Role Based Access Control and the JXTA Peer-to-Peer Framework

Amit Mathur
Symantec Corporation
Cupertino, California

Suneuy Kim

Department of Computer Science

San José State University
San José, California

Mark Stamp
Department of Computer Science
San José State University
San José, California

Abstract

Role based access control (RBAC) allows users access
to resources based on their competencies and respon-
sibilities within an organization. Typically, RBAC is
provided as a security mechanism for a single host at
the operating system level. This allows the operating
system to ensure that authenticated users have access
to resources based on their assigned roles. RBAC is
more challenging in peer-to-peer (P2P) systems, due
to the lack of centralized administration. In this pa-
per we discuss RBAC over a P2P network and we
present an RBAC implementation in the JXTA P2P
framework. JXTA is a popular open P2P technology
specification.

1 Introduction

In this paper we propose a role based access con-
trol (RBAC) mechanism applicable to a peer-to-peer
(P2P) network. Before we discuss our RBAC imple-
mentation, we first provide some background mate-
rial. In the next section we give a brief overview of
RBAC, P2P networks, and JXTA. Following this in-
troductory material, we discuss a content distribution
application that motivates the need for RBAC in a
P2P network. We then present our JXTA implemen-
tation, utilizing the example application to illustrate
the concepts.

2 Background

In this section we discuss RBAC, P2P networks, and
JXTA. Each of these topics is covered very briefly, but
sufficient detail is provided so that the remainder of
the paper is accessible.

2.1 RBAC Overview

Role based access control is a mechanism that pro-
vides for relatively simple and flexible administration
while allowing users to have access to the resources
that they need. In an RBAC-based system, users are
associated with roles, and roles are associated with
operations.

In RBAC, an administrator can define a role and
assign users to—and remove users from—that role as
necessary. RBAC can be contrasted with standard
UNIX permissions where a user is directly associ-
ated to a resource via owner and group permissions.
RBAC is particularly beneficial when, for example,
the user base changes often, since roles are likely to
be relatively stable. In such a scenario, RBAC will
greatly reduce the administrative overhead of the ac-
cess control regime.

RBAC can also provide for role hierarchies so that
related roles can be expressed via inheritance rela-
tionships [9]. Consequently, instead of having to de-
fine all roles independently, an administrator can de-
fine roles with respect to other roles.

In addition, RBAC fits in well with object oriented
techniques since access to a resource can be equated
with access to an object method. A role then equates
to the concept of an interface, where an interface is
simply a set of methods that provide some capability.
An interface abstracts away the implementation from
the object that is implementing it.

We can also use RBAC to enforce separation of
duties by not allowing a user to operate in certain
multiple roles. For example, in a transaction that
requires a user to initiate a payment and another user
to authorize the payment, it may not be appropriate
for the same user to hold both roles.

Many potential P2P applications have clearly de-

fined roles. For example, consider a buyer-seller ap-
plication, where, say, Peer 1 is the buyer and Peer 2
is the seller. In this scenario, we could use RBAC to
ensure that Peer 1 only has access to the appropri-
ate methods on Peer 2 and visa versa. We consider a
specific P2P application in some detail in Section 3.

2.2 P2P Overview

As the name suggests, a peer-to-peer architecture is
one where every computer on a network is considered
to be on equal footing. This is in contrast to a client-
server architecture, where there are tiers of respon-
sibility and each tier includes machines dedicated to
specific tasks. Peer-to-peer technology has given rise
to powerful and popular applications including file
sharing, instant messaging, web-based meetings, in-
teractive gaming and sharing of comuting resources.

In a P2P architecture, a direct communication
channel can be established between two parties with-
out going through a middle-man. However, this lack
of centralization creates challenges with regard to
how nodes publish and discover resources. There are
various classifications of P2P architectures based on
the discovery mechanism [13].

The lack of central administration also brings
about challenges with respect to access control. That
is, without central administration, it is more difficult
to restrict access to specific resources. Of course, an
application can include a mechanism to restrict access
to resources, but this approach requires the developer
to focus on access control in addition to the develop-
ment task at hand. Such a per-application approach
is undesirable for many reasons, not the least of which
is that it is error prone. It would be preferable if an
access control technology were available that the de-
veloper could directly utilize. The purpose of this pa-
per is to provide such a technology, based on RBAC
and implemented within the open JXTA framework.

