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Abstract

The Internet plays a major role in the propagation of malware. A recent trend
is the infection of machines through web pages, often due to malicious code inserted
in JavaScript. From the malware writer’s perspective, one potential advantage of
JavaScript is that powerful code obfuscation techniques can be applied to evade de-
tection. In this research, we analyze metamorphic JavaScript malware. We compare
the effectiveness of several static detection strategies and we quantify the degree of
morphing required to defeat each of these techniques.

1 Introduction

Web browsers can be infected via malicious code inserted into JavaScript [29]. When
a user visits such a compromised website, the malicious JavaScript is automatically
loaded into the web browser. The majority of malicious JavaScript redirects the web
browser to load malicious content from a remote server. This can be achieved through
several means, such as adding an HTML iframe element to a page [23]. While there
are relatively few ways to obfuscate HTML [38], JavaScript can be obfuscated, making
it easier for malware writer to hide their true intent.

In this research, we analyze the proof-of-concept metamorphic JavaScript malware
known as Transcriptase [35]. We consider a variety of static detection techniques
and quantify the effectiveness of each. We then develop and analyze a strengthened
version of Transcriptase, and we analyze the degree of morphing versus the difficulty
of detection for each detection strategy considered.

This paper is organized as follows. In Section 2, we provide brief background
information on malware, with an emphasis on metamorphism. Section 3 discusses
Transcriptase, the metamorphic JavaScript that forms the basis for the research in
this paper. Then in Section 4, we cover the Rhino JavaScript engine and discuss
the modifications required for our experiments. Next, we briefly discuss the four
metamorphic detection techniques that we analyze. Specifically, we consider a method
based on Hidden Markov Models [37], an opcode graph similarity technique [26], a
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score inspired by simple substitution cryptanalysis [27], and Principle Component
Analysis, based on the use of Singular Value Decomposition [17]. These topics are
summarized in Section 5. Our experimental results for the Transcriptase metamorphic
JavaScript appear in Section 6. We present our enhanced version of Transcriptase in
Section 7 and provide experimental results for this more challenging case. Section 8
contains our conclusion and a consideration of possible future work.

2 Metamorphic Malware

Metamorphic malware changes its internal structure with each infection. The purpose
is to avoid detection by obfuscating any signature (and, possibly, statistical properties
as well), while retaining the essential functionality. Metamorphism can be viewed as
a step in the progression of obfuscated malware, which we describe next.

One method to evade signature detection is to encrypt the malware. Even a weak
encryption method can effectively hide a signature—each different key results in a
different bit pattern. Packing (i.e., compressing) code can serve a similar purpose.
From a virus writer’s perspective, the weakness of encrypted code is that the decryp-
tion code is still subject to signature detection. Cascade, which appeared in 1987,
was the first encrypted malware [24].

The next step in this evolution is polymorphic malware, where the body is en-
crypted, but the decryption code is morphed between generations. This method takes
advantage of encryption to hide the malware signature, while also making detection
of the decryption code more difficult. However, emulation or heuristics1 can be used
to detect polymorphics [5]. The virus known as 1260 (because it was only 1260 bytes
in length), which appeared in 1990, is often cited as the first example of polymorphic
malware [33].

Metamorphic malware is an advanced version of polymorphic malware, where the
entire internal structure is morphed. Metamorphic malware is sometimes referred
to as “body polymorphic.” For well-designed metamorphic malware, encryption is
not necessary, or even desirable. The virus known as Win95/Regswap, which ap-
peared late in 1998, is generally credited as being the first example of metamorphic
malware [33].

Next, we briefly discuss several elementary morphing strategies. In Section 5 we
outline the advanced detection techniques that form the basis of the analysis in this
paper.

2.1 Instruction Reordering

Independent instructions can be reordered without affecting program execution. If
we have n independent instructions, we can generate n! different morphed versions.

For example, consider the following code for the addition of two numbers:

1For example, self-decryption is not behavior that we typically expect to see in benign code.
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1: int a = 10;

2: int b = 20;

3: int c = a + b;

Since statements 1 and 2, are independent, we can reorder the code as

2: int b = 20;

1: int a = 10;

3: int c = a + b;

Subroutine permutation is a particularly easy-to-implement version of instruc-
tion reordering. The Win32/Ghost is an example of a virus that uses subroutine
permutation [40].

2.2 Instruction Substitution

Replacing an instruction or group of instructions by a functionally equivalent in-
struction or group of instructions is an effective metamorphic technique [36]. For
example,

SUB EBX EBX

can be replaced by
AND EBX 0x0000

without any effect on program execution.
Register swapping is a weak form of instruction substitution. For example, POP

EAX can be replaced with POP EBX, provided the EBX register is not in use. The
previously mentioned Win95/Regswap virus relies entirely on register swapping for
its morphing [32].

2.3 Garbage Code Insertion

Morphed code can be created by inserting instructions that are executed, but have
no effect on the results [9]. Examples of such instructions include NOP and ADD EBX

0 and we sequences of instructions, such as INC followed by DEC can also be employed
Such “do nothing” instructions are the basis for the morphing in Win95/ZPerm [32].

