
STEALTHY CIPHERTEXT

 Martina Simova Chris Pollett Mark Stamp

 msimova@hotmail.com pollett@cs.sjsu.edu stamp@cs.sjsu.edu

Department of Computer Science

San Jose State University

San Jose, California

ABSTRACT: To insure the confidentiality of data, it

can be encrypted before it is transmitted. However,

most data today is unencrypted. As a result, encrypted

data might attract unwanted attention, simply due to

the fact that it is encrypted. To avoid such attention,

we propose a method of converting ciphertext into

data that can pass certain automated tests for English

text. Our goal is to foil automated detection methods,

and we want to expand the encrypted data as little as

possible in the process. Our technique can be

considered as a form of steganography.

Keywords: cryptography, ciphertext, encrypt,

steganography, hidden markov models

Introduction

Today, most data sent over the Internet is

unencrypted. Consequently, unencrypted data

does not attract much attention—attackers expect

important data to be encrypted. Encrypted data,

on the other hand, might attract unwanted

attention.

Because encrypted data looks random, while

unencrypted network data is well structured,

attackers can use automated tools to search for

encrypted (random) data. Once attackers acquire

encrypted data they might attempt to decrypt it.

Even if the attackers are not able to decrypt the

data, they can still perform traffic analysis.

Therefore, encrypting data might not be

sufficient. In many cases, we might prefer that

the attacker does not even realize that an

encrypted communication has occurred. The

technique of making an encrypted message

“invisible” to the attacker is clearly related to the

field of steganography (also known as

information hiding), where “steganography is the

art and science of writing hidden messages in

such a way that no one apart from the intended

recipient knows of the existence of the message”

[6]. The method we discuss below can therefore

be considered as a form of information hiding.

To hide the existence of an encrypted message

from the attacker we have developed a method

that makes encrypted data look more like

unencrypted text. Our goal is to avoid automated

detection tools that might filter out random data.

Note that we do not require that the text appear to

be sensible and grammatical English to a human

reader.

The process of transforming encrypted data into

“English-like” data will naturally result in the

expansion of the data. As a result, we also strive

to minimize this expansion.

Our initial inspiration for developing such a data

transformation method comes from a talk given

by “Mystic” at Def Con 11, where [3]

Mystic presented an example where he

encrypted the sentence “This is a test” and

then processed the ciphertext to produce a

long paragraph about baseball. The tool

simply used the encrypted bits as a key for

selecting snippets of text, while following

rules so that the resulting text was somewhat

sensible. The process could be reversed by

mailto:msimova@hotmail.com
mailto:pollett@cs.sjsu.edu
mailto:stamp@cs.sjsu.edu

the receiver so that he could reconstruct the

encrypted text from which he could recover

the plaintext.

Note that Mystic tried to develop a system that

could generate text that would appear reasonably

sensible to a human reader. He was also

unconcerned about data expansion. Our objective

here is somewhat different. We want to develop a

system that will pass likely automated tests, and

we are very concerned with minimizing the

expansion of the data. We believe that our

approach is of far more practical utility than

Mystic’s.

A Test for Randomness

To develop an efficient data hiding method, we

first must consider ways that encrypted data

might be detected automatically. An elementary

and effective method for detecting random data is

described by Shamir and van Someren in [2].

The entropy of random data is higher than the

entropy of nonrandom data. Shamir's method

identifies random data by approximating the

entropy of segments of data. Obtaining an exact

value of entropy is an expensive process, but

Shamir’s approximation is very efficient to

compute.

Shamir discovered that “examining a sliding

window of 64 bytes of data and counting how

many unique byte values were used gave a good

enough measure of entropy” [2]. In our

experiments on English texts, an average window

of 64 bytes contains about 26 unique byte values,

while an average window of random data

contains about 58 unique byte values.

Shamir's test implies that, at the very least, we

need to transform random data into data whose

average sliding window of 64 bytes will contain

about 26 unique byte values.

Hiding Random Data

To avoid automatic random data detection tools

we must lower the entropy of the data. We will

now proceed with developing techniques that

will transform random data into non-random (or

at least less-random) data. Random data can be

transformed into nonrandom data using various

approaches. Each approach discussed below is

associated with a different degree of data

expansion and a different degree of protection

from automated detection tools.

We first focus on two obvious and simple

methods of lowering the entropy: sentence

substitution and base-64 encoding.

Sentence Substitution

A simple way of transforming encrypted data

into a normal looking text is to replace each

group of n bits of encrypted data by a full

English sentence. Such a method certainly hides

the ciphertext well. The resulting data is

nonrandom and thus has low entropy. The text

might look strange to a human because sentences

are unrelated to each other. However, using

automated tools, it would likely be very difficult

to determine that the generated text is not plain

English.

