there is no fixed signature for
the decryptor code, making signature detection far more difficult [2]. However, poly-
morphic code is subject to detection via emulator—the code will eventually decrypt
itself at which point it is subject to standard signature detection [9].

To avoid signature detection by emulation, malware writers have developed “body
polymorphic” or metamorphic malware. Metamorphic code changes its internal struc-
ture at each generation, without altering its function. Well-designed metamorphic
malware will exhibit no common signature and hence there is no need for encryp-
tion [9].

2.2 Metamorphic Techniques

In this section, we discuss several elementary metamorphic techniques. To date,
most hacker-produced metamorphic malware has used only relatively simple morph-
ing strategies. We also mention a relatively sophisticated morphing technique based
on formal grammars.

2.2.1 Register Swap

Register swapping is one of the simplest code morphing techniques. For example,
PUSH ECX can be replaced by PUSH EAX, provided the EAX register is not in use. Note
that register swapping does not affect opcode sequences. Furthermore, a wildcard
string can be used to overcome register swapping [6].



2.2.2 Transposition

Subroutine swapping is another elementary morphing technique. If a program has n
subroutines, then n! variants can trivially be generated by simply reordering the
layout of the subroutines. As with register swapping, subroutine permutation is a
relatively weak malware morphing strategy, particularly with respect to statistical-
based detection.

More general transpositions can be used. For example, the instructions

1. OPCODE [R1] [R2]
2. OPCODE [R3] [R4]

can be swapped, since they are independent of each other. Of course, such transposi-
tion can also be applied to group of instructions. Since the order of execution differs,
transposition can be an effective means to evade signature detection.

2.2.3 Dead Code Insertion

In its simplest form, dead code is inserted into a program, but not executed. Al-
ternatively, dead code can be executed, provided that it has no effect on the overall
program function. Although more difficult, this latter approach can be more effective,
since the dead code may be much more difficult to detect.

Dead code can be a highly effective means for evading malware detection, par-
ticularly with respect to statistical-based techniques. The dead code can be selected
to mask the statistical properties of the underlying code. However, dead code inser-
tion can be challenging at the assembly code level, since care must be taken so that
addresses remain valid.

2.2.4 Instruction Substitution

An instruction (or group of instructions) can be substituted for another instruction
(or group of instructions) with the same functionality. For example, MOV R1, R2 can
be replaced by PUSH R1 followed by POP R2. As another trivial example, XOR R1,
R1 and SUB R1, R1 both zero the contents of register R1. Instruction substitution
is a powerful technique for evading signature detection and altering code statistics.
However, instruction substitution is relatively difficult to implement at the assembly
code level.

2.2.5 Formal Grammar Mutation

Formal grammar mutation is a formalization of existing morphing techniques [4, 10,
39]. Morphing engines can be viewed as non-deterministic automata, since transitions
are possible from every symbol (i.e., instruction) to every other symbol [39]. By
formalizing mutation techniques, we can apply formal grammar rules to create copies
with wide variation. Figure 1 shows a simple polymorphic decryptor template and two



possible mutations of the decryptor achieved using the formal grammar in Figure 2.
With this decryptor template and formal grammar combination, it is possible to
generate 960 distinct decryptors [39].

2.3 LLVM

LLVM! [21] is a compiler infrastructure that has several novel features. LLVM sup-
ports a language independent instruction set where each instruction is a static single
assignment (SSA), which means that each variable is assigned once and then cannot
be reassigned [14, 19]. Static compilation is supported via late compilation of inter-
mediate representation (IR) bytecode, analogous to the just-in-time (JIT) compiler in
Java. The LLVM infrastructure is part of “The Lifelong Code Optimization Project”
(LCO-Project) [16].

Most traditional static compilers (e.g., GCC) use three phases, and LLVM follows
this approach. These three phases are a frontend, an optimizer, and a backend.
Figure 3 illustrates the typical design of a three phase compiler.

The key function of the frontend is to parse the source code, check for syntax
errors, and build a language-specific Abstract Syntax Tree (AST). Using the AST,
the optimizer manipulates instructions so as to optimize the code. For example, an
optimizer removes duplicate code and redundant computations.