In contrast to “do nothing code”, there is “dead code,” which is code that is never
executed. Dead code is particularly useful for obfuscating statistical properties [20,
30] Automatic detection and removal of dead code can be made arbitrarily difficult
by use of opaque predicates, for example [8].

3 Transcriptase

In biochemistry, a transcriptase is an enzyme that catalyzes the formation of ribonu-
cleic acid (RNA) from a deoxyribonucleic acid (DNA) template during transcrip-
tion [22]. The name Transcriptase was selected by the developer of the proof-of-
concept metamorphic JavaScript malware in [35], which we consider in this paper.
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The analogy between the biological process of transcriptase and this metamorphic
Javascript generator is fairly tenuous.

In this section, we provide an overview of the Transcriptase metamorphic gener-
ator. A somewhat more detailed discussion can be found in [15].

Transcriptase infects all JavaScript files in the folder where it is executed. Each
infection results in a morphed version of the malware being attached to the victim
code. The purpose of the morphing is to evade signature-based detection.

The Transcriptase generator uses a custom meta-language to carry out its mor-
phing. The meta-language code is compiled using a compiler written in JavaScript,
and the compiler itself is part of the malware body. The advantage of defining a
custom meta-language is that the malware writer can include information required
to create highly morphed versions, without having the code grow uncontrollably over
generations.

The format of instructions in Transcriptase is

(Identifier|Restrictions) meta-instruction

where Identifier and Restrictions are used for code obfuscation. Specifically, the
Identifier is the unique identification of a statement in the script and Restriction

is a list of statements that must be executed before the given statement. These meta-
instructions are compiled to create actual instructions in the script. The overall
morphing process consists of the following steps:

• Instruction Permutation

• Variable/Function Name Randomization

• Meta-language Symbol Resolution

• Code Creation

• Variable/Function Insertion

Next, we provide additional details on each of these steps.

3.1 Instruction Permutation

The Transcriptase compiler parses the meta-language code scope by scope, collecting
all information about instructions and their corresponding restrictions. It analyzes
the code in a given scope to determine an allowed permutation that does not violate
any dependencies. For example, consider the code

(100|)var a=1;

(200|)var b=0;

(300|)def c=1;

(400|200)c+1(b);

(500|400,100, 200)c+n(b,a);

(600|200)xWScript.Echo(b);

(1)
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Here, the first number is the identifier for the instruction, which is unique over the
entire code and any numbers appearing after the “|” indicate dependencies. In this
example, the assignment instruction 200 does not depend on any other instruction,
while the instruction in 400 depends on the value of b which implies that it depends
on instruction 200.

For the example in (1), the Transcriptase permutation function could produce the
code

(300|)def c=1;

(100|)var a=1;

(200|)var b=0;

(400|200)c+1(b);

(500|400,100)c+n(b,a);

(600|500)xWScript.Echo(b);

Note that we have only changed the order of independent instructions in this example.

3.2 Variable and Function Name Randomization

The Transcriptase compiler searches for keywords such as var, def, and function

and replaces the names with random strings. For example, given the code

function makeSquare (number){return number*number;}
var num = 1;

def sqr = makeSquare(num);

(2)

the names are makeSquare, number, num and sqr. The compiler will generate random
strings and map each string to one variable name and replace it within the current
scope. After that, it will search for the same variable name in upper scopes until
the global scope is reached. For the example in (2), the new form of code will be
something like

function pkjuoledrbnx(qerdslds){return qerdslds*qerdslds;}
var hxedlkerd = 1;

def cadwkgd = pkjuoledrbnx(hxedlkerd);

3.3 Meta-Language Symbol Resolution

After permuting instructions and completing the name randomization, the Transcrip-
tase compiler parses the meta-language code, translating meta-language symbols into
valid JavaScript statements for statements. While deriving a JavaScript instruction,
several meta-language symbols may be processed, each having a special meaning. The
Transcriptase compiler interprets these symbols at runtime and generates appropriate
javascript literals.

For example, consider the Transcriptase meta-language code

var number = #n1n#;

var str = #"Hello World"#;

var exp = #xntruenx#;
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Here, #nyyyn# is interpreted to mean that the value at position yyy is a numerical
value, while #"yyy"# is interpreted to mean that the value at position yyy is a string
value. Furthermore, #xnyyynx# is interpreted to mean that the value at yyy is a
JavaScript literal, such as true or false. In all of these cases, n can be any integer.
At this step, each symbol is replaced with a corresponding valid JavaScript language
literal.

3.4 Variable and Function Insertion

During compilation, many variables and functions are defined. These are not yet
inserted into code, but are instead collected in arrays. Only at the end of the code
derivation are they actually inserted into the code. Consequently, additional dead
code functions can be inserted between any two instructions in the global scope and
dead code variables can be inserted between any two instructions in the current scope
before they are used for the first time. This insertion process takes some time since
the whole code has to be scanned several times to find potential insertion positions.

The random functions generated by Transcriptase perform arithmetic calculations
and return integer values between 0 to 255. These values are then used to represent
ASCII values of characters to derive strings.

