
 PKZIP Stream Cipher 1

PKZIP

 PKZIP Stream Cipher 2

PKZIP
 Phil Katz’s ZIP program
 Katz invented zip file format

o ca 1989
 Before that, Katz created PKARC utility

o ARC compression was patented by SEA, Inc.
o SEA successfully sued Katz

 Katz then invented zip
o ZIP was much better than SEA’s ARC
o He started his own company, PKWare

 Katz died of alcohol abuse at age 37 in 2000

 PKZIP Stream Cipher 3

PKZIP
 PKZIP compresses files using zip
 Optionally, it encrypts compressed file

o Uses a homemade stream cipher
o PKZIP cipher due to Roger Schlafly
o Schlafly has PhD in math (Berkeley, 1980)

 PKZIP cipher is susceptible to attack
o Attack is nontrivial, has significant work factor,

lots of memory required, etc.

 PKZIP Stream Cipher 4

PKZIP Cipher
 Generates 1 byte of keystream per step
 96 bit internal state

o State: 32-bit words, which we label X,Y,Z
o Initial state derived from a password

 Of course, password guessing is possible
o We do not consider password guessing here

 Cipher design seems somewhat ad hoc
o No clear design principles
o Uses shifts, arithmetic operations, CRC, etc.

 PKZIP Stream Cipher 5

PKZIP Encryption
 Given

o Current state: X, Y, Z (32-bit words)
o p = byte of plaintext to encrypt
o Note: upper case for 32-bit words, lower case bytes

 Then the algorithm is…
k = getKeystreamByte(Z)
c = p ⊕ k
update(X, Y, Z, p)

 Next, we define getKeystreamByte, update

 PKZIP Stream Cipher 6

PKZIP getKeystreamByte
 Let “∨” be binary OR
 Define 〈X〉i…j as bits i thru j (inclusive) of X

o As usual, bits numbered left-to-right from 0
 Shift X by n bits to right: X >> n
 Then…

getKeystreamByte(Z)
t = 〈Z ∨ 3〉16…31

k = 〈(t ⋅ (t ⊕ 1)) >> 8〉24…31

return(k)
end getKeystreamByte

 PKZIP Stream Cipher 7

PKZIP update
 Given current state X, Y, Z and p

update(X, Y, Z, p)
X = CRC(X, p)
Y = (Y + 〈X〉24…31) ⋅ 134775813 + 1 (mod 232)
Z = CRC(Z, 〈Y〉0…7)

end update
 CRC function defined on next slide

 PKZIP Stream Cipher 8

PKZIP CRC
 Let X be 32-bit word, b a byte

CRC(X, b)
X = X ⊕ b
for i = 0 to 7

if X is odd
X = (X >> 1) ⊕ 0xedb88320

else
X = (X >> 1)

end if
next i
return(X)

end CRC

 PKZIP Stream Cipher 9

CRCTable and CRCinverse
 For efficiency, define CRCtable so that

CRC(X,b) = 〈X〉0…23⊕ CRCtable[〈X〉24…31⊕ b]

 Inverse table, CRCinverse, exists in the
following sense:

 If B = 〈A〉0…23⊕ CRCtable[〈A〉24…31⊕ b]
 Then A = (B << 8) ⊕ CRCinverse[〈B〉0…7] ⊕ b
 Inverse table is useful in attack

 PKZIP Stream Cipher 10

Lists
 Let (Xi,Yi,Zi) be internal state used to

generate ith keystream byte
 Let ki be the ith keystream byte
 Let pi be ith plaintext byte
 Define “X-list” to be X0,X1,…Xn

o Note that n+1 elements in this list

 Similar definition for k-list, p-list, etc.

 PKZIP Stream Cipher 11

Outline of PKZIP Attack
 Assume k-list and p-list are known

o This is a known plaintext attack
 Want to find state (Xi,Yi,Zi) for some i

o Then all keystream bytes are known
 Executive summary of the attack

1. Use k-list to find a set of Z-lists
2. For each Z-list, find multiple Y-lists
3. For each Y-list, use p-list to obtain one X-list
4. True X-list is among X-lists in 3. Find X-list using

p-list. From X-list, obtain state and keystream
 Details of steps 1 thru 4 on following slides

 PKZIP Stream Cipher 12

Step 1: Z-lists
 Assume keystream bytes k0,k1,…,kn known
 Keystream byte ki computed as

ki = 〈(t ⋅ (t ⊕ 1)) >> 8〉24…31

Where t = 〈Zi ∨ 3〉16…31

 Given kn, there are 64 possible t
o Due to the “∨ 3”

 This gives 64 putative 〈Zn〉16…29

 Similarly, we find 64 putative 〈Zn−1〉16…29

 PKZIP Stream Cipher 13

Step 1: Z-lists
 Have 64 putative 〈Zn〉16…29 and 〈Zn−1〉16…29

 Implies there are 222 putative 〈Zn〉0…29

 By update we have Zn = CRC(Zn−1, 〈Y〉0…7)
 By CRC inversion formula

Zn−1 = (Zn << 8) ⊕ CRCinverse[〈Zn〉0…7] ⊕ 〈Yn〉0…7

 For each of 222 putative 〈Zn〉0…29
o Know bits 0 thru 21 on RHS, bits 16 to 29 on LHS
o For correct Zn and Zn−1, bits 16 thru 21 must agree
o Since 6 bits, 1/64 chance of a random match
o Since 64 Zn−1, for each Zn expect 1 matching Zn−1
o Since there are 222 Zn−1 we obtain 222 Zn−1