The main problem with this method of sentence

substitution (which is roughly equivalent to

Mystic’s method, as discussed above) is the

enormous data expansion.

Base-64 Encoding

Another method of lowering the entropy of

random data is base 64-encoding. Base-64

encoding converts each 3 bytes of data into 4

printable ASCII characters. As a result, the data

is expanded by 33%.

Using Shamir’s test for entropy, we found that

the entropy of base-64 encoded data is, as

expected, higher that the entropy of nonrandom

data but lower than the entropy of random data.

In our experiments, we base-64 encoded English

text and measured, on average, about 36 unique

byte values per 64 byte window. We also base-64

encoded random data (corresponding to

ciphertext) and recorded, on average, about 42

unique byte values per window of 64 bytes.

Recall that, by our measurements, nonrandom

English texts contain about 26 unique byte values

per 64 byte window and random data contains

about 58 unique byte values per window of 64

bytes.

From these results we see that the entropy value

for base-64 encoded data is not close to the

entropy of random data. However, its value is not

close to the entropy of nonrandom data either.

Due to this distinction, base-64 encoded data

might attract an attacker's attention, even if the

attacker is only using a simple entropy

approximation.

We see that these two methods for reducing the

randomness of data are far from satisfactory. The

method of sentence substitution results in good

protection from automated detection tools.

Unfortunately, this method is associated with an

enormous data size expansion. On the other hand,

when using base-64 encoding to transform

random data, the data size expansion is very

small. However, the base-64 encoded data’s

entropy is not close to the entropy of a normal

English text.

Word Substitution

Our next approach we tried was word

substitution, that is, we replaced blocks of bits

with words from an English dictionary according

to a predetermined “key”. The larger the

dictionary, the larger the number of bits that can

be in a block. For example, with a dictionary

containing at least 32,768 words, we can replace

blocks of size 15 bits.

The amount of data expansion associated with

this data hiding method depends primarily on the

size of the dictionary used. For example, if we

use a dictionary of at least 131,072 words, then

assuming an average word length of seven

characters, the data expansion is about 230%.

However, if we use a smaller dictionary of, say,

1024 words, then the resulting data expansion is

about 460%.

Entropy of Word Substitution

To determine the effectiveness of word

substitution, we have measured the entropy of

such transformed data. Our measurements show

that on average, a window of 64 bytes of word

substitution data contains about 24 unique byte

values. The entropy of this transformed data is

very close to the entropy of genuine English data.

Consequently, it is unlikely that the transformed

data will attract an attacker’s attention provided

that the attacker is relying only in this one

statistical test.

Weakness of Word Substitution

The word substitution approach defeats the

automated tools that search for encrypted data by

measuring entropy. Also, the data expansion

associated with this method is reasonable.

However, even though the transformed text is a

sequence of English words, it does not look at all

like properly structured English. In part, this is

because the words from the dictionary are chosen

only on the basis of their location in the

dictionary and no English syntax rules are

followed. Therefore, if the attacker analyzes the

transformed data using a more sophisticated tool

that takes into account the structure of English,

word substitution is likely to fail miserably. In

fact, we show that this is the case below.

Automatic Detection of English

To defeat tools for automatic detection of

English texts we need a method that will

transform random data into an English-like text.

To determine what properties the generated text

should satisfy we have developed a tool based on

Hidden Markov Models that measures the

“Englishness” of text.

Hidden Markov Models

Markov models are representations of stochastic

processes. Stochastic processes generate random

sequences of outcomes according to certain

probability distributions. In a Markov model, the

probability of observing an output depends only

on the current state and not on the earlier history.

A Hidden Markov Model (HMM) is a model in

which we observe an output sequence, but we do

not know the sequence of underlying states the

model went through to generate the observations,

that is, the actual states of the model are

“hidden”. An HMM can be viewed as a statistical

tool for understanding a deterministic process,

where the deterministic process cannot be

observed directly [1]. The beauty of the HMM

approach is that it can, in effect, draw out

statistically significant information, without

requiring many a priori assumptions on the data

or the model.

A detailed discussion of HMMs is beyond the

scope of this paper. For more information, see [4]

and the reference contained therein.

HMM Test for “Englishness”

To develop our test for “Englishness”, we first

trained an HMM on properly structured English

texts, and thereby obtained a model for English.

Once trained, we then use our model to

determine how closely a given text conforms to

the model. In other words, we can determine

whether the given text “looks” like English, from

the perspective of our HMM.