4 Rhino

In 1997, Netscape began work on a project to develop a version of Netscape Navigator
completely written in Java. As part of this effort, they developed a JavaScript en-
gine, named the Rhino Project, which was also written in Java [25]. Rhino compiles
JavaScript into Java classes and can operate in two modes—compiled or interpreted
mode. In compiled mode, Rhino first compiles JavaScript and then converts it into
Java bytecode. Then this bytecode can be run as a Java program. This process
improves the execution time of JavaScript.

4.1 Architecture

The Rhino JavaScript engine consists of four basic building blocks, namely, parser,
bytecode generator, interpreter, and the Just-in-Time (JIT) compiler. The JavaScript
source code is first fed to the parser which converts the code into an Abstract Syntax
Tree (AST). This AST is fed to the bytecode generator which produces the bytecode.
The resulting bytecode is read by the Rhino interpreter, which converts it into ma-
chine code, with the help of the JIT. Finally, the machine code is executed [25]. A
block diagram of the Rhino JavaScript engine is given in Figure 1.

More details on each of the components of the Rhino JavaScript engine can be
found in [25] and the report [21]. Next, we briefly discuss modifications that we made
to Rhino to facilitate the research presented in this paper.
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4.2 Modification

We use Rhino as a tool to extract bytecodes from JavaScript. We then use the
bytecodes in a variety of detection techniques. However, it was necessary to modify
Rhino so that we could easily and efficiently extract the bytecodes.

As latency in compiling JavaScript directly affects the page load time, Rhino only
compiles small JavaScript files. Also, there are different levels of optimization and we
found that optimization can significantly transform the statistical properties which
are important in our analyses. To deal with these issues, we modified Rhino so that
it compiles JavaScript of any length, and we disabled optimization. And, since we
are not interested in the class file, we directly extract bytecodes at compile time.

Figure 2 shows the output generated by unmodified Rhino after compilation. Note
that after compiling JavaScript, we find a new class file generated in the same folder.

As with the unmodified Rhino compiler, our modified Rhino compiler also gener-
ates a class file. But, in addition to the class file, we also obtain a list of bytecodes.
The list of bytecodes for the program compiled in Figure 2 appears in Figure 3. It
is this list of opcodes that forms the basis for several of the scores that we consider
later in this paper.

5 Detection Techniques

In this section, we summarize four statistical-based malware detection techniques ,
each of which has been previously analyzed in the context of metamorphic detection.
In Sections 6 and 7, we apply these same techniques to the Transcriptase metamorphic
JavaScript malware, and an enhanced version of Transcriptase, respectively.

5.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a machine learning technique that was originally
applied to the problem of metamorphic detection in [37]. In many subsequent studies,
this HMM technique has been further analyzed, and it has often served as a baseline
for comparison of proposed detection strategies [3, 4, 6, 12, 19, 26, 34].

In [11] and [20], the problem of defeating HMM-based detectors is considered.
In [30], a fully functioning experimental metamorphic worm that can defeat HMM
detection is developed and analyzed. We apply some of these same ideas to develop
an enhanced version of Transcriptase that is more resistant to statistical detection
techniques, such as HMMs.

A Markov chain consists of a series of state transitions, where the state transition
probabilities are fixed. An HMM is a Markov chain where the state transitions are
not directly observable. Instead, we have a series of observations that are statistically
related to the “hidden” states via fixed probability distributions. We use the following
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typical notation [31] to describe an HMM:

T = length of the observation sequence
N = number of states in the model
M = number of observation symbols
Q = {q0, q1, . . . , qN−1} = distinct states of the Markov process
V = {0, 1, . . . ,M − 1} = set of possible observations
A = state transition probabilities
B = observation probability matrix
π = initial state distribution
O = (O0,O1, . . . ,OT−1) = observation sequence.

A generic view of an HMM is given in Figure 4, where the area above the dashed
line is the hidden part. Note that the A matrix drives the (hidden) Markov process,
while the B matrix relates the observations to the hidden states.

In an HMM, the matrices A, B, and π are row-stochastic, that is each row sat-
isfies the conditions required of a discrete probability distribution. Together, these
matrices define a model and we use the notation λ = (A,B, π) to denote an HMM.
The practical utility of HMMs derives largely from the fact that there are efficient
algorithms for training (i.e., determining a suitable model λ = (A,B, π) from a given
series of observations) and scoring (i.e., determining P (O |λ)).

In [37], HMMs are successfully applied to the metamorphic malware detection
problem. An HMM is trained on opcode sequences extracted from a members of
a given metamorphic family. The resulting model is then able to distinguish the
metamorphic family from benign code with high accuracy.

Here, we use a similar approach to analyze the metamorphic JavaScript generator
Transcriptase. As discussed in Section 4, we used our modified Rhino compiler to
extract Java bytecodes from a number of members of the Transcriptase family An
HMM was then trained on the resulting series of bytecodes, and the resulting HMM
was used to score other members of the Transcriptase family and representative ex-
amples of benign JavaScript. Scores are computed as a log likelihood, and all scores
are normalized to a per opcode basis. The resulting log likelihood per opcode (LLPO)
score results are analyzed in detailed in Sections 6 and 7.

5.2 Opcode Graph Similarity

Anderson [1] describes a graph-based method for malware detection. In this method,
an opcode sequence is extracted from a given malware and a weighted directed graph
is constructed based on this sequence. Given a file to score, its opcode graph is also
constructed and the graphs are compared. A simplified version of this score is con-
sidered in [26], where good results are obtained on several challenging metamorphic
detection problems.

