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Abstract: Static analysis relies on features extracted without executing code, while dynamic analysis extracts features 
based on execution (or emulation). In general, static analysis is more efficient, while dynamic analysis can be 
more informative, particularly in cases where the code is obfuscated. Static analysis of an Android application 
can, for example, rely on features extracted from the manifest file or the Java bytecode, while dynamic 
analysis of such applications might deal with features involving dynamic code loading and system calls. In 
this research, we apply machine learning techniques to analyze the relative effectiveness of particular static 
and dynamic features for detecting Android malware. We also carefully analyze the robustness of the scoring 
techniques under consideration.

1 INTRODUCTION 

According to a recent report by International Data 
Corporation, Android dominates the smartphone 
market, with a market share of 88.2% as of 2015 and 
more than 1.4 billion active Android phone users1. 
This large market for smartphones has not gone 
unnoticed by cybercriminals (Spreitzenbarth, 2014). 
There are many third party stores for Android 
applications, and it has become common for 
cybercriminals to repackage legitimate Android 
applications to include malicious payloads. 
Smartphone malware can come in many forms, 
including Trojans, botnets, and spyware. Such 
applications are created with malicious intent, and 
can, for example, acquire a user’s private data (Saudi, 
2015). 

Reports estimate that during the 2010 to 2014 
timeframe, the number of mobile malware applica-
tions grew exponentially, and most of this malware 
targeted Android systems. Figure 1 shows the 
increase in the number of total mobile malware 
applications and the share of these that are Android 
malware2,3. According to a report by Kaspersky Labs, 

                                                            
1 http://www.idc.com/prodserv/smartphone-os-market-

share.jsp 
2 https://www.juniper.net/us/en/local/pdf/additional-

resources/jnpr-2011-mobile- threats-report.pdf 
3 http://www.idc.com/prodserv/smartphone-os-market-

share.jsp 

there were 291,800 new mobile malware programs 
that emerged in the second quarter of 2015 alone, 
which is 2.8 times more than in the first quarter. In 
addition, there were one million mobile malware 
installation packages in the second quarter, which is 
seven times greater than the number in the first 
quarter4. 

 

Figure 1: Growth of Mobile Malware. 

Due to this alarming increase in the number of 
Android malware applications, the analysis and 

4 http://www.kaspersky.com/about/news/virus/2015/ 
Kaspersky-Lab-Reporting-Mobilemalware-has-grown-
almost-3-fold-in-Q2-andcyberespionage-attacks-target-
SMB-companies 

Kapratwar, A., Troia, F. and Stamp, M.
Static and Dynamic Analysis of Android Malware.
DOI: 10.5220/0006256706530662
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 653-662
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

653



detection of Android malware has become an 
important research topic. Many Android malware 
detection and classification techniques have been 
proposed and analyzed in the literature, some of 
which we briefly review later in this paper. 

To collect the features used to analyze malware, 
we can rely on static or dynamic analysis—or some 
combination thereof. Static analysis relies on features 
that are collected without executing the code. In 
contrast, for dynamic analysis we execute (or 
emulate) the code. Static analysis is usually more 
efficient, since no code execution is required. 
Dynamic analysis can be more informative, since we 
only analyze code that actually executes. However, 
with dynamic analysis we may not not see all 
execution paths, which can limit our overall view of 
the code. 

Static analysis of Android malware can rely on 
Java bytecode extracted by disassembling an 
application. The manifest file is also a source of 
information for static analysis. One specific 
disadvantage of such static analysis is that it is blind 
to dynamic code loading, that is, static analysis fails 
to deal with parts of the code that are downloaded 
during execution. In contrast, dynamic analysis can 
examine all code that is actually executed by an 
application. 

In this paper, we consider Android malware 
detection based on static and dynamic features. The 
static features we consider are based on permissions 
extracted from the manifest file, while our dynamic 
analysis is based on system calls extracted at runtime. 
We analyze the effectiveness of these techniques 
individually and in combination. We also perform a 
robustness analysis, and carefully consider the 
interplay between the static and dynamic features. 