The compiler backend generates the machine-dependent representation of the code
Backend operations include instruction selection, register allocation, and instruction
scheduling [20].

The key feature of the LLVM three-phase compiler design is that it supports
multiple frontends and multiple backends, which is greatly simplified by its use of
a common intermediate code representation. A frontend can be written for any
language. The frontend converts the source code to LLVM IR bytecode which is
machine and language independent. A backend can be written for any target platform
by generating native code from this common intermediate representation [15, 20].
Figure 4 illustrates the LLVM compiler design.

The use of IR bytecode in LLVM effectively separates the frontend and back-
end components from each other. In addition, the use of IR bytecode supports
lightweight runtime optimizations, cross-function or inter-procedural optimizations,
program analysis, and aggressive restructuring transformations.

Figure 5 illustrates the structure of LLVM IR bytecode. The following sections
are supported [27]:

1. Module — a container that holds functions and global variables
2. Functions — named, callable units of instructions

3. Global variables — variables that can be accessed by any function

LYLLVM” was initially derived as an acronym for Low Level Virtual Machine. However, LLVM is now
the official name—it is no longer an acronym.



Figure 6 shows a simple C function and its corresponding IR representation [22, 23].

The program life cycle from source program to executable in LLVM compiler is
illustrated in Figure 7.

In LLVM IR bytecode, the logic is represented in the form of functions, and
each function consists of a set of basic blocks. Each basic block consists of a set of
instructions and all instructions in a basic block are executed sequentially. A variety
of tools are available in the LLVM infrastructure to manipulate IR bytecode.

2.4 Hidden Markov Models

In this paper, we use hidden Markov models (HMM) as a tool to measure the effec-
tiveness of our morphing strategy. In this section, we provide a very brief introduction
to HMMs; see [33] for additional details.

Hidden Markov models can be viewed as a machine learning technique. We can
train an HMM to fit a given observation sequence. The resulting model can then be
used to score an unknown sequence to measure its similarity to the training data.

As the name suggests, a hidden Markov model includes a “hidden” Markov chain.
Although this Markov chain is not directly observable, it is probabilistically related to
a sequence of observed symbols. Figure 8 provides a generic illustration of an HMM,
where the O; are the observations, the matrix A drives the hidden Markov process,
and the matrix B contains probability distributions that relate the hidden states to
the observations.

Let 7 be the initial state probability distribution of the underlying Markov process.
Then we denote an HMM as A = (A, B,m). The utility of HMMs derives largely
from the fact that there are efficient algorithms to solve each of the following three
problems [33].

e Problem 1: Given a model A = (A4, B, ) and an observation sequence O, we
can compute P(O|\). That is, we can score a sequence against a model.

e Problem 2: Given a model A\ = (A4, B, 7), we can determine an optimal state
sequence for the Markov process. That is, we can “uncover” the hidden state
sequence.

e Problem 3: Given an observation sequence O, we can determine the model A =
(A, B,m) that maximizes P(Q). That is, we can train a model to fit a given
sequence of observations.

In this paper, we first train a model (Problem 3) on opcode sequences derived
from a base piece of software. Then use the trained model to score (Problem 1)
morphed versions of this base software. Previous research has shown that HMMs are
effective at detecting most metamorphic malware, and that HMMSs can also be used
to detect certain types of software piracy [13]. That is, HMMs have proven useful
at detecting morphed or disguised versions of code. Consequently, HMM analysis
provides a challenging test for any code morphing technique.



3 Design and Implementation

We have implemented two elementary metamorphic techniques at the LLVM IR byte-
code level. Specifically, we use dead code insertion and function permutation. This
morphing is available as an LLVM compile-time option.

Code morphing at the IR level offers the following advantages.

e A wide variety of front ends are available in LLVM. The supported languages
include Objective-C, FORTRAN, Ada, Haskell, Java bytecode, Python, Ruby,
Action Script, GLSL, D, and Rust. Using our tool, code written in any of these
language can be morphed.

e The IR form is platform independent.

e At the IR level, virtual addresses are not assigned—addresses are first assigned
at the bitcode level. Therefore, by morphing at the IR level, we avoid one of
the major difficulties associated with morphing at the assembly level, namely,
dealing with addresses.

