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ABSTRACT: To insure the confidentiality of data, it 

can be encrypted before it is transmitted. However, 

most data today is unencrypted.  As a result, encrypted 

data might attract unwanted attention, simply due to 

the fact that it is encrypted. To avoid such attention, 

we propose a method of converting ciphertext into 

data that can pass certain automated tests for English 

text. Our goal is to foil automated detection methods, 

and we want to expand the encrypted data as little as 

possible in the process. Our technique can be 

considered as a form of steganography. 
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Introduction 
 

Today, most data sent over the Internet is 

unencrypted. Consequently, unencrypted data 

does not attract much attention—attackers expect 

important data to be encrypted. Encrypted data, 

on the other hand, might attract unwanted 

attention.  

 

Because encrypted data looks random, while 

unencrypted network data is well structured, 

attackers can use automated tools to search for 

encrypted (random) data. Once attackers acquire 

encrypted data they might attempt to decrypt it. 

Even if the attackers are not able to decrypt the 

data, they can still perform traffic analysis.  

 

Therefore, encrypting data might not be 

sufficient. In many cases, we might prefer that 

the attacker does not even realize that an 

encrypted communication has occurred. The 

technique of making an encrypted message 

“invisible” to the attacker is clearly related to the 

field of steganography (also known as 

information hiding), where “steganography is the 

art and science of writing hidden messages in 

such a way that no one apart from the intended 

recipient knows of the existence of the message” 

[6]. The method we discuss below can therefore 

be considered as a form of information hiding. 

 

To hide the existence of an encrypted message 

from the attacker we have developed a method 

that makes encrypted data look more like 

unencrypted text. Our goal is to avoid automated 

detection tools that might filter out random data. 

Note that we do not require that the text appear to 

be sensible and grammatical English to a human 

reader.  

 

The process of transforming encrypted data into 

“English-like” data will naturally result in the 

expansion of the data. As a result, we also strive 

to minimize this expansion. 

 

Our initial inspiration for developing such a data 

transformation method comes from a talk given 

by “Mystic” at Def Con 11, where [3] 

 

Mystic presented an example where he 

encrypted the sentence “This is a test” and 

then processed the ciphertext to produce a 

long paragraph about baseball. The tool 

simply used the encrypted bits as a key for 

selecting snippets of text, while following 

rules so that the resulting text was somewhat 

sensible. The process could be reversed by 
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the receiver so that he could reconstruct the 

encrypted text from which he could recover 

the plaintext. 

 

Note that Mystic tried to develop a system that 

could generate text that would appear reasonably 

sensible to a human reader. He was also 

unconcerned about data expansion. Our objective 

here is somewhat different. We want to develop a 

system that will pass likely automated tests, and 

we are very concerned with minimizing the 

expansion of the data. We believe that our 

approach is of far more practical utility than 

Mystic’s. 

 

 

A Test for Randomness 
 

To develop an efficient data hiding method, we 

first must consider ways that encrypted data 

might be detected automatically. An elementary 

and effective method for detecting random data is 

described by Shamir and van Someren in [2].  

 

The entropy of random data is higher than the 

entropy of nonrandom data. Shamir's method 

identifies random data by approximating the 

entropy of segments of data. Obtaining an exact 

value of entropy is an expensive process, but 

Shamir’s approximation is very efficient to 

compute.  

 

Shamir discovered that “examining a sliding 

window of 64 bytes of data and counting how 

many unique byte values were used gave a good 

enough measure of entropy” [2]. In our 

experiments on English texts, an average window 

of 64 bytes contains about 26 unique byte values, 

while an average window of random data 

contains about 58 unique byte values. 

 

Shamir's test implies that, at the very least, we 

need to transform random data into data whose 

average sliding window of 64 bytes will contain 

about 26 unique byte values.  

 

 

Hiding Random Data 
 

To avoid automatic random data detection tools 

we must lower the entropy of the data. We will 

now proceed with developing techniques that 

will transform random data into non-random (or 

at least less-random) data. Random data can be 

transformed into nonrandom data using various 

approaches. Each approach discussed below is 

associated with a different degree of data 

expansion and a different degree of protection 

from automated detection tools.  

