
SIGABA: Cryptanalysis of the Full Keyspace

Mark Stamp and Wing On Chan
Department of Computer Science

San Jose State University
San Jose, California

Abstract

In this paper we consider an attack on the SIGABA cipher under the assumption that the
largest practical keyspace is used. The attack highlights various strengths and weaknesses
of SIGABA and provides insight into the inherent level of security provided by the cipher.

Keywords: SIGABA, cryptanalysis, CSP–889, Converter M–134C, ECM Mark II

1 Introduction

Remove the Cipher Unit from the machine,

withdraw the Index Maze Spindle and remove the Index Wheels.

Destroy the Index Wheels by smashing them with a heavy hammer.

— SIGABA operating instructions [6]

The SIGABA cipher was developed by American cryptographers—including Friedman
and Rowlett—prior to World War II.1 As far as is known, no successful attack on
SIGABA was ever conducted during its service lifetime. During WWII, the Germans
are said to have quit collecting SIGABA intercepts since they deemed the problem
hopeless [1].

In this paper we first give a reasonably complete description of the cipher. Then
we consider the size of the SIGABA keyspace in some detail, followed by an outline of
an attack on the machine, under the assumption that the maximum practical WWII
keyspace is used. The attack aims to address the inherent level of security provided by
the SIGABA design. This attack also highlights the crucial features of the SIGABA
that made it so much more secure than other WWII era cipher machines such as the
German Enigma or the Japanese Purple.

1Rowlett cited the design of SIGABA as his proudest accomplishment, not the breaking of Purple
as might have been expected [1].

1



2 SIGABA Cipher Machine

There were several variants of the basic SIGABA design, and to further muddy the
water, different branches of the military used different names for the same machine.
The SIGABA machine in Figure 1 is thought to be equivalent to the CSP–889 (used
by the Navy) and the Converter M–134C or SIGABA (different names, but the same
device, used by the Army). In addition, the name ECM Mark II was used during the
development of the machine that would become SIGABA. Here, we stick with the
name SIGABA.

Figure 1: A SIGABA Machine [5]

The SIGABA cipher includes a typewriter keyboard for entering the plaintext (or
ciphertext), and an output device for printing the corresponding ciphertext (or plain-
text). Like the well-known German Enigma cipher, SIGABA is a rotor machine, but
there are several important differences between the two. Cryptographically, the most
significant differences are that whereas Enigma uses three rotors, SIGABA employs
five rotors to permute the letters, and whereas Enigma rotors step like an odometer,
the SIGABA cipher rotor motion is controlled by a set of ten additional rotors, for a
total of 15 rotors. In effect, it is as if the motion of the SIGABA encryption rotors
is controlled by another rotor cipher machine. This causes the SIGABA rotors to
step irregularly, which is a major improvement over the Enigma and other regularly-
stepping rotor machines. SIGABA also lacks the reflector and stecker (plugboard)
that are found in the Enigma.

The fifteen SIGABA rotors consist of five cipher rotors, five control rotors and
five index rotors, where the cipher rotors permute the input letters and the other two
banks of rotors drive the cipher rotors. The cipher and control rotors are interchange-
able, and these rotors are also designed so they can be inserted backwards. The cipher
and control rotors each permute the 26 letters. The five index rotors each permute
the ten digits 0, 1, 2, . . . , 9 and, of course, the index rotors are not interchangeable
with the other rotors. Apparently, the index rotors could also operate in the reverse
orientation [9], but we ignore this feature below, since it does not affect our analy-
sis of the cipher. Figure 3 illustrates the cryptographic components of SIGABA in
encryption mode.

After a letter is encrypted or decrypted, from one to four of the cipher rotors step.
The number and selection of the stepping cipher rotors is controlled by the other two

2



Figure 2: SIGABA Rotors [8]

banks of rotors, that is, the control and index rotors.
For each letter typed, the rightmost control rotor receives four simultaneously

energized inputs, which we assume to be F, G, H and I. These four letters are permuted
according to the five control rotors and the resulting four permutation-dependent
output letters are combined before being input to the index rotor bank. Let Ij denote
the input to element j of the leftmost index rotor and A through Z the outputs of the
control rotor bank. Then

I1 = B I4 = F ∨ G ∨ H I7 = P ∨ Q ∨ R ∨ S ∨ T

I2 = C I5 = I ∨ J ∨ K I8 = U ∨ V ∨ W ∨ X ∨ Y ∨ Z

I3 = D ∨ E I6 = L ∨ M ∨ N ∨ O I9 = A

(1)

where (1) is interpreted to mean that, for example, input 3 of the leftmost index rotor
is active if output D or E (or both) results from the control rotors; otherwise input 3 is
inactive. Note that I0 is missing, which implies that input 0 is always inactive. Since
four values are input to the control rotors, due to the “OR” of the outputs, anywhere
from one to four of the inputs to the index rotors are active at each step.

The middle three control rotors step in an odometer-like fashion—almost. The
fast, medium, and slow control rotors are indicated by F, M and S, respectively, in
Figure 3, where the fast rotor steps with each letter, the medium rotor steps once for
each 26 steps of the fast rotor, and the slow rotor steps once for each 26 steps of the
medium rotor. The stepping of these three rotors differs from an odometer only in
the order of the fast, medium and slow rotors. The initial setting of all five control
rotors is adjustable, but the leftmost and rightmost control rotors do not step during
encryption or decryption.

The output of the control rotor bank enters the index rotor bank. The index rotors
do not step, but their order and initial positions are adjustable. For a particular
message, the index rotors effectively implement a simple substitution of 0, 1, . . . , 9
(i.e., a fixed permutation of 0, 1, . . . , 9). From one to four (inclusive) of the inputs
to the index rotor bank are active, and the number of active outputs is equal to the
number of active inputs.