There appears to be limited prior work on RBAC
for P2P systems. Tran, et al [12] discuss some issues
related to this problem, but their focus is on measur-
ing and scoring trust within a P2P system that has
strong anonymity protections. The paper of Park
and Hwang [8] is more closely related to the work
presented here. Park and Hwang describe their own
middleware-based architecture for providing RBAC
in a P2P environment. In contrast, our approach is
based on an open standard, JXTA. Also, Park and
Hwang rely on “policy servers” to verify roles, which
makes the P2P application more complex and more
centralized. Our approach requires no such policy
servers.

2.3 JXTA Overview

JXTA—short for “Juxtapose”—is an open standard
for peer-to-peer communications [5]. As illustrated in
Figure 1, JXTA defines and implements a set of pro-
tocols that allow communication and collaboration
between devices on a network.

JXTA, which is maintained as an open-source
project, allows disparate devices to communicate and
interoperate seamlessly. For example, a portable dig-
ital assistant (PDA) may communicate with a server,
and a cell phone may communicate with a PDA, all
using JXTA.

In effect, JXTA creates a logical layer above the
physical layer. That is, a P2P architecture is built
over the physical layer, thereby reducing the com-
plexity of interfacing with the network and physical
layers.

Sun
JXTA
Applications |

JXTA Community Applications

Applications

Sun “indexing | [77
JXTA - Searching Peer
Services °File Sharing || C

JXTA

Services JXTA Community Services

Peer Groups | | Peer Pipes ‘ ‘ Peer Monitoring ‘

JXTA ‘
Core |

Security |

| Any Peer on the Extended Web ‘

Figure 1: JXTA Architecture [5]

JXTA is being used in applications today. For ex-
ample, the National Association of Realtors employs
a JXTA P2P network to interconnect various realtor
databases, enabling a search without importing all
the data into a centralized database.

We now take a look at the basic structure of
JXTA. In particular, we discuss JXTA peers, peer
groups, network transport, services, and advertise-
ments. Here, we only scratch the surface—for more
details see [5] or [7].

The fundamental building block of JXTA is a peer.
In the traditional P2P domain, a peer can be viewed
as an application instance running on a machine.
However, in JXTA a peer is defined slightly more
broadly—a JXTA peer is any node capable of speak-
ing the JXTA protocols [7].

In the non-JXTA world, different P2P applications
use different protocols. For example, all peers in-
volved in instant messaging must speak a particu-
lar protocol (such as ICQ), while peers involved in
file sharing must speak a different protocol (such as
Gnutella). However, in JXTA all peers speak the
same “language”, namely, the set of JXTA protocols.
In JXTA, there is a single P2P network, which is di-
vided into peer groups, where a peer group consists

of a set of peers that provide a common service.

For JXTA peers to communicate, they must first
form a peer group. A peer group is created and de-
tected via peer group advertisements. By default,
the join functionality for a peer group allows ac-
cess to anyone, but this can be customized to be
more restrictive. The default peer group is called the
netPeerGroup, which acts as a bootstrapping mech-
anism to allow a peer to access the capabilities of a
peer group.

The fundamental communication mechanism be-
tween peers is a peer pipe, which provides unidirec-
tional communication from one peer to another. To
communicate using a pipe, a peer must first identify a
source endpoint and a destination endpoint. A pipe
is then bound to these two endpoints. The pipe is
merely a virtual artifact that indicates data is being
transmitted between the two bound endpoints—the
endpoints themselves interface with the network to
transmit data. To implement bi-directional commu-
nication, two pipes are used. The wrapper that is
used to transmit data over a pipe is known, appro-
priately, as a JXTA message.

JXTA services are the functionality provided by
peers. File sharing is an example of a such a service.
Peer services are services provided by a single peer
to other peers on a network. Peer group services are
services provided by a peer group to its members.
Multiple peers in a peer group may provide the same
service.

In JXTA, advertisements are used by peers and
peer groups to make known the services they provide.
Peers, peer groups, pipes, endpoints, and services are
all defined using JXTA advertisements.