The same opcode graphs are used in [26] as in [1], but the scoring is simplified.
Whereas Anderson [1] uses a relatively complex graph kernel analysis, in [26] the
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graphs are directly compared using their adjacency matrices. Next, we discuss the
process used to construct these opcode graphs, and the scoring technique used in [26].

The opcode graph is based on digraph frequencies in the extracted opcode se-
quence. A weighted directed graph is constructed, where nodes is added for each
distinct opcode that appears. For each transition between opcode pairs, a directed
edge is added, and edge weights are simply the transition probabilities.

For example, suppose we extract the opcode sequence in Table 1 from a given
executable file. In this example, we obtain a sequence of 30 opcodes, with 8 distinct
opcodes, namely,

MOV, SUB, TEST, CALL, ADD, PUSH, AND, and LEA.

Table 1: Opcode Sequence

Number Opcode Number Opcode
1 MOV 16 AND

2 SUB 17 PUSH

3 TEST 18 PUSH

4 CALL 19 MOV

5 SUB 20 CALL

6 ADD 21 CALL

7 PUSH 22 MOV

8 PUSH 23 SUB

9 AND 24 MOV

10 AND 25 SUB

11 AND 26 MOV

12 CALL 27 SUB

13 LEA 28 MOV

14 LEA 29 SUB

15 ADD 30 SUB

The digraph distribution for the opcode sequence in Table 1 is given in Table 2.
For this example, we have an opcode graph with 8 nodes, and for every non-zero entry
in Table 2, we have a directed edge in the graph. For example, we have a directed
edge from TEST to CALL and a directed edge from AND to ADD, but there is no directed
edge from CALL to TEST or from MOV to MOV.

In Table 3 we have normalized the raw counts in Table 2. These numbers are
used as the edge weights on the opcode graph. For example, the weight on the edge
connecting MOV to SUB is 5/6, while the weight on the edge from AND to ADD is 1.

Suppose thatA = {aij} is the edge weight matrix for one executable file, whileB =
{bij} is the edge weight matrix from another executable file. Then we compute the
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Table 2: Digram Count Matrix

MOV SUB TEST CALL ADD PUSH AND LEA

MOV 0 5 0 1 0 0 0 0
SUB 3 1 1 0 1 0 0 0
TEST 0 0 0 1 0 0 0 0
CALL 1 1 0 1 0 0 0 1
ADD 0 0 0 1 1 1 0 0
PUSH 1 0 0 0 0 3 1 1
AND 0 0 0 0 1 0 0 0
LEA 0 0 0 0 1 0 0 1

Table 3: Digram Probability Matrix

MOV SUB TEST CALL ADD PUSH AND LEA

MOV 0 5
6

0 1
6

0 0 0 0

SUB 3
7

1
7

1
7

0 1
7

0 0 0

TEST 0 0 0 1 0 0 0 0

CALL 1
4

1
4

0 1
4

0 0 0 1
4

ADD 0 0 0 1
3

1
3

1
3

0 0

PUSH 1
6

0 0 0 0 3
6

1
6

1
6

AND 0 0 0 0 1 0 0 0

LEA 0 0 0 0 1
2

0 0 1
2

opcode graph similarity score as [26]

score =
1

N2

(
N−1∑
i,j=0

|ai,j − bi,j |

)2

where N is the number of unique opcodes (or bytecodes) under consideration.
To be consistent with the paper [26], throughout this paper, we refer to this

scoring process as an opcode graph similarity score. However, in subsequent sections
we deal with bytecodes, so it would be more precise to call it a bytecode similarity
score.

5.3 Simple Substitution Distance

Jakobsen [16] proposed a fast general algorithm for ciphertext-only attack on a simple
substitution cipher. In [27], Jakobsen’s algorithm was successfully applied to the
problem of metamorphic detection. Jakobsen’s algorithm decrypts a given ciphertext
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message, relative to the language statistics. In the process, we obtain a measures of
the distance between the underlying language statistics and the statistics of the given
ciphertext.

For the metamorphic detection problem, the digraph statistics for a given meta-
morphic family correspond to the language statistics Jakobsen’s attack, while the
given file that we want to score corresponds to the ciphertext. Although the file we
are scoring is not encrypted, it is obfuscated, and the simple substitution can be
viewed as a form of obfuscation.

Next, we briefly discuss Jakobsen’s algorithm, where we assume the underlying
language is English, where only the 26 upper-case letters are used. Then we explain
how to apply the algorithm to the malware detection problem.

Since we assume the language is English, the simple substitution key can be viewed
as permutation on the alphabet, which we denote as

K = (k1, k2, k3, . . . , k26)

with each ki corresponding to a distinct letter. The overall process is a hill climb,
were at each iteration, the putative key K is modified by swapping a pair of elements.
If the score improves, we maintain the swap; if not we revert to the pre-swap key.
The swapping schedule proceeds as

round 1: k1|k2 k2|k3 k3|k4 . . . k23|k24 k24|k25 k25|k26
round 2: k1|k3 k2|k4 k3|k5 . . . k23|k25 k24|k26
round 3: k1|k4 k2|k5 k3|k6 . . . k23|k26

...
... . .