Training the Model

To train our HMM model for English, we used

the Brown corpus [5] of English. We read T

words from the Brown corpus and we restricted

our observation symbols to be: noun, verb,

adjective, adverb, pronoun, conjunction,

interjection, preposition, and period. That is, we

determined for each of the words that we read

from the Brown corpus, what word group it

belongs to (i.e. noun, verb, adjective, and so on).

The result of this clasification is an observation

sequence of length T consisting of word types.

Once we obtained the observation sequence, we

trained an HMM on this sequence. To obtain a

usable model, we trained with with 100,000

observations, assuming 3 hidden states and with

the 9 observation “symbols” mentioned above,

namely, noun, verb, adjective, adverb, pronoun,

conjunction, interjection, preposition, and period.

Through the training process, observation

symbols were clearly separated into the hidden

states as follows:

 State 1: noun

State 2: verb, preposition, adverb,

 conjunction, period

 State 3: adjective, interjection, pronoun

Using HMM to Identify English

After training our HMM, we then used the

resulting model to score text. In tests, we found

that English text scored, on average 0.97, and in

no case worse than 0.94.

On the other hand, using our HMM model, the

score for English words in random order was, on

average, 0.68 and never more than 0.72. As a

result, we see that the word substitution method

described above is highly vulnerable to this

HMM test. That is, the word substitution method

would pass Shamir’s test for entropy, but it

would not pass this more sophisticated HMM test

which incorporates some of the structure of

English.

Syntactical Substitution

To transform random data into a more English-

like text, some English syntax rules need to be

followed. We therefore first determined what

rules and patterns of the English language our

transformed data should follow. When looking at

how English sentences are structured we

observed certain patterns. For example, we saw

that sentences often have a noun followed by a

verb, followed by an adverb. We also observed

that an adjective is generally followed by a noun,

which is followed by a verb. We took into

account these patterns when designing a

technique for transforming encrypted data into an

English-like text.

noun

period

verb

period

verb

noun

adjective

period

adverb

preposition

noun

noun

verb

Start here

OR Start here

OR Start here

Figure 1. English text conforming to this pattern

passes our HMM test for

"Englishness"

We employed the chart in Figure 1 above to

develop a method that transforms random data

into English-like text by replacing groups of bits

in a way that the resulting text follows the pattern

in Figure 2 below.

noun

period

verb

period

verb

noun

adjective

period

adverb

preposition

noun

noun

verb

Start here

Figure 2. Pattern employed in our syntactical

substitution method

That is, our method starts by replacing bits from

random text by a noun. If there are still bits of

encrypted data left, then it replaces the next

group of random bits with a verb, if there are still

bits of encrypted data left, it replaces the next

group of bits by an adverb followed by a period,

and so on.

When transforming random data in this way, we

need to be able to find words of a desired type in

a dictionary. For this purpose, our method uses

several dictionaries where each dictionary only

contains words belonging to a certain word

group, i.e., we have a dictionary of nouns, a

dictionary of verbs, a dictionary of adjectives, a

dictionary of prepositions, a dictionary of

adverbs, a dictionary of pronouns, a dictionary of

interjections, and a dictionary of conjunctions.

For example, the random data (in hexadecimal)

 FE CC 50 EF 5B D1 F5 60 47 E9

 D2 4C 65 40 2E 22 A2 76 3B BF

would be transformed into a text such as

Inverter cicatrize creamily. Insectile curfew

refreshen. Cineole earn ex hemiparasite.

Galley glide nohow. Agrarian.

While this text clearly would not pass human

analysis, we show below that it does pass both

Shamir’s entropy test and our HMM test for

English.

Data Expansion

Before analyzing the success of our syntactical

substitution method, we first consider the

expansion of the data. The amount of data

expansion associated with our syntactical

substitution method depends on the size of each

of the dictionaries used—the larger the

dictionaries, the less the data expansion. In the

English language, there are far fewer

interjections, pronouns, conjunctions, and

prepositions than nouns, adjectives, verbs, or

adverbs. Therefore, in order to minimize the

amount of data expansion, our patterns for

random bit replacement only rarely include these

less common word types. As a result the data

expansion for syntactical substitution is only

marginally greater than for the word substitution

method discussed above.

Entropy of Transformed Data

To determine, whether our syntactical

substitution method would defeat automated

detection tools, we first measured the entropy

(using Shamir’s approximation) of the

transformed data. Our measurements show that

on average, a window of 64 bytes of transformed

data contains about 25 unique byte values. Recall

that a window of 64 bytes of structured data

contains about 26 unique byte values. Therefore,

the entropy of our transformed ciphertext is

essentially equivalent to the entropy of structured

data.