At this point, we have covered enough background
information to discuss our RBAC implementation.
But before doing so, we motivate our work by briefly
considering a specific P2P application where RBAC
would be particularly useful.

3 Content Distribution

We now turn our attention to an example applica-
tion that motivates the need for an RBAC capability
within a P2P environment. A similar application is
also used as the model application in [8].

Consider a content distribution application where
a producer works with a distributor to deliver con-
tent to a consumer. This type of application has cer-
tain advantages if implemented over a P2P network.
For example, in a client-server architecture the server
must maintain all content as well as workflow status
and state information. The scalability of the appli-

cation would therefore be limited by the scalability
of the server. However, in a P2P architecture, each
item is only required to pass through the peers that
need to act on it as part of the workflow. In effect, a
P2P implementation distributes the workflow among
the peers.

If the application requires that functionality be di-
vided among different peers based on roles—as in
RBAC—then JXTA puts the onus of defining roles,
defining responsibilities for the roles, and enforcing
system access based on those roles on the application
programmer. This could be cumbersome and error-
prone for an application developer.

By implementing RBAC within the JXTA frame-
work, we can relieve application developers of the task
of implementing the access control, and allow them
to focus on developing the application. This is why
integrating RBAC functionality into JXTA is of value
to application developers.

In our hypothetical content distribution applica-
tion, we have the following roles.

e Content Producer: This role is responsible for
creating the digital content.

e Distributor: The distributer is the “middle-
man” who is responsible for getting content from
the producer and selling it to the consumer.

e Content Consumer: This role discovers and pur-
chases the content.

Using our RBAC implementation, the application
developer would be relieved of dealing with all ac-
cess control issues that are not application-specific.
The developer would simply need to translate specific
roles into role names and translate the corresponding
responsibilities into application-specific methods.

In the next two sections we discuss our JXTA im-
plementation of RBAC. In order to illustrate the im-
plementation, we refer to the above application. It
should be noted, however, that the example applica-
tion in our reference implementation is a relatively
simple arithmetic application [6]. We chose to imple-
ment this particular application simply because it is
easier to verify that the RBAC restrictions are being
properly enforced. Implementing the content distri-
bution application described here would not be sig-
nificantly more challenging.

4 Implementation Overview

Authentication deals with ensuring that a peer is who
he claims to be while authorization deals with ensur-
ing that a peer has access only to those resources

that it should. RBAC only deals with authorization.
Therefore, in our implementation, we assume that
all peers have been properly authenticated. Many
authentication methods already exist in JXTA and
these will not be discussed further in this paper.

For our JXTA implementation of RBAC, we as-
sume that access to a resource is equivalent to access
to a method from a peer pipe. A method is called
remotely over a JXTA socket. A remote method
call object is marshaled and de-marshaled across the
socket. The result is processed on the server peer
and returned to the client peer. This technique is in
alignment with object oriented techniques [2].

We have chosen to use the Extensible Markup Lan-
guage (XML) to configure the RBAC authorization.
Below, we provide two snippets of XML to illustrate
the configuration process. See [4] for further infor-
mation on XML.

Our RBAC framework uses JXTA sockets. JXTA
sockets provide a familiar socket interface on top of
JXTA and provide reliability. However, according to
some sources, a potential drawback of JXTA sock-
ets is relatively low one-way throughput [3]. This is
not an issue with our reference implementation, but
might conceivably create a bottleneck in certain ap-
plications. There are alternatives to JXTA sockets
that can be employed if throughput should become
an issue [3].

Creating a JXTA socket involves passing a pipe
advertisement. JXTA sockets inherit from Java sock-
ets, so sending and receiving objects across the wire
is straightforward since techniques to transfer objects
over sockets are well-known.

Every peer has the ability to request method exe-
cution on another peer as well as to provide the im-
plementation of methods to other peers. In other
words, every peer may act as both a client that makes
a request and as a server that services a request—as
would be expected in a P2P environment.

The following assumptions and restrictions apply
to our RBAC implementation.

e All peers must have the same role definition and
role mapping files before the system is started.
The system enforces that this is the case, but
does not provide a mechanism to distribute the
files to all peers.

e Each peer can only function in one role at a time.
This restriction is for simplicity and convenience
and is not an inherent limitation of our approach.

e During the life of the application, a peer cannot
change roles. This is a significant restriction, but
it greatly simplifies the RBAC implementation.