It is important to emphasize that this description—and, consequently, the attack

3



Figure 3: SIGABA Encryption

we discuss below—applies to the Converter M–134C and the CSP–888/889 versions of
SIGABA, but not the CSP–2900. The CSP–2900 uses a completely different stepping
maze which results in very different cipher rotor motions [10].

As mentioned above, the cipher and control rotors are interchangeable. In addi-
tion, each of these rotors can be inserted in either of two orientations—forward or
reverse. In the reverse orientation, the letters on the cipher wheel will appear upside
down to the operator.

When a rotor is in its forward orientation, the shifting is, for example, from O to N

to M and so on. Figure 4 illustrates successive shifts of a single SIGABA cipher (or
control) rotor in its forward orientation. Interestingly, the labeling of the SIGABA
rotors is the same as that of the Enigma rotors, but the direction of stepping is the
opposite.

Figure 4: SIGABA Rotor in Forward Orientation

4



In the reverse orientation the cipher (or control) rotor shifting is from O to P

to Q, with the letters appearing upside down, from the operator’s perspective. The
stepping of a rotor in reverse orientation is illustrated in Figure 5. As discussed
in [4] and [11], implementing rotors in software requires some care, and reversed
rotors create an additional complication. Also, from Figure 3 we can see that in
encrypt mode, the signal passes through the control rotors from right-to-left and the
cipher rotors from left-to-right, which creates yet another slight complication when
implementing SIGABA in software.

Figure 5: SIGABA Rotor in Reverse Orientation

Curiously, the SIGABA index rotors are labeled in the opposite direction of the
cipher and control rotors, that is, the numbers increase in the downward direction
as illustrated in Figure 6. The index rotors do not step step when encrypting or
decrypting.

Figure 6: Index Rotor

An interesting quirk of SIGABA is that the letter Z is changed to X before encrypt-
ing, and a word space is changed to a Z before encrypting. If the result of decryption
is a Z, a space is output. In this way, messages can be encrypted and decrypted with
word spaces included, which makes parsing the decrypted message easier. The only
drawback is that both plaintext X and Z will be decrypted as X. For example, for
some setting of SIGABA, the plaintext message

ZERO ONE TWO THREE FOUR FIVE SIX

encrypts as
IEQDEMOKGJEYGOKWBXAIPKRHWARZODWG

5



and this ciphertext decrypts as

XERO ONE TWO THREE FOUR FIVE SIX

where “ ” is a word space.
We assume that the odometer effect of the middle three control rotors occurs when

the slower rotor steps from O to the next letter, regardless of the orientation of the
slower rotor. For example, if the fast rotor is in the forward orientation and currently
at the letter O, then the fast and medium rotors will both step when the next letter
is typed on the keyboard.2

The output values (or value) of the index rotors determines which of the cipher
rotors step. Let

C0 = O0 ∨O9

C1 = O7 ∨O8

C2 = O5 ∨O6

C3 = O3 ∨O4

C4 = O1 ∨O2

where Oi is the output from contact i of the index rotor bank. Then the leftmost
cipher rotor steps if C0 is active, the second (from left) cipher rotor steps if C1 is
active and so on. Since there are from one to four active outputs of the index rotors,
anywhere from one to four of the cipher rotors will step with each letter typed.

To decrypt with SIGABA, all of the rotors are initialized and stepped precisely
as in encryption mode, as described above. However, the inverse cipher rotor per-
mutation must be used. This can be accomplished by feeding the ciphertext letters
through the cipher rotors in the opposite direction, as illustrated in Figure 7.

3 SIGABA Keyspace

The SIGABA key is specified by the choice of rotors and their initial positions. If we
assume that all possible rotors are available, then a different initial position simply
corresponds to a different rotor. Consequently, for the calculation of the theoretical
size of the SIGABA keyspace, we can assume that the rotors are all set to some
standard initial position. Then the number of keys depends only on

1. The choice of the five cipher rotors.

2. The choice of the five control rotors.

3. The choice of the five index rotors.

2In [9] it is claimed that in the forward orientation, the turnover occurs when going from O to N,
but in the reverse orientation, it occurs when going from A to B. However, our description of the
“ratchet” effect is consistent with the most popular SIGABA software simulator [12].

6



Figure 7: SIGABA Decryption

There are 26! choices for each of the cipher and control rotors. Similarly, there are 10!
choices for each of the index rotors. However, since the index rotors do not step, there
are only 10! distinct index permutations. This gives a total keyspace of about

(26!)10 · 10! ≈ 2884 · 222 ≈ 2906.

However, the size of the practical SIGABA keyspace is far less than this astronom-
ical number would indicate. During WWII, only ten rotors were generally available
for the ten cipher and control rotor slots.3 Each of these rotors can be inserted for-
wards or backwards. The order of these ten rotors and their orientations (forward or
reverse) must be included in the practical keyspace calculation. In addition, each of
the five index rotors can be set to any of 10 positions, and each of the control rotors
can be set to any of 26 positions.

In principle, each of the five cipher rotors could also be set to any of 26 positions.
However, the usual SIGABA keying procedure set these rotors to a default value, then
stepped the rotors in a nonstandard manner—simultaneously stepping the control
rotors to their actual starting positions. In addition, the index rotors generally were
inserted in one fixed order, in which case only their initial settings were variable.
Taking these restrictions into account, it would appear that for SIGABA, as used in
WWII, the keyspace was of size

10! · 210 · 265 · 105 ≈ 271.9

3In fact, several different sets of rotors were used in the various SIGABA machines [3]. For the
purposes of our analysis, we assume that one fixed set of ten cipher/control rotors and one fixed set
of five index rotors is available. Furthermore, we assume that these rotors are known to the attacker.

