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Abstract: Gait analysis, defined as the study of human locomotion, can provide valuable information for low-cost an-
alytic and classification applications in security, medical diagnostics, and biomechanics. In comparison to
visual-based gait analysis, audio-based gait analysis offers robustness to clothing variations, visibility issues,
and angle complications. Current acoustic techniques rely on frequency-based features that are sensitive to
changes in footwear and floor surfaces. In this research, we consider an approach to surface-independent
acoustic gait analysis based on time differences between consecutive steps. We employ support vector ma-
chines (SVMs) for classification. Our approach achieves good classification rates with high discriminative
one-vs-all capabilities and we believe that our technique provides a promising avenue for future development.

1 Introduction

Biometrics—the analysis of human physiological
and behavioral characteristics—has become a leading
method of person identification, verification, and clas-
sification. Image-based biometric techniques include
iris, face, and fingerprint analysis. These typically ne-
cessitate subject cooperation and a highly controlled
environment. For example, current fingerprinting and
hand geometry systems often require a specific place-
ment or orientation of the finger or hand, while facial
recognition algorithms can be complicated by non-
frontal facial images and uncooperative subjects. One
biometric that addresses many of these limitations is
human gait, a person’s manner of walking. Gait anal-
ysis is the systematic study of human walking, which
can be defined as the method of body locomotion for
support and propulsion (Whittle, 2014). In compari-
son to most other biometrics, gait analysis is less in-
trusive, and allows for passive monitoring.

Previous work has demonstrated that people can
recognize subjects by observing illuminated moving
joints (Johansson, 1973), and research has also shown
that people are able to reliably identify co-workers
by listening to their footstep sounds (Makela et al.,
2003). Human gait analysis has also been applied to
problems in medical diagnosis (Murray, 1967).

The majority of current gait analysis techniques
are applied in the visual domain—the field of visual
gait recognition has been an active area of research for
at least the past 15 years (Lee, 2002). Although there

has been significantly less focus on acoustic-based
gait recognition, information from gait audio has been
shown to be useful as well. Audio-based research
has yielded promising results using frequency anal-
ysis of both footstep sounds and those produced by
clothing movement and contact (Geiger et al., 2014).
However, one issue that arises with frequency-related
data is sensitivity to contact surfaces, as variations in
footwear, clothing, floor surfaces, etc., produce dif-
ferent sounds that may adversely affect classification
rates. Time-domain analysis would appears to be
a promising avenue of research that could mitigate
some of these issues. In this research, we consider
temporal acoustic analysis for gait recognition.

Although gait information alone might not be
sufficient to distinguish each individual in a large
database, gait analysis could still be advantageous for
low-cost pre-screening. Such technologies could be
used, for example, as part of an anomaly detection
system in a smart home, for access control in high-
security buildings, and for surveillance in indoor en-
vironments. Our audio-based system can easily be
combined with existing techniques for a multimodal
gait recognition system.

Compared to visual systems, acoustic techniques
are not sensitive to changes in illumination, visibility,
and walking angle. The time-based features we ana-
lyze are also likely to be more robust with respect to
changes in clothing, footwear, and floor surface. In
addition, acoustic analysis requires only inexpensive
sensors with minimal sensor density.



Our gait analysis method is also relevant in clin-
ical and biomechanical applications. The fields of
gait and human movement sciences have proven use-
ful in the analysis, diagnosis, and treatment of vari-
ous afflictions (Lai et al., 2009). For example, gait
analysis has been applied to the diagnosis of cere-
bral palsy (Kamruzzaman and Begg, 2006) and age-
related issues (Begg and Kamruzzaman, 2005; Begg
et al., 2005). With minor modification, our technique
has the potential for application in such domains.

The organization of the remainder of this paper
is as follows. In Section 2, we provide background
information, including a brief survey of relevant lit-
erature in gait and audio analysis. In Section 3, we
outline our methodology and in Section 4 we present
experimental results. We conclude the paper in Sec-
tion 5 and provide suggestions for future work.

2 Related Work

Gait has generally been interpreted as a visual
phenomenon, necessitating that the person be seen
to be recognized or classified. Not surprisingly, the
bulk of research in gait analysis has been visual-
based, relying on video or image data. In authen-
tication applications, gait analysis typically involves
side-view silhouette features from the spatiotemporal
domain (Wang et al., 2003). A variety of data anal-
ysis techniques have been employed, such as hidden
Markov models on sequences of feature vectors cor-
responding to different postures (Kale et al., 2002;
Sundaresan et al., 2003). In another comprehensive
study (Man and Bhanu, 2006), a spatiotemporal “gait
energy image” forms the basis for gait analysis. A
review of human motion analysis in the field of com-
puter vision appears in (Aggarwal and Cai, 1997).