It is possible to start a new application where
peers have different roles, which somewhat mit-
igates this limitation.

e The peers must agree on the role configuration
information and the peer-to-role mapping. Be-
low, we see that this is not difficult to enforce.

These assumptions allow us to create a simple but
useful RBAC framework. Additional features and
flexibility would tend to complicate the design and
implementation. Since it is generally accepted that
“complexity is the enemy of security” [11], we have
consciously attempted to design a simple, yet useful
system. For more detail on our design choices and
various alternatives, see [6].

Before presenting our implementation in more de-
tail, we want to emphasize that we are not claiming
that RBAC itself is inherently more secure than al-
ternative authorization methods. As discussed above,
given the nature of P2P applications of interest, we
believe that RBAC is a logical approach, which sim-
plifies the burden of configuring and managing autho-
rization. Perhaps it could be argued that this sim-
plicity is itself a security benefit, but it is far from
clear that the savings in complexity are sufficient to
claim any real security advantage. There is, however,
a slightly more subtle security concern that must be
addressed. That is, we must show that our specific
RBAC implementation does not create any security
issues beyond those which are inherent in the nature
of the application and the computing environment.
We briefly address this topic at the end of Section 5.2,
after we have provided more details of our RBAC im-
plementation.

5 Implementation Details

This section covers our RBAC design in greater detail
and provides a closer look at the JXTA implementa-
tion. In our implementation, each peer implements
three components that we refer to as the XML engine,
the RBAC engine and the execution engine. These
are illustrated in Figure 2. Each “engine” is described
in more detail below.

5.1 XML Engine

The XML engine reads XML configuration files that
specify details about security processes. In partic-
ular, these files list the methods that specific roles
can access and the mapping of peers to specific roles.
The XML engine parses these XML files and stores
the results in data structures for use by the peer.

XML Engine Peer

Define roles
Parse XML

!

Execution Engine

Execute methods
Return results

!

RBAC Engine

Enforce security

Figure 2: Peer Components

The process of defining roles consists of the follow-
ing three operations. First, the application program-
mer must define roles and select role names. Next,
the developer must define the methods that each role
implements. We refer to these as the methods that
the role publishes. Finally, the developer must spec-
ify the methods that each role can call. We refer to
these as the methods that the role can access.

Roles are defined in RolesConfiguration.xml.
Necessarily, roles are application-specific. Below is a
sample RolesConfiguration.xml file for the content
distribution application described in the previous sec-
tion.

<?xml version="1.0"7>
<RolesConfig>
<Role>
<rolename>ContentProducer</rolename>
<publishmethod>getContent</publishmethod>
<accessmethod>getRoyalties</accessmethod>
</Role>
<Role>
<rolename>ContentDistributor</rolename>
<publishmethod>searchContent</publishmethod>
<publishmethod>buyContent</publishmethod>
<publishmethod>getRoyalties</publishmethod>
<accessmethod>getContent</accessmethod>
<accessmethod>getPayDetails</accessmethod>
</Role>
<Role>
<rolename>ContentConsumer</rolename>
<publishmethod>getPayDetails</publishmethod>
<accessmethod>searchContent</accessmethod>
<accessmethod>buyContent</accessmethod>
</Role>
</RolesConfig>

In this example there are three roles and five
methods. The roles are ContentProducer, Content-
Distributer, and ContentConsumer, while the five

methods are getContent, getRoyalties, searchCon-
tent, buyContent, and getPaymentDetails.

In the ContentProducer role, the peer provides an
implementation for the getContent method. As its
name implies, this method is responsible for provid-
ing the actual digital content (e.g., digital book, mu-
sic, etc.). The ContentProducer peer would call the
getRoyalties method periodically to settle accounts.

The ContentDistributer peer provides implemen-
tations for the following methods: searchContent,
buyContent, and getRoyalties. The searchContent
method enables the ContentConsumer to find what
they are looking for and the buyContent method pro-
vides the content to the ContentConsumer (presum-
ably, for a fee). The ContentConsumer peer pro-
vides the implementation for the getPaymentDetails
method which provides the necessary payment infor-
mation to settle the transaction.