7



as claimed in [4].
However, a careful reading of the SIGABA manual [7] reveals that the setting

of the control rotors was sent in the clear as a message indicator or MI. Therefore,
assuming the MI was intercepted and its meaning was known to the attacker, the
actual keyspace for SIGABA—as it was generally used in WWII—was of size

10! · 210 · 105 ≈ 248.4 (2)

as (correctly) stated in the article [9]. But, on the SIGABA-encrypted POTUS-
PRIME4 link between Roosevelt and Churchill, the control and cipher rotor settings
were set independently, and neither was sent in the clear, which implies a keyspace
in excess of 95 bits [9] (in the next section we provide a precise calculation of the
keyspace for this case).

A keyspace of size 248.4 is small enough that today it is susceptible to an exhaustive
key search.5 But a keyspace of this magnitude would have been unassailable using
1940s technology, provided no shortcut attack was available.

4 SIGABA Attack

For this attack, we assume that all three banks of rotors are set independently. We
also assume that there is only one set of index rotors, and that these five rotors can be
placed in any order, and that a total of ten rotors are available for use as cipher and
control rotors. The control and cipher rotors can be inserted in any order and there
are two orientations for each of these rotors. Under these assumptions, the keyspace
is apparently of size

10! · 210 · 2610 · 5! · 105 ≈ 2102.3.

As noted above, there are only 10! distinct index permutations. Since 5! · 105 > 10!,
the effective keyspace is reduced slightly to

10! · 210 · 2610 · 10! ≈ 2100.6.

However, due to the fact that pairs of index rotor outputs are ORed together to
determine the cipher rotor stepping, only

10!/32 = 113,400 ≈ 216.8

distinct index permutations can be distinguished. This reduces the essential keyspace
to no more than

10! · 210 · 2610 · 216.8 ≈ 295.6.

This keyspace of size 295.6 does not represent the way that SIGABA was generally
used in WWII, but it does represent the largest keyspace that could have been used

4President Of The United States – PRIME Minister.
5The Data Encryption Standard (DES) has a 56-bit key and it has been successfully attacked by

an exhaustive key search.

8



at that time. That is, it represents the largest practical keyspace, given the hardware
that was typically available with a SIGABA machine in WWII. Increasing the number
of available rotors would increase the keyspace, but we limit ourselves to the number
of rotors that will fit in the device at one time, since this is typically all that was
available with the cipher. Finally, we assume that all of the rotors and the inner
workings of the device are known to the cryptanalyst.

Our attack requires some amount of known plaintext. This attack occurs in two
phases—a primary phase and a secondary phase. In the primary phase, we try all
cipher rotor initializations, retaining those that are consistent with the known plain-
text. Then in the secondary phase, we again use the known plaintext, this time to
determine the control and index rotor initializations, and thereby recover the key.

Suppose that we have a SIGABA-encrypted ciphertext message, where the first
several letters of the corresponding plaintext are known. In the primary phase we
deal with the cipher rotors—their order, orientations and initial settings. Collectively,
we refer to the cipher rotor initializations as the cipher rotor settings. We refer to an
incorrect choice of cipher rotor settings as a random setting, while the correct setting
is said to be causal.

For each cipher rotor setting that survives the primary phase, a secondary phase
is required. The secondary phase consists of trying possible control and index rotor
settings to determine which are consistent with the known plaintext. In this way, the
random primary survivors are eliminated and, in the causal case, we determine the
key.

Here, our goal is to outline the attack in sufficient detail to convince the reader
of its correctness. Some improvements to the basic attack are also discussed. Many
of these improvements appear as exercises in [11]. Additional empirical results will
appear in [2].

4.1 Primary Phase

We are assuming that ten different cipher rotors are available. Also, each cipher rotor
has two possible orientations and 26 possible initial positions. Therefore, the number
of ways to select and initialize the five cipher rotors is(

10

5

)
· 5! · 25 · 265 ≈ 243.4.

For each of these choices, we determine whether the setting is consistent with the
known plaintext as follows.

Recall that for each letter typed, from one to four of the cipher rotor rotates.
This implies that once we specify the cipher rotors, their orientations and their initial
settings, the number of possible new permutations at any given step is(

5

1

)
+

(
5

2

)
+

(
5

3

)
+

(
5

4

)
= 30.

9



Now suppose that we correctly guess the cipher rotor settings at some point in time.
We can then generate each of the 30 possible subsequent permutations and determine
which are consistent with the next known plaintext letter. That is, we can test each
of these 30 subsequent permutations to see which encrypt the next known plaintext
letter to the corresponding ciphertext letter. For each surviving permutation, we can
repeat this process using the next known plaintext letter and so on.

Modeling the encryption permutations as uniformly random, the matches follow
a binomial distribution with p = 1/26 and n = 30, yielding an expected number of
matches of 30/26 ≈ 1.154 per step.6 This can be viewed as a branching phenomenon,
where the number of possible paths tends to increase with each known plaintext letter
analyzed. That is, at each step, the number of possible paths increases, which seems
to be the opposite of what we would like to see occur. Nevertheless, we can obtain
useful information from this process, as outlined below, but first we consider a simple
example.

Suppose we have selected five of the ten candidate rotors as cipher rotors, and we
have placed them in a specified order and selected their orientations. This, together
with the initial positions of the selected cipher rotors constitutes a putative setting.
Consider, for example, the case where the selected cipher rotors are set to AAAAA,
that is, each of the five cipher rotors is initialized to A. Then we know the putative
encryption permutation and if it does not encrypt the first known plaintext to the
first known ciphertext, this cipher rotor setting is not causal and we can discard it.
This immediately reduces the number of candidates by a factor of 26, since there is
only a 1/26 chance of a letter matching at random.