Morphed copies of a program must have the same functionality as the base code.
In addition, the higher the percentage of inserted or modified code, the more the
morphed files should differ (on average) from the base file. In this research, we employ
HMM analysis to measure the differences between files. As previously mentioned,
HMDMs have a proven record of being able to effectively “see through” metamorphic
code. Consequently, if we can morph code sufficiently to defeat HMM-based analysis
this will provide a strong indication of the success of our morphing strategy.

3.1 Morphing Technique

As we are morphing at IR bytecode level, it is difficult to adopt some of the tech-
niques described in Section 2.2. For example, register swapping is relatively difficult
to implement at the IR level. Therefore, to provide a proof of concept, we have re-
stricted our code morphing to a combination of dead code insertion and subroutine
permutation. We accomplish both of these morphing strategies by inserting randomly
selected complete subroutines of dead code selected from other program files. In ad-
dition, the order of these dead subroutines is randomized. In this way, we create
a significant amount of transposition and code variation between different morphed
copies. In addition, we insert call statements to all dead code subroutines so that
they are not trivially identifiable as dead code.

We have used core-util [18] Linux command files as the source of our dead code
subroutines. These files include system level code to do operations that we would
expect to be somewhat similar to our selected base code. By selecting morphing
code that is similar to our base file, we are creating a more challenging task for our
morphing engine, since the goal is to make the morphed code as different as possible
from the base code.



The high-level architecture of our morphing engine appears in Figure 9. Next,
we provide a detailed description of each of the three main phases of our morphing
engine.

3.1.1 Dead Code Insertion

A base file, a morphing file (i.e., a source of dead code), and a dead code percentage
are specified. Based on the dead code percentage, we determine the total number
of lines we want to insert into the base file. We then select complete functions from
the morphing file so that the total size approximates the number of lines we want to
insert into the base file. These subroutines are integrated into the base file at the
linking stage. The details of this first phase of our code morphing technique are given
below.

1. Compile selected morphing file using the 11vm-gcc command to generate its IR
bytecode.
2. From this IR bytecode, determine function dependencies.

3. For each function, calculate its number of lines.

e~

Based on the total number of dead code lines, use a greedy strategy to determine
a subset of functions which best approximates the number of lines to be inserted.

Copy selected functions to a temporary IR bytecode file.
Create bitcode files for the base code and temporary IR bytecode file.
Merge these two files (using 11vm-1ink).

© N oo

If there are any subroutine naming conflicts, replace each offending name in the
temporary IR bytecode file with a random string.

9. Delete the temporary IR bytecode file.

3.1.2 Call Dead Functions

In this pass, we use the LLVM optimizer to insert a call instruction for each dead
code subroutine. The optimizer takes a function name as input. It then finds the
main function definition in the IR bytecode and inserts a call type of instruction
after every load type of instruction. The current implementation does not support
structure type of parameters.

For each dead code subroutine, we perform the following steps.

1. Find the “function” object of the main.
2. Iterate over instructions in the function object.

3. If an instruction is of type load then insert a call instruction. To insert call
instruction for dead function, iterate over its parameters and for each parameter,
allocate memory and initialize with a random value.

4. Finally, insert a call instruction.



3.1.3 Function Permutation

The third pass performs function permutation by simply reordering functions in the
IR bytecode file. This pass is straightforward and we omit the details. Additional
details on the entire process can be found in [35].

4 Experimental Results

In this section, we use the HMM technique developed in [38] to test the effectiveness
of our LLVM-based metamorphic code generator. We add increasing percentages of
dead code to find the threshold at which HMM detector starts to fail. We show that
after adding about 20% (or more) dead code, our metamorphic code is not reliably
distinguished using this HMM technique. These results indicate that our LLVM-
based morphing strategy is more effective than the hacker-produced metamorphic
malware generators considered in previous research [38], and is at least as effective
as an experimental metamorphic malware generator that was designed specifically to
evade HMM-based detection [32].