.

round 24: k1|k24 k2|k25 k3|k26
round 25: k1|k25 k2|k26
round 26: k1|k26

where “—” indicates “swap.” Also, we start over from the beginning of the swapping
schedule each time the score improves, and hence we are done when we complete the
listed

(
26
2

)
swaps listed without any improvement in the score.

Let E = {eij} be the digraph statistic matrix for English. That is, eij is the
probability of letter i being followed by letter j in a large representative sample of
English text. For example, the probability of QS is 0, while TH is the most common
digraph in English.

Similarly, let D = {dij} be the digraph matrix for a putative decryption of the
ciphertext under consideration. Then the score used in Jakobsen’s algorithm is

score(K) =

26∑
i,j=1

|dij − eij |. (3)

Using normalized probabilities in E and D, we obtain a score that is independent of
the ciphertext length.
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Jakobsen’s algorithm is extremely efficient since swapping elements ki and kj in the
putative key corresponds to swapping rows i and j in theD matrix [16]. Consequently,
we do not need to perform multiple trial decryptions—instead, we simply swap the
appropriate row and column of D and compute the score in (3). Ironically, the overall
algorithm is generally faster for longer ciphertext messages, since the scores are better
and hence fewer swaps are required in the hill climb [13]. This is in stark contrast to
the näıve method, which requires a trial decryption for each putative key tested.

The modifications needed to apply Jakobsen’s algorithm to the metamorphic de-
tection problem are straightforward. We gather opcode digraph statistics from a
large set of family viruses and use these to form the analog of the E matrix. Then
given a file to score, we extract its opcode digraph statistics which yields the analog
of the D matrix. To score the file, we apply Jakobsen’s algorithm with the score (3)
for the final iteration being the score for the file. The lower the score, the better
the file matches the statistics of the malware family. The intuition is that the simple
substitution decryption process enables us to easily “see through” certain types of
obfuscations.

A detailed example and analytic results can be found in [27]. The results show
some improvement over HMM scores for certain challenging metamorphic families.

5.4 Singular Value Decomposition

Principle Component Analysis (PCA) consists of using linear algebraic techniques
to reveal structure. The following simple analogy might serve to give the general
idea [28]. Suppose that to explore a town in the American west, we apply the following
algorithm:

1. Drive down the longest street in town.

2. When we see another long street, drive down it.

3. Continue until we have a reasonable map of the town.

It is likely that after exploring a relatively small number of these main streets, we will
have a good idea of the general layout of the town. In PCA, the principle components
correspond (roughly) to these long streets, and the process we use to find the principle
components is somewhat analogous (with a few significant restrictions) to the process
of looking for the longest streets. Below, we refer back to this analogy when discussing
the SVD process.

There are many methods for computing the principle components, but perhaps
the most popular is the Singular Value Decomposition (SVD). Recent work has shown
that PCA is effective for metamorphic detection [12], with SVD specifically analyzed
in [17]. Although the mathematics is fairly involved, and the training phase somewhat
costly, the real beauty of PCA is that scoring is generally extremely efficient and often
highly effective.

A detailed treatment of PCA would take us too far afield, and hence we only
provide a brief overview, with the focus on SVD and its application to metamorphic
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detection; see the recent paper [17] for a thorough treatment and analysis.
Let Am×n be a matrix where column i is a set of m measurements for experiment i.

That is, we have m measurements for each of n experiments, and we collect the results
in the form of the matrix A. Then, assuming the mean of each measurement type
is 0,

Cm×m =
1

n
AAT

is the covariance matrix. The diagonal elements of C are the variances for each
measurement type, while the off-diagonal elements are the covariances between mea-
surement types. Generally, large variances are the most interesting, since they indi-
cate the most informative “directions” in the data. Furthermore, in the ideal case,
all covariances are 0, since nonzero covariance indicates redundancy—the larger the
magnitude of the covariance, the greater the redundancy. Consequently, the ideal
case is a diagonal covariance matrix C, with a few large elements on the diagonal.

Of course, we have no control over C, since it is derived from our experimental
data. But, by diagonalizing C, we can reveal structure that is otherwise “hidden”
in the data. While there are many techniques for diagonalizing matrices, the SVD
approach has certain advantages.

Let Y be an n ×m matrix. Under suitable assumptions on Y , the SVD decom-
poses Y as

Y = USV T

where S is a diagonal matrix containing the (square roots of) eigenvalues, and U
and V contain the left and right singular vectors, respectively. The left singular
vectors are the eigenvectors of Y Y T and the right singular vectors are the eigenvectors
of Y TY . Note that Y Y T is an n×nmatrix, while Y TY ism×m. The point here is that
the SVD to determine the eigenvalues and eigenvectors of the covariance matrix C.
Since we have diagonalized the matrix in the process, and the eigenvalues appear
on the diagonal, the largest eigenvalues reveal the most interesting “directions” in
the data. The eigenvectors corresponding to the large eigenvalues reveal the most
interesting structure. In the analogy mentioned above, these eigenvectors correspond
to the main roads that we explored.