Suppose that the first letter does match. Then we must try all 30 possible steps of
the five cipher rotors and save any of these that encrypt the second plaintext letter to
the second ciphertext letter. Since we make 30 comparisons, The expected number of
matches that occur at random is, as mentioned above, 30/26 ≈ 1.154. An example of
this process is illustrated in Figure 8. In this example, the first known plaintext letter
is consistent with the initial setting AAAAA, and the first three letters are consistent
with each of the given paths.

Figure 8: Example of Consistent Paths

6Note that if SIGABA employed four or fewer cipher rotors, the number of expected matches
would be less than one, resulting in a much weaker cipher.

10



Note that at the third plaintext letter in Figure 8 we have two consistent paths
ending at BBBBA. Since the next step depends only on the current cipher rotor settings,
and since we are only interested in the initial setting (not the entire path), we can
merge these paths as illustrated in Figure 9. This merging is useful since it effectively
reduces the number of paths under consideration, while not degrading the success of
this phase of the attack.

Figure 9: Merging Paths

In the random case, the analysis above holds, so that at each step we expect an
increase by a factor of 1.154 (before merging). In contrast, the causal case provides
a slightly higher increase on average, since we are assured one causal match, with
the remaining elements matching as in the random case. This gives us a method
to statistically distinguish random from causal and thereby reduce the number of
random cases.

The results in Table 1 were obtained as follows. Given a crib consisting of “steps”
consecutive known plaintext letters, we conducted the indicated number of “tests.”
Each test consisted of first generating random settings for the order and initialization
of the rotors. Then, since the first letter is encrypted before stepping the rotors,
the first plaintext letter was encrypted to determine whether it matches the first
ciphertext letter. A random setting only survives the first step with a probability
of 1/26. If a setting survives this first step, then all 30 possible cipher rotor steps
are tried and any that are consistent with the second plaintext letter are saved. This
is repeated for subsequent letters, until no path survives a given step (in which case
the setting is known to be random), or the indicated number of steps has been taken.
Table 2 contains the analogous results for causal rotor settings, that is, the correct
setting is tested using the same procedure just described for the random settings.

For both of these cases, we have merged paths, as discussed above and illustrated
in Figure 9. Table 1 indicates that using 30 known plaintext letters, we expect only a
fraction of about 0.00427 of the random settings to survive (“non-zero settings”), and
each of these survivors will have expanded to an average of about 16.5 merged paths,
with a maximum for the cases tested of 84. In contrast, Table 2 shows that with 30
known plaintext letters, we expect the causal path to have generated about 29.6
consistent branches, with, for the 10,000 cases tested, a maximum of 151 and a
minimum of just a single consistent path.

11



non-zero avg per
steps tests settings non-zero maximum

10 105 763 6.5 27
20 105 516 11.8 56
30 105 427 16.5 84
40 105 324 20.8 105
50 105 290 28.4 194
60 105 275 38.8 163
70 105 269 47.1 415
80 105 212 71.3 524
90 105 216 77.6 486

100 105 203 100.5 1005

Table 1: Random Case

steps average maximum minimum tests
10 10.2 51 1 10,000
20 19.6 94 1 10,000
30 29.6 151 1 10,000
40 40.1 237 1 10,000
50 54.1 404 1 10,000
60 69.2 566 1 10,000
70 85.0 689 1 5,000
80 105.0 829 2 5,000
90 130.4 1152 1 3,000

100 161.1 1926 1 3,000

Table 2: Causal Case

The results in Table 1 show that we can eliminate the majority of random settings
using a small amount of known plaintext. Note that although the number of random
settings decreases, the total number of merged paths (“non-zero settings” times “avg
per non-zero”) actually increases slightly as more known plaintext is used.

From the causal results in Table 2, we see that we can further reduce the number
of random settings by saving only those that are, say, above the expected mean
in the corresponding causal case. Of course, this refinement implies that we will
sometimes discard the causal case, with the probability depending on the selected
threshold. That is, we can reduce the number of primary phase survivors, at the
expense of a lower probability of success. Unfortunately, Tables 1 and 2 indicate
that the variance is high, so a significant number of random cases will remain for any
reasonable probability of success.

12



For a small amount of known plaintext, the primary phase work factor is on the
order of 243.4, since most random paths do not survive the first known plaintext
test. However, if we use more known plaintext and if we save all merged paths, then
the amount of work may exceed 243.4, since the number of surviving merged paths
tends to grow. For example, suppose we use 100 known plaintexts. After the first
known plaintext, we have 243.4/26 ≈ 238.7 surviving paths. From Table 1 we see that
after 100 known plaintext letters, we expect the number of surviving merged paths
to have increased to about

243.4 203 · 100.5

105
≈ 241.1. (3)

That is, when using the 99 known plaintexts after the first, the number of merged
paths increases from 238.7 to 241.1, and at each step we must process all of the merged
paths. We can approximate the number of paths at step k by 238.7xk. Then we
have 238.7x99 = 241.1, which implies x ≈ 1.017, and the primary work is given by

243.4 + 238.7

99∑
k=0

1.017k = 243.4 + 238.7 1.017100 − 1

0.017
≈ 246.7.

From 3 we see that with 100 known plaintext letters, only about 241.1 merged paths
survive the primary phase and, from Table 1, about 0.00204 · 243.4 ≈ 234.5 random
settings survive.

As discussed above, the number of random settings decreases with more known
plaintext. However, in the secondary phase discussed in Section 4.3 below, each of
the merged paths must be tested and the number of merged paths increases as more
known plaintext letters are used. This appears to be the opposite of what is desired.
But in spite of having more cases to test in the secondary phase, the information
obtained from the merged paths yields a more efficient attack overall.

4.2 Secondary Phase

For each of the cipher rotor settings that survived the primary phase, a secondary
test is required. This secondary test will determine whether a primary phase survivor
is consistent with any setting of the control and index rotors. In the process, we
eliminate random survivors from the primary phase and for the causal survivor we
determine the rotor settings and thereby recover the key.