Gait recognition methods that do not involve
video or audio information include Doppler tech-
niques (Kalgaonkar and Raj, 2007; Otero, 2005;
Tahmoush and Silvious, 2009), floor pressure sen-
sors (Qian et al., 2008; Middleton et al., 2005),
and smartphone accelerometers (Sprager and Zazula,
2009; Nishiguchi et al., 2012; Mantyjarvi et al.,
2005). In medical applications, many gait analysis
techniques are also inherently image-based, relying
on features derived from kinetics and kinematics (Ag-
garwal and Cai, 1997), such as hip and pelvis accel-
eration (Aminian et al., 2002). A survey of computa-
tional intelligence in gait research within the medical
field can be found in (Lai et al., 2009).

An alternative approach to gait analysis is to cap-
ture the sounds of walking, that is, acoustic gait anal-
ysis. Current approaches typically treat the task as

an instance of the more general problem of sound
recognition, which is related to automatic speech
recognition and speaker identification. Current gen-
eral purpose speech recognition systems often ap-
ply hidden Markov models (HMMs) and other sta-
tistical techniques to n-dimensional real-valued vec-
tors consisting of coefficients extracted from words or
phonemes. Gaussian mixture models are commonly
used for text-independent verification (Bimbot et al.,
2004; Reynolds, 1995). Such models combine com-
putational feasibility with statistical robustness.

Similar methods have been extended to acoustic
gait recognition. Footstep detection and identification
techniques are presented in (She, 2004) and (Shoji
et al., 2004), respectively. In (Itai and Yasukawa,
2008), dynamic time warping and cepstral informa-
tion extracted from acoustic gait data is used for clas-
sification, while audio data recorded on a staircase—
for the purpose of recognizing home inhabitants—
is considered in (Alpert and Allen, 2010). A recent
study (Geiger et al., 2014) extracts mel-frequency
cepstral coefficients (MFCCs) as audio features and
uses HMMs with a cyclic topology for dynamic clas-
sification.

3 Methodology

The objective of this research is to consider a sim-
ple method for surface-independent audio based gait
analysis. To address surface-independence, we use
time domain analysis, as opposed to frequency anal-
ysis, which is likely to be much more vulnerable to
surface variations.

During a gait cycle, there are multiple distinct vi-
sual stances that a subject transitions through. In a
similar vein, it is likely that a subject’s gait patterns
varies in a way that affects the timing between con-
secutive footsteps. Therefore, we consider a sequence
of time intervals between successive steps, which rep-
resents a subject’s characteristic gait cadence. We
extract statistical data from this set to obtain feature
vectors based on footstep sound recordings. Given
numerous labeled feature vectors, we employ a su-
pervised learning technique for classification. Here,
we provide preliminary results for the effectiveness
of this approach, based on a small dataset.

Next, we describe the procedure by which we de-
termine our input features. Then we briefly discuss
support vector machines (SVM), which are used for
classification in this research.



3.1 Input Features

To measure audio gait characteristics, a microphone
is assumed to be in a static position on the floor,
and only one person’s footsteps are monitored at a
time.1 From the sound wave data, we detect foot-
step peaks as shown in Figure 1 and compile a se-
quence of times, denoted t1, t2, . . . , tn+1, at which a
particular individual’s footsteps are heard. Next, time
intervals between successive steps are calculated and
compiled into a second sequence xi = ti+1− ti, yield-
ing x1,x2, . . . ,xn. We will refer to the xi as the con-
secutive time interval (CTI) sequence, which repre-
sents time-based cadence and serves as the base for
our analysis. Not surprisingly, the CTI sequence of
each individual follows a (roughly) normal distribu-
tion, as can be seen in Figure 2.

Figure 1: Five peaks corresponding to footstep impact
sounds

Figure 2: Sample CTI distribution with error bars

From the CTI sequence, the four central moments
are calculated. That is, we compute each of the fol-
lowing.
• Mean — The center of the distribution will distin-

guish subjects that have shorter or longer strides
on average. The mean is computed as

µ =
1
n

n

∑
i=1

xi =
1
n

(
x1 + x2 + · · ·+ xn

)
1In a noisy environment, a higher density of micro-

phones would be needed, and additional pre-procession
(e.g., noise suppression) would also be required.

where the xi are the CTI sequence and n is the
length of this sequence.

• Standard deviation — The variance measures the
spread of the data about the mean and will reveal
the variability in stride times. The standard devi-
ation, which is the square root of the variance, is
computed as

σ =

√
∑

n
i=1(xi−µ)2

n−1

where µ is the mean of the CTI.