The action of a 2-dimensional shear matrix and its decomposition using SVD is
illustrated in Figure 5. Shear transformations have a wide variety of uses, such as
converting a letter in standard font to its italic or slanted form. This is a particularly
simple example, but it does show that the SVD has a fairly intuitive physically
interpretation.

Given any vector of the appropriate dimension, we can project it onto the space
defined by the dominant eigenvectors. By doing so, we obtain a score that measures
how well the vector matches the dominant structure of the covariance matrix. In fact,
this score computation is generally extremely efficient, only requiring a small number
of dot product computations.

To use the SVD for metamorphic detection, we proceed as follows. First, we
extract the .text sections from n members of a given metamorphic family. Let m
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be the maximum number of bytes in any of these .text sections and pad all others
with 0, so that all are of length m. This is the training set. Next, we summarize
training and scoring.

Training:

1. Let V1, V2, . . . , Vn be the (padded) .text sections from the n family viruses in
the training set.

2. Treating each byte as floating point number, form the m× n matrix

A = [V1, V2, . . . , Vn]

that is, Vi is the ith column of A.

3. Use the SVD to determine the eigenvalues and eigenvectors of the covariance
matrix C = 1

n AA
T .

4. Let u1, u2, . . . , u` be the eigenvectors corresponding to the ` dominant eigenval-
ues of C.

5. Project each Vi in the training set onto the space spanned by the eigenvec-
tors e1, e2, . . . , e`. That is, compute

Ωi =


Vi · u1
Vi · u2
...

Vi · u`

 . (4)

6. Define the scoring matrix

∆ = [Ω1,Ω2, . . . ,Ωn]

that is, column i of ∆ is the weight vector corresponding to element Vi in the
training set.

Next, we show how to use the scoring matrix ∆ to score a given file.

Scoring:

1. Let X be the .text section of a file to score, padded with 0 to length m, if
necessary.

2. Project X onto the eigenspace defined by u1, u2, . . . , u`, that is, compute

W =


w1

w2

...
w`

 =


X · u1
X · u2
...

X · u`

 . (5)
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3. The desired score is computed as

score = min
i
d(W,Ωi)

where d(x, y) is the Euclidean distance between the vectors x and y.

Suppose that we score a vector from the training set, that is, X = Vi for some i.
Then we obtain an exact match with Ωi, and hence the score is 0. Conversely, for a
vector that differs greatly from the training set, we expect to obtain a large score.

Finally, we note that the explanation here glosses over some subtle points and
omits a few important practical issues. For a more complete description of this
training and scoring process, see [17].

6 Transcriptase Experiments

In this section, we first discuss our experimental setup. Then we present detection
results for the Transcriptase metamorphic family using each of the scores covered in
Section 5, namely, Hidden Markov Models, opcode graph similarity, simple substitu-
tion distance, and Principle Component Analysis using SVD.

We extract a bytecode sequence from each Transcriptase malware using our mod-
ified Rhino JavaScript engine. The modification we made to Rhino are discussed in
Section 4.2.

We performed all experiments on a machine with the following configuration.

• Model — Lenovo ThinkPad T530

• Processor — Intel Core i7-3110M @2.80GHz

• RAM — 8.00GB

• Java Compiler — Java 6

• Operating System — Ubuntu 12.10 (64-bit)

Each instance of Transcriptase carries its own morphing engine and the malware is
highly metamorphic. For all experiments in this section, we used the same set of 100
distinct copies of Transcriptase. For our representative samples of benign code, we
collected files from a variety of open source JavaScript libraries. The specific sources
and number of files from each are given in Table 4.

To quantify the success of each experiment, we generate a Receiver Operating
Characteristic (ROC) curve and compute the area under the curve (AUC). An ROC
curve is a graph of the true positive rate versus the false positive rate as the threshold
varies through the range of scores [7]. The AUC can be interpreted as the probability
that a randomly selected positive instance scores higher than a randomly selected
negative instance. This measure has been used in many previous studies and thus
allows for a direct comparison to the results presented here.
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Table 4: Benign JavaScript Sources

Source Files
Cassandra Project [2] 5
DataTables Library [10] 10
Flanagan’s book [14] 5
jQuery [18] 5
YUI Library [39] 15
total 40

6.1 HMM Score

Preliminary tests indicated that the number of hidden states had little effect on our
results. Therefore, in all HMM experiment reported in this paper, we use N = 2
hidden states. We generated 100 copies of Transcriptase and extracted the bytecode
sequence from each. We used 5-fold cross validation, that is, the set of 100 samples
was partitioned into 5 equal subsets. We then trained on the first 4 subsets and used
the resulting model to score the remaining subset. Another 4 models were trained,
with a different subset reserved for scoring each time. In this way, we obtain a score
for each of the 100 files in the training set, but we never score an instance that was
used for training a given model. This process enables use to maximize the number of
scores computed, while also smoothing out any bias in the data.

For the HMM score, a typical scatterplot appears in Figure 6. In this case, we
have clear separation between the Transcriptase scores and the benign scores.

In fact, for all test cases considered we had similar separation between the Tran-
scriptase malware scores and the benign scores. That is, we could set a threshold
such that no false positives or false negatives would occur. Such cases generate the
ROC curve in Figure 7, which yields an AUC of 1.0. From the detection perspective,
this is the best possible case.