For the secondary test, suppose we choose the order and initial positions of the
index rotors and the order, orientation and initial positions of the control rotors, given
the putative cipher rotor settings from the primary phase. The number of settings
for the index and control rotors appears to be

5! · 105 · 5! · 25 · 265 ≈ 258.9.

However, as noted above, there are only about 216.8 distinct index permutations,
which reduces the overall work factor to

216.8 · 5! · 25 · 265 ≈ 252.2.

13



That is, the work factor for the secondary part of the attack appears to be on the
order of 252.2 for each putative setting that survived the primary phase. Fortunately,
we can improve on this näıve implementation of the secondary phase by considering
the merged paths—as opposed to settings—that survive the primary phase.

4.3 Secondary Phase Refinements

To reduce the secondary work factor we again rely on known plaintext. Here, we only
outline the plan of attack with details provided for selected issues that arise.

The interaction of the control rotors and the index rotors is illustrated in Figure 10,
where we have collapsed the five control rotors into a single permutation (denoted as
“control”) and, similarly, the five index rotors are considered as a single permutation
(denoted as “index”). The four inputs to the control permutation, F, G, H and I, are
activated at each step. This results in four active outputs, which are combined as
indicated before being fed into the index permutation. At least one—and at most
four—inputs to the index permutation will be active. The outputs from the index
permutation are combined in pairs, as indicated, and these determine which of the
cipher rotors—denoted C0, C1, C2, C3, C4 from left to right—step. At least one cipher
rotor will step, and at most four will step.

Figure 10: Control and Index Permutations

In Figure 10, the control permutation changes with each letter typed, but the
index permutation is fixed for the entire message. Since the control permutations are
changing, we model their output as uniformly random, that is, we assume that each
of the

(
26
4

)
combinations of output letters is equally likely at each step. Then, due

to the way that the control rotor outputs are ORed together, the inputs to the index
permutation are not uniform. For example, input 8 will be active much more often
than inputs 1, 2 or 9, and input 0 is never active.

The outputs of the index rotors are ORed in pairs, and the results determine which
cipher rotors step. Therefore, if we have sufficient information on the frequency of
the stepping of individual cipher rotors, we can assign probabilities to the index
permutations. Note that for any merged path that survives the primary phase, we

14



obtain putative stepping counts for each of the cipher rotors. For example, consider
the merged paths in Figure 9. Since the initial rotor positions were AAAAA, for the
merged paths ending with BBBBA we know that cipher rotors C0 through C3 each
stepped once and rotor C4 did not step. Furthermore, this holds for both of the paths
that were merged into this particular path. That is, with respect to the stepping
counts for individual rotors, there is no loss of information due to the merging of
paths.

Next, we consider a specific example to illustrate the relationship between an index
permutation and the cipher rotor stepping counts. For example, suppose that the
index permutation is (5, 4, 7, 9, 3, 8, 1, 0, 2, 6), that is, input 0 is mapped to output 5,
input 1 is mapped to output 4, and so on. Then by considering the pairs of outputs
that determine the cipher rotor stepping, we can see that some cipher rotors will step
more often than others. The example in Table 3 illustrates this point. In this example,
cipher rotor C4 steps if either output 1 or 2 (or both) of the index permutation is
active. For the index permutation in Table 3, inputs 6 and 8 are mapped to outputs 1
and 2, respectively. Inputs 6 and 8 of the index permutation correspond to outputs 6
and 8 of the current control permutation, and at least one of these outputs is active if
one or more of the 10 letters L, M, N, O, U, V, W, X, Y or Z, which are connected to these
outputs, is active. On the other hand, cipher rotor C2 steps only when output A of
the control permutation is active. As a result, C4 will step much more often than C2.

cipher rotor
C4 C3 C2 C1 C0

index rotor outputs (1,2) (3,4) (5,6) (7,8) (9,0)
index rotor inputs (6,8) (4,1) (0,9) (2,5) (3,7)
control rotor count 10 4 1 4 7

Table 3: Index Permutation (5, 4, 7, 9, 3, 8, 1, 0, 2, 6)

Assuming the control rotors generate random permutations, the expected number
of steps for cipher rotor i depends solely on the number of control rotor output letters
that feed into Ci, as illustrated in Figure 10. All of the 45 possible input pairs and
the corresponding number of control rotor output letters are tabulated in Table 4.

If we have sufficient known plaintext available, we obtain information related to
the “count” column of Table 4 for each cipher rotor, simply based on a count of the
number of times that cipher rotor i steps. Then from the “pairs” column, we obtain
restrictions on the index permutation.

This begs the question of how much known plaintext is required for this phase
of the attack. We can estimate the requirement as follows. Each cipher rotor is
connected to k control rotor outputs (via the index permutation), where k is in the
range of 1 to 11, inclusive. We can determine the expected “stepping ratios” for a
cipher rotor when it is connected to exactly k control rotor outputs. These fractions
will sum to much more than one, since more than one rotor generally steps. To

15



letters count pairs
1 3 (0,1) (0,2) (0,9)
2 4 (0,3) (1,2) (1,9) (2,9)
3 5 (0,4) (0,5) (1,3) (2,3) (3,9)
4 7 (0,6) (1,5) (2,5) (5,9) (1,4) (2,4) (4,9)
5 6 (0,7) (1,6) (2,6) (6,9) (3,4) (3,5)
6 6 (0,8) (1,7) (2,7) (7,9) (3,6) (4,5)
7 6 (1,8) (2,8) (8,9) (3,7) (4,6) (5,6)
8 3 (3,8) (4,7) (5,7)
9 3 (4,8) (5,8) (6,7)
10 1 (6,8)
11 1 (7,8)