For the experiments given here, we use spike fuzzer [31] as our base software.
Fuzzing is a process of sending malformed data to an application to generate failures
or errors in the application [12]. This base code was morphed using our LLVM
metamorphic generator and the morphed versions were then analyzed using HMM-
based analysis. Spike fuzzer consists of about 6000 lines of assembly code.

For each experiment, we generate 50 morphed copies by inserting dead code from
different morphing files. As previously mentioned, the morphing files are randomly
selected from coreutil Linux commands files [6].

Once the morphed files are generated, we use an HMM scoring technique similar
to that in [13]. Previous research has consistently shown that the number of hidden
states in the HMM does not significantly impact the quality of the file classification.
Consequently, we only consider HMMs with N = 2 hidden states.

First, we train an HMM to model the base file. To obtain sufficient observations
for training, we generated 50 copies of the base file, each having a 5% rate of morphing.
We then trained an HMM on these 50 morphed files. We refer to this model as the
“base HMM.” As discussed in [13], the purpose of the slight morphing at this stage
is simply to prevent the base HMM from overfitting the available data in the base
file. Consequently, we use a minimal amount of morphing at this step.

Next, we use this trained HMM to score 50 morphing files. Specifically, we score
the coreutil Linux commands files that we use as our source of morphing code in the
experiments described below.

We then conducted experiments where we morph the base file at each of the
following rates: 10%, 20%, 30%, and, finally, 50%. In each case, we generated 50
morphed versions of the base file, with each file morphed at the given rate. These
morphed copies were then scored using the base HMM and these scores were compared
to the scores obtained for the morphing files as mentioned in the previous paragraph.

9



As the morphing percentage increases, we expect the scores of the morphed files to
converge towards the scores of the morphing files. Note that all scores are normalized
to a per opcode basis so that file size does not affect the results.

Figure 10 (a) through (d) contain our score results for 10% 20%, 30%, and 50%
morphing, respectively. From these results, we see that after inserting 20% dead
code, the scores are starting to merge, which indicates that the morphed base files
are difficult for the HMM to distinguish from the morphing files. This is precisely
the effect that we hope to achieve through code morphing.

The results in Figure 10 are summarized in the form of ROC curves in Figure 11.
These ROC curves plot the false positive rate versus the true positive rate as the
threshold is varied throughout the score range.

The area under the ROC curve (AUC) is equal to the probability that a classifier
ranks a randomly chosen positive instance higher than a randomly chosen negative
one [5]. The AUC values for the ROC curves in Figure 11 are given in the Table 1.
Note that an AUC of 1.0 indicates ideal separation (i.e., no false positives or false
negatives), while an AUC of 0.5 indicates that the classifier yields results that are
no better than flipping a coin. After inserting 20% dead code, our HMM classifier
does poorly, and at higher morphing rates, the rate of classification failure increases
dramatically. Again, these results show that our code morphing technique is highly
effective, at least with respect to this HMM classifier.

Table 1: ROC AUC statistic

Dead code insertion % | AUC
10 1.0000
20 0.8708
30 0.7724
50 0.5924

5 Conclusion and Future Work

In this paper, we presented and analyzed a novel code morphing technique based
on LLVM IR bytecode. Our approach makes strong code morphing available as
a compile-time option, and requires no special effort on the part of the software
developer. As far as the authors are aware, this is the first general purpose code
morphing tool of its kind.

Our metamorphic generator uses dead code insertion and function permutation.
The dead code is in the form of functions copied from other programs. These dead
functions are called within the program, which makes their detection and removal
more challenging.
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We tested the effectiveness of our code morphing using an HMM technique that
has proven successful in metamorphic malware detection and for detection of certain
types of software piracy. We verified that our morphing technique is highly effective,
in the sense that an HMM cannot effectively distinguish our morphed code from other
code, even at relatively low morphing rates.