This paper is organized as follows. In Section 2, 
we discuss relevant background topics, including a 
brief overview of the Android operating system, a 
brief literature survey, and a high level view of the 
machine learning techniques used in this research. 
Section 3 discusses the dataset used and our 
methodology for extracting static and dynamic 
features. Section 4 provides our experimental results. 
Finally, in Section 5 we give our conclusion and 
suggestions for the future work. 

                                                            
5  https://os.itec.kit.edu/downloads/sa_2010_braehler-ste 
fan_android-architecture.pdf 
6 https://source.android.com/devices/#Linuxkernel 

2 BACKGROUND 

In this section, we discuss relevant background 
topics. Our focus here is on previous related work, 
while we also give an overview of the Android OS, 
we take a brief look at different types of Android 
malware from a high-level perspective, and we 
discuss the various machine learning techniques that 
are used in our analysis. 

2.1 Overview of Android OS 

Figure 2 illustrates the Android software stack, where 
the items in green are the written in C/C++ while the 
blue items are written in Java and executed using the 
Dalvik VM5. The Android Linux Kernel is a modified 
Linux Kernel which includes wake locks, binder IPC 
drivers, and other features that play a critical role in a 
mobile embedded platform6. The libraries plays a role 
in optimizing CPU usage, memory consumption, and 
also contains the audio and video codecs for the 
device. 

 

Figure 2: Android architecture (Abah, 2015). 

The Android runtime layer consists of the Dalvik 
virtual machine and core Java libraries. During an 
Android application compilation, the Java bytecode is 
converted into Dalvik bytecode using dx tool, which 
is executed on the Dalvik virtual machine. The Dalvik 
virtual machine is more powerful than the Java 
Virtual Machine in terms of multitasking capabilities. 

The application framework is an abstract layer 
used to develop applications that rely on the under- 
lying reusable libraries and packages. Some major 
components of this layer include the following7. 

7 http://developer.android.com/guide/topics/manifest/mani 
fest-intro.html 
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• The Activity Manager provides an interface 
for the users to interact with the applications. 

• The Intent/Notification Manager deals with 
messaging objects to facilitate interprocess 
communication with components. 

• The Content Manager provides an interface to 
connect data in one process with code running 
in another process. 

• The Telephony Manager deals with telephony 
related information, such as the International 
Mobile Station Equipment Identity (IMEI) 
number. 

Applications are built on top of the Application 
framework, which provides for interaction between 
users and the device. Applications are distributed as 
android package (apk) files. An apk file is a signed 
zip archive file that includes a classes.dex file, 
external libraries, and the AndroidManifest.xml. This 
manifest file describes the abilities or privileges 
granted to the application, and also provides 
information about various application components. 
For example, the activities, services, intents, and 
broadcast receivers must be declared in this xml file. 
For our purposes, the most important aspect of the 
manifest is that it contains a list of permissions, which 
allows the application to access certain device 
components. These permissions are explicitly granted 
by the user at install time. 

2.2 Android Malware 

Android malware applications primarily consist of 
Trojans. A typical Android Trojans might trick the 
user by using icons or user interfaces that mimic a 
benign application. Android Trojans often display a 
service level agreement during installation which 
obtains permissions to access a user’s personal 
information, such as the phone number. The Trojan 
can then, for example, send SMSs to premium rate 
numbers in the background. 

Android Trojans are also often used as spyware. 
Such malicious applications can gain access to a 
user’s private information and send it to a private 
server. The main purpose of such spyware is to steal 
information such as phone location, bank or credit 
card details, passwords, text messages, contacts, 
on-line browsing activity, and so on. A more 
sophisticated implementation might also include 
botnet capabilities. 

                                                            
8 https://weka.wikispaces.com/ARFF+%28book+ 
version%29 

2.3 Related Work 

In the research by Feng, et al. (Feng, 2014), the 
authors develop Appopscopy, a semantic language- 
based signature detection strategy for Android. In this 
approach, general signatures are created for each 
malware family. Signature matching is achieved 
using inter-component call graphs based on control 
flow properties. Further, the results are enhanced 
using static taint analysis. However, this approach 
seems to be fairly weak with respect to code 
obfuscation and dynamic code loading. 