6.2 Opcode Graph, Simple Substitution, and SVD Scores

As with the HMM score, for all of the remaining scores tested (opcode graph sim-
ilarity, simple substitution distance, SVD score), we also obtained ideal separation,
resulting in ROC curves yielding AUC of 1.0. For the sake of brevity, we omit the
graphs; see [21] for additional score graphs.

6.3 Discussion

The results in this section show that we can easily distinguish the Transcriptase
malware from benign JavaScript. The HMM, opcode graph, and simple substitu-
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tion scores are statistical in nature. The results for these scores indicate that the
distribution of bytecodes in the disassembled Transcriptase malware is significantly
different from that in typical benign JavaScript. On the other hand, the SVD score
is structural in nature. The results for the SVD score show that the structure of the
Transcriptase infected files also differ significantly from benign JavaScript. Although
Transcriptase is highly metamorphic, the resulting family, as a group, is simply too
different from benign code, making it relatively easy to detect.

In the next section, we try to remedy this situation. That is, we want to build
on the impressive morphing capabilities of Transcriptase, by including features that
will make the resulting code stealthier. This enhanced Transcriptase code has much
more in common with the benign code—and thus it should be far more difficult to
distinguish—as compared to the original Transcriptase. We perform a series of tests
for each of the scores considered in this chapter to determine the effectiveness of our
new-and-improved, stealthier version of Transcriptase.

7 Enhanced Transcriptase

From the analysis in Section 6 it is clear that we can easily detect Transcriptase with
any of the four scoring methods tested. However, previous work has shown that we
can defeat statistical-based scoring methods by carefully inserting dead code [30]. In
this section, we discuss a modified version of the Transcriptase generator that allows
for the insertion of selected amounts of JavaScript dead code, with the dead code
taken from benign JavaScript. The goal is to take advantage of the sophisticated
morphing capabilities available in Transcriptase, while making the resulting morphed
code highly resistant to statistical-based detection. We test the resulting enhanced
malware using the same scores used in the previous section, namely, HMM, opcode
graph similarity, simple substitution distance, and SVD scores.

Our enhancement to Transcriptase operates as follows. We have created a service
that runs continuously on a central server. Whenever Transcriptase is executed, it
creates a connection with this central server. A number n is passed to the service,
which then extracts n JavaScript functions from benign code, and these are sent
to the malware. The malware then inserts these functions (as dead code) into its
body. By adding dead code, the functionality remains the same, but the statistical
characteristics of the bytecode sequences will tend to merge with that of benign
code. Previous work has shown that such an approach can defeat statistical detection
techniques [20, 30]. Therefore, we expect that at some level of dead code insertion,
detection rates for our enhanced Transcriptase malware will deteriorate significantly.
We would like to quantify the amount of dead code insertion versus scoring success
for each of the scores under consideration. By quantifying the degree of morphing
required, we can determine the practicality of this morphing strategy, and we can
measure the relative robustness of each score with respect to the morphing techniques
we have employed.

Due to the large number of experiments considered in this section, we omit scatter-
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plots and ROC curves—we only provide the AUC statistic, as discussed in Section 6.
Additional related results and graphs can be found in the report [21].

7.1 Score Results

As in the previous section, all experiments here are based on 100 malware instances,
with the same 40 files used in our previous experiments as our representative benign
code; see Table 4.

For each score, we conducted a series of experiments where each malware sample
has additional dead code inserted, in the form of JavaScript functions selected from
the set of benign files. In Table 5 we give the AUC for each of 30 different experi-
ments for each of the 4 scores under consideration, where we have used the following
abbreviations.

• HMM — HMM-based score, as discussed in Section 5.1.

• OGS — Opcode graph similarity score from Section 5.2.

• SSD — Simple substitution distance score in Section 5.3.

• SVD — The SVD-based score discussed in Section 5.4.

The individual AUC scores in Table 5 are graphed in Figure 8. For ease of
comparison, the AUC values are plotted on the same axis in Figure 9.

Note that some of the AUC values in Table 5 are significantly less than 0.5. In
general, if a binary classifier yields an AUC of p, we can simply switch the classifica-
tion criteria to obtain an AUC of 1− p. In our experiments, we add dead code from
benign code. The goal of inserting such code is to cause the properties of the mor-
phed malware to merge with those of the benign code, making the morphed malware
more difficult to detect. However, since we are extracting dead code from multiple,
unrelated sources, for sufficiently high morphing rates it is possible for a particular
score to yield an AUC of less than 0.5. More precisely, the scores tend to merge
(i.e., the AUC approaches 0.5) at which point additional dead code can move the
morphed malware scores beyond those for the benign set. This process is illustrated
in Figure 10. In this example, the malware scores have essentially merged with the
benign scores by the point where 10k dead code functions are inserted. Morphing
significantly beyond this level causes the typical malware score to be greater than
that of the typical benign score. The bottom line is that AUC values of less than 0.5
should be ignored, since it would be counterproductive (from the malware writer’s
perspective) to morph beyond the point where the AUC is 0.5.