HMM Test of Syntactical

Substitution

To verify the effectiveness of the syntactical

substitution method, we used our HMM test for

“Englishness” to determine how close our

transformed text is to English. We found that the

probability of the transformed text being English

is, on average, 0.97, which matches the results

we found for legitimate English text. In other

words, our transformed data is indistinguishable

from English using either Shamir’s measure of

entropy or our HMM test for English.

Conclusion

We argued that it is sometimes desirable to hide

the fact that an encrypted communication has

occurred. We then discussed Shamir’s entropy

approximation, which provides an efficient test

to automatically detect ciphertext. This is due to

the high entropy of ciphertext as compared to

plaintext data. We then discussed a simple word

substitution method of converting ciphertext into

data with less entropy. This technique would

avoid automated screening based on an entropy

calculation.

We then presented an approach, based on a

Hidden Markov Model (HMM), which was able

to defeat the word substitution method. By

including English syntactical information into

our transformation tool, we were able to defeat

this HMM detection tool. That is, our syntactical

substitution method converts ciphertext into

transformed text that is sufficiently “English-

like” to overcome a simple entropy calculation as

well as a more sophisticated HMM analysis. In

addition, our syntactical transformation only

expands the data slightly more than the word

substitution approach.

Of course, this is only the beginning of an “arms

race”. The next step would be to build an

analysis tool that can automatically detect that

the output of our syntactical transformation tool

is not sufficiently English-like. Then we could

attempt to design a more effective transformation

tool so that its output would not be detected by

this new detector, and so on. However, at each

iteration the cost of detection is likely to be

significantly higher than at the previous level. If

we can drive the cost up sufficiently high, then

we will have made large-scale automated

detection impractical.

References

[1] Hidden Markov Models. Retrieved on

December 9, 2004 from:

http://www.mathworks.com/access/helpdesk/help

/toolbox/stats/hidden_2.html

[2] Shamir Adi, van Someren Nicko. 1998.

Playing hide and seek with stored keys.

Retrieved on August 5, 2004 from:

http://www.ncipher.com/resources/downloads/fil

es/white_papers/keyhide2.pdf

[3] Stamp, Mark. 2003. DEFCON 11 Trip

Report. Retrieved on October 5, 2004 from:

http://home.earthlink.net/~mstamp1/tripreports/d

efcon11.html

[4] Stamp, Mark. 2004. A Revealing Induction

to Hidden Markov Models.

Retrieved on November 5, 2004 from:

http://www.cs.sjsu.edu/faculty/stamp/RUA/HM

M.pdf

[5] The Brown Corpus of Standard American

English. Retrieved on November 8, 2004 from:

http://cs.sjsu.edu/faculty/stamp/brown/

[6] Wikipedia: The Free Encyclopedia.

Steganography. Retrieved on March 3, 2005

from: http://en.wikipedia.org/wiki/Steganography

Biographies

Martina Simova grew up in the Czech Republic.

At the age of 21 she moved to the United States.

She holds a Bachelor’s degree in Computer

Science from University of California, Santa

Cruz and is currently working towards her

Master’s degree in Computer Science at San Jose

State University in California. At this time,

Martina works as a Build Engineer at IBM in San

Jose, CA. However, she hopes that in the future

her work will involve solving security and

cryptography related problems.

Chris Pollett grew up in Canada. He has lived in

California since his undergraduate days at

Caltech. He obtained his Ph.D. in Mathematics

from UC San Diego in 1997. Dr. Pollett currently

has over twenty publications, mainly in the field

of computational complexity and its interactions

with mathematical logic.

Mark Stamp has spent more than a dozen years in

the field of security. Following academic work in

cryptography, he spent seven years as a

cryptanalyst with the National Security Agency,

followed by two years developing a digital rights

management product for a Silicon Valley startup

company. Dr. Stamp currently teaches

information security classes at San Jose State

University and he recently completed a textbook,

Information Security: Principles and Practice, to

be published by Wiley.

http://www.mathworks.com/access/helpdesk/help/toolbox/stats/hidden_2.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/hidden_2.html
http://www.ncipher.com/resources/downloads/files/white_papers/keyhide2.pdf
http://www.ncipher.com/resources/downloads/files/white_papers/keyhide2.pdf
http://home.earthlink.net/~mstamp1/tripreports/defcon11.html
http://home.earthlink.net/~mstamp1/tripreports/defcon11.html
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf
http://cs.sjsu.edu/faculty/stamp/brown/
http://en.wikipedia.org/wiki/Steganography

	Martina Simova		Chris Pollett		Mark Stamp
	
	
	Department of Computer Science
	San Jose, California

	Introduction
	A Test for Randomness