 

We first focus on two obvious and simple 

methods of lowering the entropy: sentence 

substitution and base-64 encoding. 

 

 

Sentence Substitution 
 

A simple way of transforming encrypted data 

into a normal looking text is to replace each 

group of n bits of encrypted data by a full 

English sentence. Such a method certainly hides 

the ciphertext well. The resulting data is 

nonrandom and thus has low entropy. The text 

might look strange to a human because sentences 

are unrelated to each other. However, using 

automated tools, it would likely be very difficult 

to determine that the generated text is not plain 

English. 

 

The main problem with this method of sentence 

substitution (which is roughly equivalent to 

Mystic’s method, as discussed above) is the 

enormous data expansion.  

 

 

Base-64 Encoding 
 

Another method of lowering the entropy of 

random data is base 64-encoding. Base-64 

encoding converts each 3 bytes of data into 4 

printable ASCII characters. As a result, the data 

is expanded by 33%. 

 

Using Shamir’s test for entropy, we found that 

the entropy of base-64 encoded data is, as 

expected, higher that the entropy of nonrandom 



data but lower than the entropy of random data. 

In our experiments, we base-64 encoded English 

text and measured, on average, about 36 unique 

byte values per 64 byte window. We also base-64 

encoded random data (corresponding to 

ciphertext) and recorded, on average, about 42 

unique byte values per window of 64 bytes. 

Recall that, by our measurements, nonrandom 

English texts contain about 26 unique byte values 

per 64 byte window and random data contains 

about 58 unique byte values per window of 64 

bytes. 

 

From these results we see that the entropy value 

for base-64 encoded data is not close to the 

entropy of random data. However, its value is not 

close to the entropy of nonrandom data either. 

Due to this distinction, base-64 encoded data 

might attract an attacker's attention, even if the 

attacker is only using a simple entropy 

approximation.  

 

We see that these two methods for reducing the 

randomness of data are far from satisfactory. The 

method of sentence substitution results in good 

protection from automated detection tools. 

Unfortunately, this method is associated with an 

enormous data size expansion. On the other hand, 

when using base-64 encoding to transform 

random data, the data size expansion is very 

small. However, the base-64 encoded data’s 

entropy is not close to the entropy of a normal 

English text.  

 

 

Word Substitution 
 

Our next approach we tried was word 

substitution, that is, we replaced blocks of bits 

with words from an English dictionary according 

to a predetermined “key”. The larger the 

dictionary, the larger the number of bits that can 

be in a block. For example, with a dictionary 

containing at least 32,768 words, we can replace 

blocks of size 15 bits. 

 

The amount of data expansion associated with 

this data hiding method depends primarily on the 

size of the dictionary used. For example, if we 

use a dictionary of at least 131,072 words, then 

assuming an average word length of seven 

characters, the data expansion is about 230%. 

However, if we use a smaller dictionary of, say, 

1024 words, then the resulting data expansion is 

about 460%. 

 

 

Entropy of Word Substitution 
 

To determine the effectiveness of word 

substitution, we have measured the entropy of 

such transformed data. Our measurements show 

that on average, a window of 64 bytes of word 

substitution data contains about 24 unique byte 

values. The entropy of this transformed data is 

very close to the entropy of genuine English data. 

Consequently, it is unlikely that the transformed 

data will attract an attacker’s attention provided 

that the attacker is relying only in this one 

statistical test. 

 

 

Weakness of Word Substitution 
 

The word substitution approach defeats the 

automated tools that search for encrypted data by 

measuring entropy. Also, the data  expansion 

associated with this method is reasonable. 

However, even though the transformed text is a 

sequence of English words, it does not look at all 

like properly structured English. In part, this is 

because the words from the dictionary are chosen 

only on the basis of their location in the 

dictionary and no English syntax rules are 

followed. Therefore, if the attacker analyzes the 

transformed data using a more sophisticated tool 

that takes into account the structure of English, 

word substitution is likely to fail miserably. In 

fact, we show that this is the case below. 

 

 

Automatic Detection of English 
 

To defeat tools for automatic detection of 

English texts we need a method that will 

transform random data into an English-like text. 