The results in Table 5 are given in terms of the number of dead code functions
inserted. In Figure 11, we graph the approximate percentage of dead code inserted
relative to the number of functions. On average, each deadcode function contains
about 0.85% of the code of the original Transcriptase malware. Note that this number
is an (approximate) average, since the dead code functions are selected at random
when morphing.
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Table 5: Results for Modified Transcriptase

Deadcode AUC Statistic
Functions HMM SSD OGS SVD

100 1 1 1 0.8975
200 1 1 1 0.8872
300 1 1 1 0.8905
400 1 1 1 0.8848
500 1 1 1 0.8784
600 1 1 1 0.8671
700 1 1 1 0.8490
800 1 1 1 0.8366
900 1 1 1 0.8305

1000 1 1 1 0.8314
1500 1 1 1 0.8112
2000 1 1 1 0.7769
3000 1 1 1 0.7085
4000 1 1 1 0.6712
5000 0.9986 1 1 0.600
6000 0.9952 1 1 0.5651
7000 0.9803 1 1 0.5465
8000 0.9692 1 1 0.5263
9000 0.9653 1 1 0.4979

10000 0.9629 1 1 0.4723
11000 0.9544 0.9613 1 0.4544
12000 0.9471 0.9240 1 0.4364
13000 0.9339 0.7880 1 0.4138
14000 0.9330 0.1947 0.9999 0.3926
15000 0.9276 0.1707 0.9997 0.3817
16000 0.9185 0.1183 0.9997 0.3764
17000 0.9083 0.2583 0.9995 0.3658
18000 0.8985 0.3367 0.9991 0.3568
19000 0.8856 0.2400 0.9989 0.3427
20000 0.8693 0.1583 0.9987 0.3276

7.2 Discussion

The results in Table 5 show that our morphing has the greatest effect on the SVD
score—at relatively low morphing rates the score has significant numbers of misclassi-
fications. The simple substitution score also fails badly, but only at rates of morphing
well in excess of 100%. The HMM score is relatively robust, yielding reasonable de-
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tection rates beyond 150% morphing rates. The opcode graph similarity score clearly
yields the strongest results, with virtually no degradation at the highest morphing
rates tested.

The results in this section are broadly consistent with previous work on meta-
morphic detection [17, 26, 27, 37]. However, the opcode graph similarity scores are
stronger than we would have expected. In addition, the relatively large variation
between the first three scores (HMM, simple substitution, opcode graph similarity)
is somewhat surprising.

The statistical nature of the HMM causes it to slowly degrade as the overall
statistics of the malware and benign code merge. In contrast, the simple substitu-
tion score reaches a tipping point where “decryption” simply fails as the statistics
merge. We believe that the (initially) surprising result for the opcode graph similarity
score is largely explained by the presence of a relatively small number of uncommon
bytecodes (with respect to the benign code) that appear in Transcriptase. The di-
graph weighting scheme used in the opcode graph score does not account for overall
frequencies—only the relative frequencies at a given node are used when computing
edge weights. Hence, rare bytecodes can continue to have a large effect on the score
even after the overall bytecode statistics of the malware have converged toward that
of the benign code. Selective code substitution would likely be an effective means for
Transcriptase to defeat this particular score.

8 Conclusion and Future Work

In this paper, we analyzed Transcriptase, a metamorphic JavaScript malware. We
experimented with several scoring methods that have previously been studied in the
context of metamorphic detection and found that all were able to successfully detect
this malware.

We then modified Transcriptase to make it stealthier. Our modified version was
able to defeat most of the scoring techniques considered, Specifically, the SSD and
SVD based scores were easily defeated, whereas the HMM score deteriorated, al-
though much more slowly (as a function of the morphing percentage). In contrast,
the OGS score continued to perform well, even at very high morphing rates. This
work shows that it is possible to produce metamorphic JavaScript that is difficult to
detect based on the Transcriptase generator.

Future work could include further enhancements to Transcriptase. For example, it
should not be too difficult to incorporate morphing strategies that can defeat the OGS
score. As another example, techniques such as those in [8] could be used to make the
obfuscated code difficult to detect and remove. At a higher level, Transcriptase uses
a custom designed meta-language to carry JavaScript. In its current implementation,
there is a one-to-one static mapping between meta-language symbols and JavaScript
literals. This static mapping could be made dynamic, so that in each new infection,
the meta-language code will also change. In a sense, this would convert the current
Transcriptase metamorphic generator into a meta-metamorphic generator. Although
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not trivial to implement, such a modification might significantly reduce the degree of
morphing required to evade detection.

Future work can also include developing a browser plugin to detect metamorphic
(and related) JavaScript malware. As JavaScript malware executes in browsers and
the JavaScript engine is a part of the browser, the modified Rhino compiler described
in this paper can be used to develop a browser plugin that can analyze JavaScript at
page load time. In this way, the work presented in this paper could be extended to
provide dynamic runtime protection against many types of potential malware infec-
tions via the browser.
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Figure 1: Rhino Block Diagram

Figure 2: Sample Compilation Without Modification
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Figure 3: Sample Compilation With Modification
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Figure 5: Matrix Transformation Using SVD
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Figure 7: ROC Curve for HMM Score
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Figure 10: Scatterplots as Morphing Rate Increases
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