There are many possible improvements to the metamorphic generator presented
here. The dead code insertion could be improved by removing the dependence on
complete subroutines—it would be possible to do such insertion at the level of basic
blocks. Other powerful morphing techniques, such as instruction substitution, could
be included. It would also be interesting to employ formal grammar mutation as a
framework for implementing the morphing. Additional user control of morphing (via
compile-time flags) would be valuable. Finally, improvements in the LLVM infras-
tructure itself would serve to make our code morphing techniques more robust. For
example, in our current implementation, tools available within the LLVM framework
could be used to analyze the morphed bitcode. However, if the bitcode is converted
to, say, a Windows PE file, then the tools within LLVM cannot be used such analysis.
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SUB EDI,4

JZ2 &+ 2

JMP § + ed

Figure 1: A simple polymorphic decryptor and two variants [39]

A
B
X
X

S = &
L A e

¥
1

XB
Y4E
X1 X2|X2X)

GX||mov Ry, len|pushlen @ pop Ry|xor Ry,
Ry @ lea Ry, [Ry + len]lsub Ry, R\ & add Ry, len
GXp|mov Ry, beg|push beg @ pop Ra|xor Ry,

Ry@lea Ry, [Ry+begllsub Ry, Ry@add Ry, beg

GYa| Wy |S4Wy
GWilxor [Ra2], key Hy
not [Ra] @ xor [R2]. key @ not[R2] Hy

mov Ry, [Rz] @ not R3 @ and R3, key @ and [R2],
—key & or[Ra], R3 H|

GHyladd Ry, 4 Hy|sub Ry, —4 Hy
G5 |sub Ry, 4ladd Ry, —4
GWslxor [R{][R2], key H2

not [Ri1[Ry]@xor [R11[R2], key@not[R1][R2] H2

mov Ry, [R][R2] & not Ry & and R3, key & and

[R1[Ry]. —key @ or [R|1[R3]. R3 H>
GHalsub Ry, A6 jnz xxx|sub Ry, 4® jz yyvé jmp xxx
add Ry, —4@ jnz xxx|add Ry, —4% jz yvy& jmp xxx

subecx,3 Bloopxxx & R| =ecx

Figure 2: Formal grammar for decrpyptor mutation [39]
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Source code —

Front end Optimizer Back end — Machine code

Figure 3: Three-phase compiler

C/C+H+ —»

Fortran —»

Haskell

C/C++/0bjC LLVM 36
Frontend x86 Backend X
Llvm-gee LLVM LLVM
Frontend Optimizer ARM Backend ARM

GHC LLVM PowerPC P PC
Frontend Backend owet
LIVM IR LLVM IR

Figure 4: LLVM design [20]
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Header

Module

GlobalVariable1

GlobalVariable2

Function 1

Inst1

Inst3

Inst2

Inst4

J .

Function 2

™ i~

Inst1

Inst3

Inst2

Inst4

LLVIM Bﬁode File

Figure 5: LLVM bytecode file format [27]

unsigned add(unsigned a, unsigned b)

{

return a+b;

}

define i32 @add(i32 %a, i32 %b) nounwind {
entry:

%a_addr = alloca i32 ; <i32%*> [#uses=2]
%b_addr = alloca i32 ; <i32%*> [#uses=2]
%retval = alloca i32 ; <i32%*> [#uses=2]
%0 = allocai32 ; <i32*> [#uses=2]

%"alloca point" = bitcast i32 0 to i32

store i32 %a, i32* %a_addr

store i32 %b, i32* %b_addr

%1 = load i32* %a_addr, align 4 ; <i32> [Huses=1]
%2 =load i32* %b_addr, align 4 ; <i32> [#uses=1]

%3 =add i32 %1, %2 ; <i32> [Huses=1]
store i32 %3, i32* %0, align 4
%4 = load i32* %0, align 4 ; <i32> [#uses=1]

store i32 %4, i32* %retval, align 4
br label %return

return: ; preds = %entry
%retvall = load i32* %retval ; <i32> [#uses=1]
reti32 %retvall

}

Figure 6: C code and corresponding IR bytecode
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Figure 7: Program life cycle in LLVM compiler

Markov process: Xo > X, > X, > ... > X7
B B B B
Observations: O, 0, O, e Or_1

Figure 8: Generic HMM [33]
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LLWVM-Optimizer
calls applicable dead
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RS

Y

Output : Morphed

Pass 3
Function
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malware binary

byte code level

Figure 9: Metamorphic code generator architecture diagram
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Figure 10: HMM scores for various morphing percentages
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Figure 11: ROC curves for various morphing percentages
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