In the research by Fuchs, el al. (Fuchs, 2009), the 
authors analyze a tool that they call Scandroid. This 
scheme extracts features based on data flow. Zhou, et 
al. (Zhou, 2012a), analyze permissions and apply 
heuristic filtering to detect Android malware. 

Abah, et al. (Abah, 2015), propose an approach 
that relies on a k-Nearest Neighbor classifier. The 
features collected include incoming and outgoing 
SMS and calls, device status, running applications 
and processes, and so on. In the research by Aung, et 
al. (Aung, 2013), the authors propose a framework 
that relies on machine learning algorithms based on 
features obtained from Android events and 
permissions. 

Aphonso, et al. (Afonso, 2015), propose a 
dynamic analysis technique that relies primarily on 
the frequency of system calls and API calls. The main 
drawback of this approach is that it can detect mal-
ware only in cases where the application meets 
certain API level. 

Taintdroid (Enck, 2014) is another dynamic 
analysis system. This approach analyzes network 
traffic to search for anomalous behavior. Finally, 
Maline (Dim-Jasevic, 2015) is another dynamic 
detection tool based on Android system call analysis. 

2.4 Machine Learning Algorithms 

In this section, we briefly describe the categories of 
machine learning algorithms used in this research. 
For all of these algorithms, we have used the Weka8 
implementation. 

2.4.1 Random Forest 

Decision trees are one of the simplest learning 
techniques. However, a decision tree tends to overfit 
the training data, since it is a literal interpretation of 
the data, and provides no generalization of the 
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training set. To partially alleviate this problem, 
multiple decision trees can be used, where each is 
trained on a subset of the training data. A random 
forest takes this idea one step further by also training 
on subsets of the classifiers (Breiman, 2013). 
Although much of the inherent simplicity of decision 
trees is lost in this process, random forests have 
proved to be a very strong machine learning 
technique over a wide variety of applications. 

2.4.2 J.48 

The J.48 algorithm is based on a specific implementa-
tion of the decision tree algorithm known as C4.5 
(Ruggieri, 2000). In this algorithm, a node for the tree 
is created by splitting the dataset, where the data with 
highest information gain is chosen at each step. 

2.4.3 Naïve Bayes 

Naïve Bayes is a classic statistical discrimination 
technique, the key aspect of which is the assumption 
that all features are independent of each other9. 
Although this is unlikely to be true in reality, it greatly 
simplifies the computations, and Naïve Bayes has 
proven highly successful in many applications. 

2.4.4 Simple Logistic 

Simple Logistic is an ensemble learning algorithm. 
To evaluate the base learners, this approach utilizes 
logistic regression (Shalizi, 2016), using simple 
regression functions. Similar to linear regression, it 
tries to find a function that will fit the training data 
well by computing the weights that maximize the log-
likelihood of the logistic regression function. 

2.4.5 Sequential Minimal Optimization 

The Sequential Minimal Optimization (SMO) 
technique is a specific implementation of Support 
Vector Machines (SVM) used in Weka. In SVM, the 
classification is determined based on a separator 
between two classes of labeled training data. In SVM, 
we maximize the “margin”, i.e., the separation 
between the labeled training sets. Another feature of 
SVM is the so-called kernel trick, where data is, in 
effect, mapped to a higher dimensional space—with 
more space to work in, it is likely to be much easier 
to separate the training data. The SMO classifier uses 
either a Gaussian or a polynomial kernel (Guptil, 
2013).  

                                                            
9 http://software.ucv.ro/˜cmihaescu/ro/teaching/AIR/docs/ 
Lab4-NaiveBayes.pdf 

2.4.6 IBk 

The IBk algorithm is an example of a lazy learner. 
This instance-based learner saves all of the training 
samples and compares the test samples to each of the 
members of the training set until it finds the closest 
match. This algorithm is Weka’s version of the well-
known k-nearest neighbor classifier10. The Weka 
implementation of IBk uses Euclidean distance as the 
default distance measure. 