Table 4: Index Permutation Input Pairs

compute these ratios, we assume all outputs of the control rotors are equally likely
and we generate all

(
26
4

)
= 14,950 of these equally likely outputs, counting the number

of times that at least one element of each of the pairs in Table 4 occurs. The resulting
stepping ratios are given in Table 5, where “step ratio” is obtained by dividing “step
count” by 14,950. Note that these results are independent of the index permutation.

example
letters pair step count step ratio

1 (0,1) 2,300 0.153846
2 (0,3) 4,324 0.289231
3 (0,4) 6,095 0.407692
4 (0,6) 7,635 0.510702
5 (0,7) 8,965 0.599666
6 (0,8) 10,105 0.675920
7 (1,8) 11,074 0.740736
8 (3,8) 11,890 0.795318
9 (4,8) 12,570 0.840803

10 (6,8) 13,130 0.878261
11 (7,8) 13,585 0.908696

Table 5: Cipher Rotor Stepping Ratios

Now given putative cipher rotor stepping counts (as determined from known plain-
text in phase one of the attack), the numbers in Table 5 can be used to determine
the most likely pairs of control rotor output letters connected to each cipher rotor.
Since these connections occur via the index permutation, combining this information
with Table 4 significantly reduces the number of possible index permutations.

16



A valid index permutation must contain five pairs from Table 4, where 0, 1, . . . , 9
each appear once within the set of pairs, and the corresponding “letters” columns of
the five pairs must sum to 26 (since all 26 letters are connected). It is not difficult
to compute all such groupings of five pairs—we find there are 2148 such groupings,
assuming that the letter counts are ordered from, say, smallest to largest.

Now given frequency counts for the stepping of individual cipher rotors, we can
hope to distinguish the number of letters connected (via the index permutation) to
each cipher rotor. For example, suppose the frequency counts show that each of cipher
rotors C0, C1, C2, C3, C4 had stepping ratios of 0.15, 0.29, 0.60, 0.74, 0.91, respectively.
According to Table 5, these results indicate that the number of letters connected
to cipher rotors C0, C1, C2, C3, C4 are, most likely, 1, 2, 5, 7, 11, respectively. Six of
the 2148 valid combinations of five pairs derived from Table 4 are consistent with this
ordering. These consistent sets of pairs appear in Table 6.

set pairs
1 (0,1) (2,9) (3,4) (5,6) (7,8)
2 (0,1) (2,9) (3,5) (4,6) (7,8)
3 (0,2) (1,9) (3,4) (5,6) (7,8)
4 (0,2) (1,9) (3,5) (4,6) (7,8)
5 (0,9) (1,2) (3,4) (5,6) (7,8)
6 (0,9) (1,2) (3,5) (4,6) (7,8)

Table 6: Sets of Pairs Consistent with Letter Counts 1, 2, 5, 7, 11

It is straightforward to show that the 2148 consistent groupings of five pairs re-
duces to 89 distinct categories based on the corresponding letter counts. For example,
one of these 89 categories corresponds to letter counts of 1, 2, 5, 7, 11 and, as noted
above, there are six pairs of five that are consistent with this category. On average,
about 24 sets of five pairs are consistent with each category, and the range is from 3
to 72.

Given stepping counts computed from known plaintext, we can compute a score
to determine the best match among the 89 categories as follows. Let xi be the “step
ratio” in row i and the last column of Table 5. Then i ∈ {1, 2, . . . , 11} and xi is
the expected fraction of the time that a cipher rotor steps when it is connected to i
letters. For notational convenience, let x0 = 0 and x12 = 1.

From the known plaintext we compute the stepping ratios s0, s1, s2, s3, s4, where
we may assume that

s0 < s1 < s2 < s3 < s4.

For each sj, we first determine the index i for which xi ≤ sj < xi+1. Then let

tj =
sj − xi

xi+1 − xi

+ i

17



with the proviso that if tj < 1, then let tj = 1, and if tj > 11, let tj = 11. Note
that i ≤ tj ≤ i + 1 and

t0 < t1 < t2 < t3 < t4.

Each tj is a decimal representation (including the fractional part) of the most likely
number of letters connected to cipher rotor j. Note that we are using a linear interpo-
lation for points between consecutive xi. This (or something comparable) is required
since the xi are not equally spaced.

Now given the tj computed in the previous paragraph, let (u0, u1, u2, u3, u4) be
one of the 89 categories discussed above. Recall that

u0 < u1 < u2 < u3 < u4.

We compute the the score as (the square of) the Euclidean distance,

d = (t0 − u0)
2 + (t1 − u1)

2 + · · ·+ (t4 − u4)
2.

The category that is at the minimum distance from (t0, t1, t2, t3, t4) is selected as the
most likely category.

We can now estimate the known plaintext requirement for the secondary phase.
Table 7 contains empirical results, assuming the indicated numbers of known plaintext
letters are available, in each case using the scoring method discussed in the previ-
ous paragraph to select the closest category. These results show that, for example,
with 100 known plaintexts, we obtain the correct category about 23% of the time,
and exactly two of the elements are incorrect (and almost certainly one is off by “+1”
the other is off by “−1”), with a probability of about 59%. Consequently, with 100
known plaintext letters, we have a probability of about 0.82 that the correct category
is either the best-scoring category or one of the other 10 (or fewer) categories that
are nearest to the best-scoring category. Since there are only 24 sets of pairs per
category (on average), given 100 known paintext letters we need to test fewer than 28

sets of pairs (on average) and we will obtain the correct index permutation with a
probability of about 0.82.