To determine what properties the generated text 

should satisfy we have developed a tool based on 



Hidden Markov Models that measures the 

“Englishness” of text.  

 

 

Hidden Markov Models 
 

Markov models are representations of stochastic 

processes. Stochastic processes generate random 

sequences of outcomes according to certain 

probability distributions. In a Markov model, the 

probability of observing an output depends only 

on the current state and not on the earlier history. 

 

A Hidden Markov Model (HMM) is a model in 

which we observe an output sequence, but we do 

not know the sequence of underlying states the 

model went through to generate the observations, 

that is, the actual states of the model are 

“hidden”. An HMM can be viewed as a statistical 

tool for understanding a deterministic process, 

where the deterministic process cannot be 

observed directly [1]. The beauty of the HMM 

approach is that it can, in effect, draw out 

statistically significant information, without 

requiring many a priori assumptions on the data 

or the model. 

 

A detailed discussion of HMMs is beyond the 

scope of this paper. For more information, see [4] 

and the reference contained therein. 

 

 

HMM Test for “Englishness” 
 

To develop our test for “Englishness”, we first 

trained an HMM on properly structured English 

texts, and thereby obtained a model for English. 

Once trained, we then use our model to 

determine how closely a given text conforms to 

the model. In other words, we can determine 

whether the given text “looks” like English, from 

the perspective of our HMM. 

 

 

Training the Model 
 

To train our HMM model for English, we used 

the Brown corpus [5] of English. We read T 

words from the Brown corpus and we restricted 

our observation symbols to be: noun, verb, 

adjective, adverb, pronoun, conjunction, 

interjection, preposition, and period. That is, we 

determined for each of the words that we read 

from the Brown corpus, what word group it 

belongs to (i.e. noun, verb, adjective, and so on). 

The result of this clasification is an observation 

sequence of length T consisting of word types. 

 

Once we obtained the observation sequence, we 

trained an HMM on this sequence. To obtain a 

usable model, we trained with with 100,000 

observations, assuming 3 hidden states and with 

the 9 observation “symbols” mentioned above, 

namely, noun, verb, adjective, adverb, pronoun, 

conjunction, interjection, preposition, and period. 

 

Through the training process, observation 

symbols were clearly separated into the hidden 

states as follows: 

 

 State 1: noun 

State 2: verb, preposition, adverb, 

 conjunction, period 

 State 3: adjective, interjection, pronoun 

 

 

 

Using HMM to Identify English 
 

After training our HMM, we then used the 

resulting model to score text. In tests, we found 

that English text scored, on average 0.97, and in 

no case worse than 0.94. 

 

On the other hand, using our HMM model, the 

score for English words in random order was, on 

average, 0.68 and never more than  0.72. As a 

result, we see that the word substitution method 

described above is highly vulnerable to this 

HMM test. That is, the word substitution method 

would pass Shamir’s test for entropy, but it 

would not pass this more sophisticated HMM test 

which incorporates some of the structure of 

English.  

 

 



Syntactical Substitution 

 
To transform random data into a more English-

like text, some English syntax rules need to be 

followed. We therefore first determined what 

rules and patterns of the English language our 

transformed data should follow. When looking at 

how English sentences are structured we 

observed certain patterns. For example, we saw 

that sentences often have a noun followed by a 

verb, followed by an adverb. We also observed 

that an adjective is generally followed by a noun, 

which is followed by a verb. We took into 

account these patterns when designing a 

technique for transforming encrypted data into an 

English-like text.  

 

 

noun

period

verb

period

verb

noun

adjective

period

adverb

preposition

noun

noun

verb

Start here

OR Start here

OR Start here

 
Figure 1.  English text conforming to this pattern 

passes our HMM test for 

"Englishness" 

 

 

 

We employed the chart in Figure 1 above to 

develop a method that transforms random data 

into English-like text by replacing groups of bits 

in a way that the resulting text follows the pattern 

in Figure 2 below. 

 

noun

period

verb

period

verb

noun

adjective

period

adverb

preposition

noun

noun

verb

Start here

 
 
Figure 2.  Pattern employed in our syntactical 

substitution method 

 

 

That is, our method starts by replacing bits from 

random text by a noun. If there are still bits of 

encrypted data left, then it replaces the next 

group of random bits with a verb, if there are still 

bits of encrypted data left, it replaces the next 

group of bits by an adverb followed by a period, 

and so on.  