3 METHODOLOGY 

This section describes the Malware and benign 
dataset used in the project and the methodology used 
to extract features from the dataset. We also discuss 
various implementation details of our approach. 

3.1 Datasets 

Since there does not appear to be a standard Android 
benign dataset, we generated our own. Our benign 
dataset application files were collected from the 
Google Play Store, which is considered relatively 
unlikely to contain malware applications. Further, 
each benign application was classified as such using 
Virustotal11, a service which aggregates information 
from multiple antivirus engines, website scanners, 
and URL analyzers. 

The malware dataset used in this research was 
acquired from the authors of Drebin (Arp, 2014). This 
dataset consists of applications obtained from various 
secondary Android markets, Android websites, 
malware forums, security blogs, and the Android 
Malgenome Project (Zhou, 2012b). Each element of 
the malware dataset was classified as mal- ware based 
on results from Virustotal. Table 1 gives the numbers 
of applications in our datasets. 

Table 1: Dataset Description. 

Application Number 
Malware
Benign 

103 
97 

3.2 Feature Extraction 

We extracted static and dynamic features. First, we 
discuss the static case, and then we turn our attention 
to the more complex dynamic case. 

10 http://www.statsoft.com/Textbook/kNearest-Neighbors 
11 https://www.virustotal.com 
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3.2.1 Static Analysis 

As mentioned above, an Android application is in the 
form of an Android package, or apk, archive, which 
is a zip bundle. The apk archive includes the 
manifest, along with various other resources and 
folders. To extract the features of interest, we first 
need to reverse engineer the apk files, which we 
accomplished using the APK tool in Virustotal. 

The file AndroidManifest.xml contains 
several features that could possibly be used for static 
analysis. Here, we focus on the permissions requested 
by the application. The AndroidManifest.xml 
contains a list of all permissions required by the 
application. Android uses a proprietary binary xml 
format, so we designed our own custom xml parser to 
extract the permission features from 
AndroidManifest.xml files. 

There are a total of 135 Android permissions. We 
construct a binary feature vector from the extracted 
permissions. We denote this feature vector as R = (r1, 
r2, . . . , r135), where 

1 if the ith permission is present 
ri = 

0 otherwise. 
(1)

Given an Android application the following steps 
describe the process we use to extract the permissions 
features. 

1. Reverse engineer the Android application. 
This reverse engineering is achieved using the 
APK tool in Virustotal12. 

2. Extract the permissions requested from the 
AndroidManifest.xml file using our custom 
xml parser. 

3. Generate a binary feature vector, as in (1). 
4. Finally, we built a permission vector dataset 

for all the applications in our dataset store it in 
an ARFF13 file format. 

Of the 135 possible permissions, many were never 
requested in any of the Android applications in our 
datasets. These permissions were removed from 
consideration, since they contribute nothing to the 
analysis. Furthermore, some features (i.e., 
permissions) provide little or no useful information. 
Thus, to further reduce the length of our feature 
vectors, we have used feature selection based on a 
straightforward information gain calculation, which 
we now describe. 

 

                                                            
12 https://www.virustotal.com 

Table 2: Permissions and Entropy Scores. 

Information Gain Permission 

0.3507 MOUNT UNMOUNT FILESYSTEMS 

0.2372 MANAGE DOCUMENTS 

0.2051 READ PHONE STATE 

0.1516 INSTALL LOCATION PROVIDER 

0.1089 SET WALLPAPER 

0.0995 VIBRATE 

0.0922 WRITE CALL LOG 

0.0838 WAKE LOCK 

0.0813 SET PREFERRED APPLICATIONS 

0.0722 REQUEST IGNORE 
BATTERY OPTIMIZATIONS

The information gain of each permission is 
calculated as 

gain(c, ri) = entropy(c) − entropy(c| ri) 

where c is the label (i.e., either malware of benign) 
and ri is the ith permission feature. Here entropy(c) is 
the information entropy. Table 2 shows the list of the 
top ten permissions (with respect to information gain) 
and their corresponding information gain. Note that 
higher values indicate more information is gained 
from the given attribute. 