There is more information available than we have used to compute the numbers in
Table 7. For example, if at any point, only one cipher rotor steps, we can immediately
eliminate rows 1, 2 and 3 from Table 4, since there are always four active outputs
from the control permutation. Although a single rotor stepping is a relatively rare
event (occurring about 2.5% of the time according to Table 8, below), when it occurs,
it immediately eliminates nearly 1/4 of the possible index permutations.7 Using such
refinements, we could expect to reduce the known plaintext requirement from that
indicated in Table 7, while not diminishing the probability of success. However, the

7Using a similar analysis, when two cipher rotors step, we only gain a small amount of information
about the index permutation, and when three or four rotors step, we gain no additional information.
However, it may be beneficial to separate the cases where one, two, three or four cipher rotors step
instead of lumping all of the stepping information together, since the distributions differ in each
case. The drawback is that the counts for each case will be much smaller, given the same amount
of known plaintext.

18



pairs correct
plaintext 0 1 2 3 4 5 iterations

50 0.0287 0.2213 0.1837 0.4756 0.0000 0.0910 106

100 0.0036 0.1076 0.0672 0.5884 0.0000 0.2332 106

150 0.0006 0.0517 0.0234 0.5522 0.0000 0.3721 106

200 0.0001 0.0253 0.0085 0.4722 0.0000 0.4939 106

250 0.0000 0.0128 0.0033 0.3900 0.0000 0.5939 106

300 0.0000 0.0064 0.0013 0.3153 0.0000 0.6769 106

400 0.0000 0.0018 0.0002 0.2023 0.0000 0.7957 106

500 0.0000 0.0005 0.0001 0.1300 0.0000 0.8694 106

1000 0.0000 0.0000 0.0000 0.0157 0.0000 0.9843 106

Table 7: Secondary Known Plaintext

number of rotors that step at a given iteration may be difficult to utilize due to the
merging of paths in the primary phase.

In summary, using the cipher rotor stepping counts, we can reduce the number
of index permutations we must analyze to a small fraction of the 10!/32 ≈ 216.8 that
we would otherwise need to consider. With sufficient known plaintext, the average
number of permutations that we need to check is about 28, and we can likely reduce
this further by using more of the available information.

Assuming about 100 known plaintext letters are available, the average work factor
for the secondary phase of the attack is about

28 · 5! · 25 · 265 ≈ 243.4 (4)

and, again, it should be possible to reduce the factor of 28. This work factor is a
significant improvement over the näıve implementation of the secondary phase, and
comparable to the work for the primary phase of the attack. However, the secondary
work factor in (4) applies to each surviving merged path from the primary phase.
Consequently, we can improve the overall attack by either reducing the number of
merged paths from the primary phase or by making the secondary phase more efficient
(or both).

Next, we suggest a method to take further advantage of the computed cipher rotor
stepping counts obtained in the primary phase. For each distinct index permutation
we can compute the probabilities pi, for i = 1, 2, 3, 4, that precisely i cipher rotors step,
where the probabilities are computed over all possible control rotor outputs. That is,
for each of the 10!/32 distinct index permutations, each of the 4-letter control rotor
outputs—of which there are

(
26
4

)
—is assumed to be equally likely and each of these

outputs is combined as indicated in (1). The average, maximum and minimum over
all index permutations appears in Table 8.

One interesting feature of the results in Table 8 is that in each case, the range
of possible values is small. More importantly, the ranges only overlap when 2 and 4

19



rotors
step average maximum minimum
1 0.0109 0.0247 0.0027
2 0.2543 0.3579 0.1694
3 0.5669 0.5954 0.5177
4 0.1679 0.2368 0.0996

Table 8: Cipher Rotor Stepping

rotors step, and not at all in any other case. Consequently, without making any
assumption about the index permutation, the cipher rotor steppings obtained in the
primary phase can be used to assign a score to each primary phase survivor. For a
given primary survivor, this score is computed based on the number of cipher rotors
that step for each known plaintext letter, using the average probabilities in Table 8.
Then in the secondary phase, we can test the highest scoring primary survivors first,
then test the next highest scoring survivors, and so on, until the key is recovered.
This stepping information could instead be employed to “trim” unlikely paths in
the primary phase, thereby reducing the number of primary survivors. In any case,
merging paths create a slight complication, since different numbers of rotors can step
to arrive at a particular merge point. One solution is to simply take the maximum
probability of paths that merge.

We have shown that the typical secondary work factor for each primary merged
path is no more than about 243, assuming sufficient known plaintext is available.
This amount of work is clearly feasible today, although the attack is not trivial to
implement. The primary phase of this attack has a similar work factor and it is also
feasible. However, for the attack described in this paper, the primary phase yields a
large number of survivors, which makes the overall cost of the attack extremely high.

5 The Bottom Line

It is instructive to compare the work factor of our SIGABA attack with other simpler
attacks. First, consider a straightforward exhaustive key search. For consistency
with the attack discussed in this paper, we view the exhaustive key search as having
a primary phase and a secondary phase, where there are 243.4 primary cases (cipher
rotor settings), and each of these requires work of 252.2 in the secondary phase (control
and index rotor settings). This gives a maximum work factor of 295.6 and an expected
work of 294.6, and the attack would always succeed, assuming we could actually do
the work.

Next, consider an attack which uses a single known plaintext letter. Analogous
to our attack outlined in this paper, we have a primary phase where we test each
of the 243.4 cipher rotor settings, and only 1/26 of these will match the one known
plaintext letter. Then for each of these 243.4/26 ≈ 238.7 primary survivors, we have

20



secondary work of 252.2. This gives a total work of 290.9 and, therefore, an expected
work of 289.9. Again, the probability of success is one.

Now suppose that we have 100 known plaintext letters. Then we can use the
primary phase in Section 4.1 to reduce the number of cipher rotor settings from 243.4

to about 0.00203 · 243.4 ≈ 234.5. For each of these surviving settings, we can apply
the straightforward secondary phase discussed in Section 4.2. This secondary phase
has a work factor of 252.2 per primary survivor, which gives a maximum work factor
of 286.7 and an expected work of 285.7. In this case, the probability of success is one.