Apart from defining roles, the mapping be-
tween peer names and roles must be specified.
This is also accomplished using an XML file
called PeerRoleMapping.xml. Again, this map-
ping is application-specific. =~ Below is a sample
PeerRoleMapping.xml file for our content distribu-
tion application.

<?xml version="1.0"7>
<PeerRoleMapping>
<Peer>
<peername>peerl</peername>
<rolename>ContentProducer</rolename>
</Peer>
<Peer>
<peername>peer2</peername>
<rolename>ContentDistributer</rolename>
</Peer>
<Peer>
<peername>peer3</peername>
<rolename>ContentConsumer</rolename>
</Peer>
</PeerRoleMapping>

The interpretation here is clear, that is, Peer 1 is in
the ContentProducer role, Peer 2 is in the Content-
Distributer role, and Peer 3 is in the ContentCon-
sumer role.

To summarize, the access allowed by each
role is defined in RolesConfiguration.xml, while
the mapping of peers to roles is defined in
PeerRoleMapping.xml. Together, these two XML
files define the security policy (with respect to au-
thorization) for the P2P system.

5.2 RBAC Engine

The RBAC engine, which enforces the security policy
for role based access, is the heart of the system. The
following algorithm is used to ensure proper access to
methods based on roles.

1. When a peer is started in JXTA, it is given a

peer name.
2. During initialization = each peer reads
the two XML files discussed above,
namely, PeerRoleMapping.xml and

RolesConfiguration.xml. The purpose of
defining both of these XML files in all peers is
to ensure that all peers are implementing the
same security policy.

3. Both XML files are parsed into specific data
structures which are then wrapped as objects.
Suppose that Peer 1 sends a method execution
request to Peer 2. Then Peer 1 also sends its
version of the XML configuration files to Peer 2.
This is accomplished by sending the objects that
contain the data structures resulting from the
XML parser. Peer 2 then checks to ensure that
the contents of its XML files agree with those it
has received from Peer 1. If the contents vary,
Peer 2 throws a security exception. In this way,
a malicious peer that tries to alter an assigned
role will not be allowed improper access.

4. If the contents of the XML configuration files
agree, then the security engine processes the re-
quest for the method execution. The first part
of this request contains the peer name of the re-
quester. Suppose the requester is Peer 1. Then
Peer 2 obtains the role for Peer 1 from its data
structure. Suppose that the assigned role for
Peer 1 is Role A. The security engine checks the
definition in RolesConfiguration.xml to see if
Role A indeed has the permissions to access the
method it seeks to execute. If the security en-
gine finds that as Role A, Peer 1 cannot access
the method that it seeks to execute, it throws a
security exception.

5. If Peer 1 does have permission to access the
method it wishes to execute, Peer 2 examines
its role and verifies that it indeed publishes the
method that Peer 1 is seeking to access. If Peer 2
does not publish the specified method, a Security
Exception is thrown.

6. If Peer 2 does have permission to provide an im-
plementation of the accessed method, then it ex-

ecutes that method and returns the results to
Peer 1.

We have implemented this algorithm as part of the
JXTA framework. This effectively relieves the appli-
cation develop of the need to deal directly with these
RBAC-specific issues.

Before moving on, we briefly consider two possi-
ble attacks on the algorithm, above. First, suppose
that Peer 1 in Role A wants to convince Peer 2 to
give it access to a resource that is only available in
Role B. Peer 1 could change its XML configuration
file, RolesConfiguration.xml, to show that Peer 1 is
in Role B. Then Peer 1 could send this altered XML
file to Peer 2. However, before Peer 2 would allow
Peer 1 access in Role B, Peer 2 would check its own
RolesConfiguration.xml file and discover an incon-
sistency with the file received from Peer 1. As stated
in 3., above, this would result in a security exception.
Consequently, a successful “attack” on a remote peer
requires the cooperation of the remote peer. But this
cannot be considered an attack, since the remote peer
can always provide the requested information outside
of the given security system. In other words, if the
local host and remote host collude, they can work
outside of the authorization scheme, and thereby by-
pass any security it provides.