After eliminating permissions that never appeared  
and those that resulted in no information gain, we 
obtained a subset of 99 permissions. Further 
experiments enabled us to reduced these 99 non-
redundant permissions. We found that using the top 
87 permissions (with respect to information gain) we 
obtained the best results (based on the AUC, as 
discussed in Section 4.1, below), and hence we use a 
feature vectors of length 87 in all experiments 
reported below. 

For example, a reduced permissions vector from 
one of the files in our malware dataset is given by 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 1, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 

As another example, a reduced permissions vector 
from our benign dataset is given by 

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 
0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 1, 0, 0,1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,0, 1, 0, 0, 0, 0, 1, 
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 

13 https://weka.wikispaces.com/ARFF+%28book+version 
%29 
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3.2.2 Dynamic Analysis 

As expected, an Android application interacts with 
the operating system through system calls. We have 
extracted system calls using dynamic analysis. To 
achieve this, we have made use of the Android 
emulator that is included with Android Studio14. Each 
Android application in our dataset has been executed 
in a separate emulator, with the frequency of each 
system call recorded. 

We connect to the emulator instance using the 
Android Debug Bridge (ADB)15, which is a command 
line tool found in the Android SDK. The ADB comes 
with a so-called Monkey Runner16, which can be used 
to emulate random UI interactions. These events 
include clicks, volume interactions, touches, and so 
on, which trigger system calls. We record the result-
ing system calls using the monitoring tool Strace17 

In detail, the emulation and data collection 
consists of the following steps. 

1. Open the AVD Manager in Android Studio 
and click on Create New Device. This creates 
an emulator instance and runs it. 

2. After the emulator is running, we open the 
terminal and navigate to the platform tools 
folder of the Android SDK. There we enter 
adb help to verify that the ADB is working 
as expected. 

3. Next, we issue the command adb devices 
which lists the emulator ID that is running. 

4. Assuming the Android application is named 
ApplicationName.apk, we give the 
command  

adb install ApplicationName.apk  

(via a batch file). At this point, we can verify 
that the application file has been installed in 
the emulator. 

5. Next, we enter the emulator shell by typing  
adb -s emulator-5646 shell 

at the terminal. 
6. We launch the application and check the 

process ID using the command  
ps <package name>. 

7. The command 
strace -P <ProcessID> -c -o 

<path in emulator>Filename.csv 

<package name> 

begins the recording of system calls.  

                                                            
14 http://developer.android.com/tools/studio/ 
15 http://developer.android.com/tools/help/adb.html 

8. We start Monkey Runner using the command 
adb shell -p <package name> -v 500 -s 42. 

As mentioned above, this generates random 
events through the user interface. Simultaneously, 
Strace will record the frequency count of the sys- 
tem calls that are generated. 
9. After the Monkey Runner instance stops, we 

ex- tract the log file using the command 
adb pull <path in emulator> 

<path in destination>. 

Of course, the precise sequence of system calls 
generated will vary, depending on the random selec- 
tion made by the Monkey Runner. However, the fre- 
quency of the various system calls is relatively stable 
for a given application. 

The frequency representation of system calls car- 
ries information about the behavior of the applica- 
tion (Burguera, 2011). A particular system call may 
be utilized more in a malicious application than in a 
benign application, and the system call frequency rep- 
resentation is intended to capture such information. 