 

When transforming random data in this way, we 

need to be able to find  words of a desired type in 

a dictionary. For this purpose, our method uses 

several dictionaries where each dictionary only 

contains words belonging to a certain word 

group, i.e., we have a dictionary of nouns, a 

dictionary of verbs, a dictionary of adjectives, a 

dictionary of prepositions, a dictionary of 

adverbs, a dictionary of pronouns, a dictionary of 

interjections, and a dictionary of conjunctions. 

For example, the random data (in hexadecimal)  

 

 FE CC 50 EF 5B D1 F5 60 47 E9  

 D2 4C 65 40 2E 22 A2 76 3B BF 

 

would be transformed into a text such as 

 

Inverter cicatrize creamily. Insectile curfew 

refreshen. Cineole earn ex hemiparasite. 

Galley glide nohow. Agrarian.  

 



While this text clearly would not pass human 

analysis, we show below that it does pass both 

Shamir’s entropy test and our HMM test for 

English. 

 

 

Data Expansion 
 

Before analyzing the success of our syntactical 

substitution method, we first consider the 

expansion of the data. The amount of data 

expansion associated with our syntactical 

substitution method depends on the size of each 

of the dictionaries used—the larger the 

dictionaries, the less the data expansion. In the 

English language, there are far fewer 

interjections, pronouns, conjunctions, and 

prepositions than nouns, adjectives, verbs, or 

adverbs. Therefore, in order to minimize the 

amount of data expansion, our patterns for 

random bit replacement only rarely include these 

less common word types. As a result the data 

expansion for syntactical substitution is only 

marginally greater than for the word substitution 

method discussed above. 

 

 

Entropy of Transformed Data 
 

To determine, whether our syntactical 

substitution method would defeat automated 

detection tools, we first measured the entropy 

(using Shamir’s approximation) of the 

transformed data. Our measurements show that 

on average, a window of 64 bytes of transformed 

data contains about 25 unique byte values. Recall 

that a window of 64 bytes of structured data 

contains about 26 unique byte values. Therefore, 

the entropy of our transformed ciphertext is 

essentially equivalent to the entropy of structured 

data.  

 

 

HMM Test of Syntactical 

Substitution 
 

To verify the effectiveness of the syntactical 

substitution method, we used our HMM test for 

“Englishness” to determine how close our 

transformed text is to English.  We found that the 

probability of the transformed text being English 

is, on average, 0.97, which matches the results 

we found for legitimate English text. In other 

words, our transformed data is indistinguishable 

from English using either Shamir’s measure of 

entropy or our HMM test for English. 

 

 

Conclusion 

 
We argued that it is sometimes desirable to hide 

the fact that an encrypted communication has 

occurred. We then discussed Shamir’s entropy 

approximation, which provides an efficient test 

to automatically detect ciphertext. This is due to 

the high entropy of ciphertext as compared to 

plaintext data. We then discussed a simple word 

substitution method of converting ciphertext into 

data with less entropy. This technique would 

avoid  automated screening based on an entropy 

calculation. 

  

We then presented an approach, based on a 

Hidden Markov Model (HMM), which was able 

to defeat the word substitution method. By 

including English syntactical information into 

our transformation tool, we were able to defeat 

this HMM detection tool. That is, our syntactical 

substitution method converts ciphertext into 

transformed text that is sufficiently “English-

like” to overcome a simple entropy calculation as 

well as a more sophisticated HMM analysis. In 

addition, our syntactical transformation only 

expands the data slightly more than the word 

substitution approach. 

 

Of course, this is only the beginning of an “arms 

race”. The next step would be to build an 

analysis tool that can automatically detect that 

the output of our syntactical transformation tool 

is not sufficiently English-like. Then we could 

attempt to design a more effective transformation 

tool so that its output would not be detected by 

this new detector, and so on. However, at each 

iteration the cost of detection is likely to be 

significantly higher than at the previous level.  If 

we can drive the cost up sufficiently high, then 



we will have made large-scale automated 

detection impractical. 
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