Finally, consider an attack with 100 known plaintext letters where we use the
primary phase discussed in Section 4.1 and the “refined” secondary phase discussed
in Section 4.3. Then in the secondary phase we must test all surviving merged paths—
as opposed to settings—and from (3), we see that about 241.1 such paths are expected.
With 100 known plaintext letters, the secondary phase work is, according to (4), no
more than 243.4 per primary survivor. Therefore, the total work for this attack is
no more than 284.5, and the expected work is at most 283.5, while the probability
of success is about 0.82 (see Table 7 and the related discussion). While this work
factor is only a modest improvement over the more straightforward secondary test,
and the attack is now only probabilistic, as noted above, there are various further
refinements that are likely to reduce the work significantly. In particular, trimming
low probability paths in the primary phase should be a good strategy.

The comparison between these attacks is summarized in Table 9. Note that “sec-
ondary work” is the work per primary survivor.

primary secondary total probability
attack survivors work work of success

exhaustive key search 243.4 252.2 295.6 1.00
1 known plaintext 238.7 252.2 290.9 1.00

100 known plaintexts 234.5 252.2 286.7 1.00

100 known plaintexts 241.1 243.4 284.5 0.82

Table 9: Attack Comparison

Table 9 shows that our attack, while far from practical, is more efficient than the
more obvious attacks on the full SIGABA keyspace. However, the improvement is
modest, a substantial crib is required and the attack is only probabilistic (but with a
high probability of success). Perhaps this should be viewed as additional evidence of
the strength of the SIGABA design, particularly in comparison to other World War II
era ciphers.

21



6 Conclusion

SIGABA, as typically used in WWII, has a keyspace of size 248.4, which implies that
an exhaustive key search has a work factor of 247.4. However, the SIGABA-encrypted
POTUS-PRIME link between Roosevelt and Churchill used the full available keyspace
of more than 95 bits. It is interesting that keyspaces of these sizes were chosen. From
the designers’ perspective, there would be no incentive to have a keyspace that is larger
than a known shortcut attack, since a larger keyspace entails more secret settings and
consequently more chance for errors and miscommunication.

In WWII, a work factor of 247.4 would certainly have been untouchable, par-
ticularly for tactical communications. Nevertheless, for the strategically important
communication between Allied leaders, it would have been reasonable to use a larger
key size, provided that the larger key actually yielded additional security. Based on
this logic, it would seem likely that the designers of SIGABA believed that the cipher
provided something close to a full 95 bits of security. In this paper, we have outlined
an attack that requires somewhat less than 95 bits of work, and it is certainly possible
to improve on the attack presented here.

It is worth noting that the designers of SIGABA almost certainly viewed the
keyspace issue in a more intuitive manner than we do in this paper. Evidently, the
stepping maze was designed to avoid the problems inherent with regularly-stepping
cipher rotors. Given this design criteria, the designers of SIGABA might simply have
chosen the rotors so that there were far too many combinations for an exhaustive
search, and so as to create the desired irregular motion. In any case, it would be
interesting to know more about the attacks that were considered by Rowlett and
Friedman, and their reasons for designing SIGABA as they did.

Acknowledgment

The authors thank Frode Weierud for numerous helpful comments and suggestions
which greatly improved this paper.

References

[1] S. Budiansky, Battle of Wits, The Free Press, 2000

[2] W. O. Chan, Cryptanalysis of SIGABA, Master’s Thesis, Department of Com-
puter Science, San Jose State University, May 2007

[3] S. J. Kelly, Big Machines, Aegean Park Press, 2001

[4] M. Lee, Cryptanalysis of the SIGABA, Master’s Thesis, University of California,
Santa Barbara, June 2003, at ucsb.curby.net/broadcast/thesis/thesis.pdf

[5] National cryptologic museum, the big machines exhibit, at
www.nsa.gov/museum/museu00002.cfm

22



[6] Operating instructions for ECM Mark 2 (CSP 888/889) and CCM Mark 1 (CSP
1600), at www.hnsa.org/doc/crypto/ecm/index.htm

[7] R. Pekelney, ECM MARK 2 and CCM MARK 1, at
www.hnsa.org/doc/crypto/ecm/

[8] L. F. Safford and D. W. Seiler, Control circuits for electric coding machines,
United States patent number 6,175,625, January 2001

[9] J. J. G. Savard and R. S. Pekelney, The ECM Mark II: design, history and cryp-
tology, Cryptologia, Vol. 23, No. 3, July 1999, pp. 211–228

[10] G. Sullivan, The ECM Mark II: some observations on the rotor stepping, Cryp-
tologia, Vol. 26, No. 2, April 2002

[11] M. Stamp and R. M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real
World, Wiley Interscience, 2007

[12] USS Pampanito, at www.maritime.org/ecmapp.htm

About the Authors

Mark Stamp has many years of experience in information security. He can neither
confirm nor deny that he spent seven years as a cryptanalyst with the National
Security Agency, but he can confirm that he recently spent two years designing and
developing a security product at a small Silicon Valley startup company. Dr. Stamp
currently holds an academic position in the Department of Computer Science at
San Jose State University where he teaches courses on information security. He has
written two textbooks, Information Security: Principles and Practice (Wiley 2006)
and Applied Cryptanalysis: Breaking Ciphers in the Real World (Wiley 2007).

Wing On Chan graduated from San Jose State University with a Bachelors Of
Science degree in Computer Science and is now completing his Masters Of Science
degree, also at San Jose State University and also in Computer Science. He enjoys
reading up on the latest trends in computer technology, especially the marketing
claims of “unbreakable” security technologies.

23