Let C = (c1, c2, . . . , cn) be the set of possible sys- 
tem calls available in the Android OS. Then element 
i in our system call feature vector contains the count 
for the number of occurrences of system call ci. For 
example, such a system call vector extracted from one 
instantiation of one of our benign applications is 

0,0,0,0,0,0,0,2500,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1500,0,0,0,0,0,0,1100, 
0,0,0,0,0,0,0,800,0,0,0,0,1,32,0,0,753,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0, 
0,0,60,0,0,0,90,0,0,0,0,0,0,0,1,0,0,0,0,298,0,0,966,0,56,0,0,0,0,0,0,0,0, 
756,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,150,0,0,0,0,0,0,110,0,0,0,0,0,0,0,0,0, 
0,0,0,1,0,0,0,660,0,0,0,0,0,0,0,0,0,0,0,0,55,0,0,0,0,0,60,0,0,0,0,0,0,0,0, 
0,0,0,1,0,0,0,0,298,0,0,0,87,1,0,0,0,0,0,0,0,0,82,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,1500,0,0,0,0,0,0,1250,0,0,0,0,0,0,0,885,0,0,0,0,65,0,0,0,0,0,0,0,25, 
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,298,0,0,0,82,1,0, 
8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2580,0,0,0,0,0,0,1100,0,0,0, 
0,0,0,0,800,0,0,0,0,1,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0, 
900,0,0,0,0,0,0,0,1,0,0,0,0,0,0,426,0,0,65 

A system call vector from one of the Android 
malware application in our dataset is given by 

0,0,0,0,0,0,0,8400,0,0,0,0,0,110,0,0,0,0,0,0,0,0,0,1500,0,0,0,0,0,0,1100, 
0,0,0,0,0,0,0,800,0,0,0,0,1,32,0,0,6523,0,0,0,368,0,0,0,0,0,0,0,0,1,0,0,0, 
0,0,60,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,298,0,0,966,0,5600,0,0,0,0,0,0,0,0, 
756,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,150,0,0,0,0,0,0,110,0,0,0,0,0,0,0,0,0,0,0, 
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5865,0,0,0,0,0,600,0,0,0,0,0,0,0,0,0,0,0, 
1,0,0,0,0,298,0,4260,0,0,0,0,0,0,0,0,0,0,0,82,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
1500,0,0,0,0,0,0,1250,0,0,0,0,0,0,0,885,0,0,0,0,6500,0,0,0,2238,0,0,0,250, 
0,0,0,0,62,0,0,1,0,0,0,0,0,60,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,298,0,5024,0, 
8785,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1500,0,0,0,0,0,0, 
1100,0,0,0,0,0,0,0,800,0,0,0,0,0,252,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,98,0,426,0,0,855 

  

16 http://developer.android.com/tools/help/monkey.html 
17 http://linux.die.net/man/1/strace 
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Table 3: System Configurations. 

 

4 EXPERIMENTS 

We conducted several sets of experiments. First, we 
carried out experiments to compare the effectiveness 
of various machine learning algorithms in the 
Android malware detection context. Second, the 
effectiveness of classification based on the dynamic 
system call frequency data was analyzed. Third, the 
effectiveness of classification based on the static 
analysis of permissions data was evaluated. Finally, 
experiments were carried out based on combined 
permission and system call data. Furthermore, in each 
of the latter three cases, we carefully quantify the 
robustness of the scoring technique. 

All experimental results given in this paper are 
based on 10-fold cross validation. That is, our mal- 
ware set is randomly partitioned into 10 subsets, say, 
S1, S2,..., S10. Then subsets S2 through S10 are used 
for training, with subset S1 and the benign set 
reserved for testing. This training and scoring process 
is repeated nine more times, with a different subset 
reserved for testing in each iteration. The scoring 
results from all 10 “folds” are accumulated and 
considered together as one experiment. Cross 
validation serves to reduce the effect of any bias in 
the data, and it also maximizes the number of scores 
obtained from a given dataset. 

The system configuration used for all of the 
experiments reported in this paper is given in Table 3. 

4.1 Evaluation Metric 

To evaluate the success of our experiments, we rely 
on the area under the ROC curve (AUC). Given a 
 

Table 4: Comparison of Machine Learning Algorithms. 

 

scatterplot of scores for benign and malware cases, an 
ROC curve is a graph of the true positive rate (TPR) 
versus the false positive rate (FPR) as the threshold 
varies through the range of scores. An AUC of 1.0 
indicates the ideal case, where there exists a thresh- 
old that completely separates the benign and malware 
scores, while an AUC of 0.5 indicates that the binary 
classifier is no better than flipping a coin. In general, 
the AUC can be interpreted as the probability that a 
randomly selected positive instance scores better than 
a randomly selected negative instance (Hand, 2001). 
One advantage of the AUC as compared to measuring 
accuracy is that no explicit thresholding is required 
when computing the AUC. In fact, the AUC takes all 
possible thresholds into account. 