On the other hand, Peer 1 can change its role from,
say, Role A to Role B when requesting a local re-
source. This would succeed because in this case,
Peer 1 only checks its own XML configuration file.
However, it is generally infeasible to prevent a client
from “attacking” itself—regardless of the access con-
trol method employed. That is, any authorization
scheme would be vulnerable to an analogous attack.
In other words, this attack does not reveal a flaw in
our system. In fact, to limit the damage of such at-
tacks the client would need a strong “self-defense”
mechanism, which naturally leads into the realm of
digital rights management (DRM), a discussion of
which is beyond the scope of this paper; see [1, 10, 11]
for more information.

Other attack scenarios could be considered, but
these are the most obvious concerns for our RBAC
system. As indicated above, our system is as secure
against these attacks as could be expected, given the
limitations imposed by the application and the com-
puting environment.

5.3 Execution Engine

The execution engine consists of a set of classes that
use the JXTA protocols and sockets to enable com-
munication between peers. The purpose of this com-

munication is to transmit method execution requests
and send results in support of the security engine.

6 Conclusion and Future Work

We discussed a technique for implementing RBAC
in a P2P system and we outlined an implementation
within the JXTA framework. See [6] for additional
details on various aspects of the design and imple-
mentation of our RBAC framework, including class
diagrams, sequence diagrams, test results, etc.

Using our RBAC framework, a developer only
needs to specify two XML configuration files and
write the necessary application-specific code for each
role. Having done so, our RBAC implementation will
enforce the security policy without further effort on
the part of the developer. If utilized properly, this
technique should provide a relatively transparent and
secure authorization regime for P2P applications.

Possible enhancements and future work include the
following.

e The ability to load balance across multiple peers
implementing the same role would be desirable.
This could be accomplished by simply having the
peer that is attempting to connect to a remote
peer randomly choose from those peers providing
the required role.

e The ability to have a peer change roles at run
time would allow for a peer to be in a role for
the minimum amount of time required. This
would better support the concept of least privi-
lege. However all peers would need to agree on
the change and update their roles files accord-
ingly. This level of coordination would signifi-
cantly complicate the implementation.

e A performance analysis of the system for large
numbers of objects and large numbers of peers
has not been conducted.

e Finally, a DRM application that uses our RBAC
P2P framework would be an interesting project.
Our approach seems particularly well-suited for
use in conjunction with Microsoft’s Next Gener-
ation Secure Computing Base (NGSCB) [1, 11].

References

[1] R. Anderson, ‘Trusted computing’ FAQ, at
www.cl.cam.ac.uk/"rjald/tcpa-faq.html

[2] J. Barkley, Implementing role based access con-
trol using object technology, First ACM Work-
shop on Role-Based Access Control, 1995

[3] E. Halepovic and R. Deters, JXTA messaging:
analysis of feature-performance tradeoffs, De-
partment of Computer Science, University of
Saskatchewan, Saskatoon Canada

[4] E. R. Harold and W. S. Means, XML in a Nut-
shell, Third Edition, O’Reilly, 2004

[6] JXTA website, www. jxta.org

[6] A. Mathur, Incorporating role based access con-
trol into the JXTA peer-to-peer infrastructure,
Masters thesis, Department of Computer Sci-
ence, San José State University, 2005

[7] S. Oaks, B. Traversat, L. Gong, JXTA in a Nut-
shell, O’Reilly, 2002

[8] J. S. Park and J. Hwang, Role-based access
control for collaborative enterprise in peer-to-
peer computing environments, 8th ACM Sym-
posium on Access Control Models and Technolo-
gies, Como, Italy, June 2-3, 2003

[9] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman, Role-based access control models,
IEEE Computer, Vol. 29, no. 2, pp. 3847, 1996

[10] M. Stamp, Digital rights management: the tech-
nology behind the hype, Journal of Electronic

Commerce Research, Vol. 4, No. 3, 2003

[11] M. Stamp, Information Security: Principles and

Practice, John Wiley & Sons, Inc., 2005

H. Tran, M. Hitchens, V. Varadharajan, and
P. Watters, A trust based access control frame-
work for P2P file sharing systems, Proceedings
of the 38th Hawaii International Conference on
Systems Sciences, 2005

[12]

Wikipedia, the free encyclopedia, peer-to-peer,
at en.wikipedia.org/wiki/Peer-to-peer