• Skewness — The symmetry of a distribution can
help to distinguish subjects who tend to slow
down or speed up. We compute the skew as

s =
∑

n
i=1(xi−µ)3

nσ3 (1)

where µ iand σ are the mean and standard devia-
tion of the CTI, respectively.

• Kurtosis — The flatness or peakedness provides
additional information about the tails of the CTI
distribution. We compute the kurtosis as

k =
∑

n
i=1(xi−µ)4

nσ4 . (2)

The intuition here is that each of these characteristics
of the distribution may reflect a particular aspect of a
subject’s walking patterns as observed over a period
of time.

Each CTI in our dataset consists of 100 to 130
time differences for a specific individual. For each
CTI, we compute a feature vector consisting of the
first four central moments, (µ,σ,s,k), as discussed
above.

3.2 Support Vector Classification

Originating from statistical learning theory (Vapnik
and Vapnik, 1998), and first implemented in (Cortes
and Vapnik, 1995), support vector machines (SVMs)
are recognized as among the most efficient and pow-
erful supervised machine learning algorithms (Byun
and Lee, 2002). An SVM attempts to determine an
optimal separating hyperplane between two sets of la-
beled training data.

Here, we provide a very brief summary of the
SVM technique. For additional information on
SVMs, see, for example, (Cortes and Vapnik, 1995)
or (Stamp, 2017), or consult (Berwick, 2003) for a
particularly engaging introduction to the subject.

An SVM is trained based on a set consisting of n
samples, of the form (~x1,y1), . . . , (~xn,yn) where each



vector~xi is m-dimensional, containing input features,
and each yi is labeled either +1 or −1 according to
the class to which the vector ~xi belongs. If possible,
the SVM will find a hyperplane that divides the set
of ~xi labeled yi = +1 from those labeled yi = −1.
The SVM-generated hyperplane will be optimal, in
the sense that it will the maximize the margin, where
“margin” is defined as the minimum distance between
the hyperplane and any sample~xi in the training set.

In generally, the training data will not be linearly
separable, that is, no separating hyperplane will exist
in the input space. In such cases, we can use a nonlin-
ear kernel function to transform the data to a higher
dimensional feature space, where it is more likely to
be linearly separable (or at least reduce the number of
classification errors). The so-called kernel trick en-
ables us to embed such a transformation within an
SVM, without paying a significant penalty in terms
of computational efficiency.

In our case, each input sample consists of a 4-
dimensional feature vector and its corresponding la-
bel, while the desired output value is a label of 0, 1,
or 2, which specifies the subject. After feature reg-
ularization, an optimal hyperplane boundary is de-
termined by training an SVM classifier. We use a
one-vs-one scheme for this multi-class classification
problem, in which each class is individually com-
pared to every other class, as opposed to a one-vs-all
scheme.2 Additional testing examples are classified
to determine the accuracy of the resulting classifica-
tion scheme.

In this research, the following three types of SVM
kernels were tested and evaluated.

• Linear
k(~xi,~x j) =~xi •~x j

• Quadratic
k(~xi,~x j) = (~xi •~x j)

2

• Radial basis function (RBF)

k(~xi,~x j) = exp
(
−
‖~xi−~x j)‖2

2σ2

)

4 Experimental Results

A three-person database was constructed, in
which subjects were asked to walk normally at com-
fortable walking speed for 60 to 70 seconds around

2A one-vs-one scheme is less sensitive to imbalanced
datasets, but it is computationally more expensive than one-
vs-all approach. However, the computational cost is not a
significant issue here, due to the small number of dimen-
sions in our experiments.

a circle 7 feet in diameter. This yielded 100 to 130
continuous strides per walking trial. The dataset con-
tains 60 trials per subject collected over several days.
The data was collected by an inexpensive microphone
attached to a PC laptop, with the microphone placed
on a hardwood floor at the center of the walking cir-
cle. Samples were recorded using Windows Sound
Recorder and exported in single channel WAV file for-
mat with a bit rate of 1411 kbps and sampling rate
of 44.1 kHz.

4.1 Data Analysis

The distributions for each of the four temporal fea-
tures are shown in Figure 3. We observe that each
feature contributes some discriminating information
that should prove useful to the SVM. In Figure 3 (a),
we notice that the individual denoted by blue may be
easily separated. To distinguish the individuals de-
noted in red and green, we see that the standard de-
viation in Figure 3 (b) provides useful information.
Figures 3 (c) and (d) show that skewness and kurtosis
are also potentially discriminating features.

4.2 Training

The training set is comprised of 150 sound files, 50 for
each of 3 subjects. The remaining 10 files per subject
are reserved for testing. As discussed above, features
vectors have been extracted from each file and input
to an SVM for training and classification.