4.2 Results 

In this section, we first compare various machine 
learning algorithms. Then we turn our attention to 
detailed analyses of detection based on static, 
dynamic, and combined feature sets. 

4.2.1 Comparison of Machine Learning 
Algorithms 

Table 4 shows the AUC values of different algorithms 
available on Weka based on (dynamic) system calls 
and (static) permissions. This same information is 
given in the form of a bar graph in Figure 3. 

From these results, we see that a Random Forest 
with 100 trees gives the best results. Consequently, 
we use this algorithm in the remainder of the 
experiments reported in this paper. 

4.2.2 System Calls and Permissions Analysis 

To analyze system calls, we train on the dynamically 
extracted feature vector containing system call 
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Figure 3: AUC Comparison of Machine Learning Algorithms. 

frequencies. The feature extraction process is 
described above in Section 3.2.2. For this experiment, 
we obtain an AUC of 0.884, which implies that the 
system calls feature alone does not yield particularly 
strong detection result. 

We also evaluated our (static) permission feature 
in a similar manner. Recall that this feature extraction 
process is described in Section 3.2.1. In this case, we 
obtain an AUC of 0.972. This results is quite strong 
and shows that a fairly simple static feature can be 
used to detect Android malware with high accuracy. 

4.2.3 Robustness Analysis 

Next, we want to analyze the robustness of each of 
these scoring techniques—individually, and in 
combination. Here, we mimic the effect of a malware 
developer who tries to make the permissions and 
system calls of Android malware look more similar to 
those of a benign application. Since the number of 
permissions and system calls tends to be much larger 
in mal-ware applications, we analyze the robustness 
of our scoring techniques when these numbers are 
reduced in the malware applications. 

The results in Figure 4(a) show the effect of 
reducing the number of permissions. The analogous 
results for system calls are given in Figure 4(b). 

As can be seen from Figure 4, reducing the 
number of system calls has a limited effect, while 

even a slight reduction in the number of permissions 
can have a large effect. 

The static and dynamic features considered here 
can easily be combined, and hence it is important to 
analyze their robustness in combination. This 
experiment has been conducted, with the results given 
in the form of 3-dimensional graph in Figure 5. 

From the results in Figure 5, we can clearly see 
the interplay between permissions and system calls is 
somewhat more complex than might be expected 
from merely viewing the permissions and system 
calls independently, as in Figure 4. While it is 
necessary that the malware writer reduce the number 
of permissions, unless this is accompanied by a 
significant reduction in the number of system calls, 
fairly strong detection results can still be obtained in 
the combined case. 

5 CONCLUSION AND FUTURE 
WORK 

For Android malware detection, we have observed 
that a simple static feature based on permissions is 
significantly more informative than a dynamic feature 
based on system calls. This is, perhaps, somewhat 
surprising, since in much of the malware detection 
literature, system calls are treated as essentially the  
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Figure 4: Robustness of Permissions and System Calls Separately. 

“gold standard” for detection (Tamada, 2007; 
Vemparala, 2016; Wang, 2009). 

The robustness analysis in this paper shows that 
even a slight reduction in the number of permissions 
can have a substantial benefit, from the malware 
writer’s perspective. Furthermore, although the 
dynamic system call feature is not particularly strong, 
it is relatively robust, so that it can serve a useful 
purpose when combined with other features. 

For future work, the combined feature set can be 
evaluated using other machine learning techniques. 
Also, our dynamic features were collected using 
Monkey Runner, which could fail to execute the 
malicious parts of the code. A more intelligent 
approach to extracting the system calls might yield 
stronger detection results—at the cost of greater 
complexity and more work. 

 
Figure 5: Robustness of System Calls and Permissions in 
Combination. 
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