To visualize the general boundaries of each ker-
nel, we first conduct kernel comparisons in lower-
dimensional feature spaces. In Figure 4, we see that
a combination of any two features at a time is inade-
quate to distinguish the subjects. It is interesting that
the subject represented by dark blue has significantly
lower means, corresponding to a shorter CTI that al-
lows for easy discrimination, relative to the classes
marked in light blue and red. There is considerable
overlap in the other three features for all subjects.

4.3 Classification Results

We experimented with the number of samples used
for training to obtain the results shown in Figure 5.
Across each kernel, the learning curves show that
increasing training set size generally decreases the
training score while increasing the cross-validation
score. Based on these results, we find that the linear
kernel is superior for several reasons. First, we ob-
serve that the linear kernel yielded the greatest mean
score of 78% with a 95% confidence interval. In ad-
dition, the training score curve for the linear kernel



(a) Distributions of CTI mean

(b) Distributions of CTI standard deviation

(c) Distributions of CTI skewness

(d) Distributions of CTI kurtosis

Figure 3: Distributions for temporal features (different col-
ors denote different individuals).

(a) Mean versus kurtosis

(b) Mean versus skewness

(c) Standard deviation versus kurtosis

(d) Kurtosis versus skewness
Figure 4: SVM hyperplane boundaries in two-dimensional
feature spaces

plateaus after 40 training examples, which implies
that as few as 40 training examples is sufficient to
achieve (essentially) optimal results. This offers a sig-
nificant reduction in the training data requirement, as
compared to the quadratic and RBF kernels. Finally,
the training and cross-validation curves for the linear
kernel approach similar scores in fewer training ex-
amples (again, as compared to the quadratic and RBF
kernels), which indicates that the linear kernel is least
likely to overfit the data.

In Figure 6 (a), we have given the ROC curve
corresponding to a one-vs-all analysis, which repre-
sents the ability to discriminate one class from the
other classes. Figure 6 (b) includes ROC curves for
both the micro-averaged and macro-averaged cases.
Micro-averaging calculates metrics globally, that is,
we count all true positives, false negatives, and false
positives, Note that in the micro-averaged case, larger
classes have greater influence than smaller classes. In
contrast, macro-averaging calculates metrics for each



(a) Linear kernel

(b) Quadratic kernel

(c) RBF kernel

Figure 5: Learning curves for increasing number of training
samples (95% confidence intervals)

(a) One-vs-all ROC

(b) Micro-averaged and macro-averaged ROC curves

Figure 6: ROC curves for linear kernel

individual category and computes their unweighted
mean. Macro-averaging has the effect of weighting
each class the same, regardless of any imbalances.
Our data is not imbalanced, but we provide the macro-
averaged results to facilitate comparison to imbal-
anced datasets.

In Figure 7 we give the results of these experi-
ments in the form of a normalized confusion matrix.
Finally, in Table 1 we give the accuracy results for this
same set of experiments.

Table 1: Kernel accuracy comparison

Kernel Function
Linear Quadratic RBF

Training set 0.787 0.827 0.773
Testing set 0.935 0.935 0.839



Figure 7: Normalized confusion matrix for linear SVM

5 Conclusions

In this paper, we have presented a computationally
inexpensive method for gait analysis and classifica-
tion based on audio information in the time-domain.
Using an SVM, we were able classify samples from a
small dataset with good accuracy.

The method considered here has various potential
advantages and disadvantages, as compared to previ-
ous gait analysis techniques. One advantage is that
our approach is computationally very inexpensive and
requires minimal sensor density and sensitivity. An-
other advantage is that audio samples are inherently
less sensitive to differences in clothing and illumina-
tion, and minor changes in footwear or walking angle.
However, since our observation sequence is based on
time, changes that affect a person’s stride are likely to
negatively affect performance. In addition, our analy-
sis presumes a relatively quiet environment, in which
only one person’s footsteps are within sound range.
However, in many cases, it would likely be possible
to pre-process the data to extract footstep sounds from
background noise.

For future work, we plan to conduct much larger
scale experiments, with far more subjects and more
test data for each individual. We also plan to test the
robustness of our approach, with respect to changes
in floor surface, differing footwear, background noise,
and other practical environmental issues. In particu-
lar, the effects of microphone density and noise sup-
pression will be carefully analyzed.

To deal with speed variations (e.g., walking hur-
riedly), we plan to study velocity-related features,
such as the Doppler sensors discussed in (Kalgaonkar
and Raj, 2007). In addition, we believe it will likely
be profitable to test more advanced HMM-based tech-
niques to investigate various timing transitions within

gait-based audio datasets. For example, it has been
demonstrated that spatiotemporal gait cycles can be
successfully modeled as doubly stochastic processes
with HMMs (Kale et al., 2002); we plan to apply
this technique to the audio-based temporal gait cycles
considered in this paper.
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