 PKZIP Stream Cipher 14

Step 1: Z-lists
 Repeat for 〈Zn−2 〉0…29 then 〈Zn−3 〉0…29 etc.
 Bottom Line

o We obtain about 222 Z-lists
o Each of the form 〈Zi〉0…29, for i = 1,2,…,n

 Possible to extend each of these to “full” Zi
o That is, Zi bits 0 thru 31, not just bits 0 thru 29
o We omit details here (see text)

 We have 222 Z-lists, 〈Zi〉0…29, for i = 1,2,…,n

 PKZIP Stream Cipher 15

Step 1 Refinement
 Possible to reduce number of Z-lists
 Requires additional known plaintext
 Reduces overall work factor
 For example

o 28 more bytes, we can reduce number of
Z-lists (and overall work) by a factor of 24

o 1000 additional bytes can reduce number
of lists to a range by 211 to 214

 We ignore refinement, so 222 Z-lists

 PKZIP Stream Cipher 16

Step 2: Y-lists
 We have about 222 putative Z-lists

o Each consisting of putative Z1,Z2,…,Zn

 We use these to find consistent Y-lists
 From update, we can write CRC inverse as

〈Yi〉0…7 = Zi−1 ⊕ (Zi << 8) ⊕ CRCinverse[〈Zi〉0…7]

 For each Z-list, have 〈Y2〉0…7,〈Y3〉0…7, …,〈Yn〉0…7

 How to find remaining 24 bits of each Yi ?
o This is a bit tricky…

 PKZIP Stream Cipher 17

Step 2: Y-lists
 From update we have

Yi = (Yi−1 + 〈Xi〉24…31) ⋅ 134775813 + 1 (mod 232)
 Rewrite this as

(Yi − 1) ⋅ C = Yi−1 + 〈Xi〉24…31

 Where C = 134775813−1 (mod 232)
 Then with very high probability

〈(Yi − 1) ⋅ C〉0…7 = 〈Yi−1〉0…7

 Letting i = n, we have
〈(Yn − 1) ⋅ C〉0…7 = 〈Yn−1〉0…7

 PKZIP Stream Cipher 18

Step 2: Y-lists
 We have 〈(Yn − 1) ⋅ C〉0…7 = 〈Yn−1〉0…7

o Where both 〈Yn〉0…7 and 〈Yn−1〉0…7 known
 Test all 224 choices for 〈Yn〉8…31

o For each, compute 〈(Yn − 1) ⋅ C〉0…7

o And compare to known 〈Yn−1〉0…7

o Probability of a match is 1/28

 Bottom line: Obtain 216 Yn per Z-list
 Since 222 Z-lists, we have 238 Yn

 PKZIP Stream Cipher 19

Step 2: Y-lists
 We have

(Yn − 1) ⋅ C = Yn−1 + 〈Xn〉24…31

 Rewrite as
 Yn−1 = (Yn − 1) ⋅ C − 〈Xn〉24…31

 Let a = 〈Xn〉24…31

 Then
Yn−1 = (Yn − 1) ⋅ C − a

 For some unknown byte a

 PKZIP Stream Cipher 20

Step 2: Y-lists
 We have Yn−1 = (Yn − 1) ⋅ C − a

o For some unknown byte a
 For each Yn, compute Yn−1 for all possible a

o Test whether 〈(Yn−1 − 1) ⋅ C〉0…7 = 〈Yn−2〉0…7

o Recall that 〈Yn−2〉0…7 is known
o Try all 256 a, each has 1/28 probability of match
o Expect one Yn−1 for each Yn

 Can be made efficient using lookup tables
o Given 〈Yn−2〉0…7 lookup consistent 〈Yn−1〉0…7

 PKZIP Stream Cipher 21

Step 2: Y-lists
 Repeat for Yn−2,Yn−3,…,Y3

 Bottom line
o Expect to obtain 238 Y-lists
o Each of the form Y3,Y4,…,Yn

 Remaining steps in the attack
o Find X-lists (step 3)
o Find correct X-list from set of X-lists (step 4)
o Then some (Xi,Yi,Zi) known and msg is broken!

 PKZIP Stream Cipher 22

Step 3: X-lists
 We have about 238 putative Y-lists

o Each is of the form Y3,Y4,…,Yn

 How to find corresponding X-lists?
 Consider the formula

〈Xi〉24…31 = (Yi − 1) ⋅ C − Yi−1

 Use this to obtain 〈Xi〉24…31 for i = 4,5,…,n
 How to find remaining bits of each Xi ?

 PKZIP Stream Cipher 23

Step 3: X-lists
 From update function

Xi = CRC(Xi−1, pi)
 Using CRC table,

Xi = 〈Xi−1〉0…23 ⊕ CRCtable[〈Xi−1〉24…31 ⊕ pi]
 Implications?
 If we know one complete Xi and all pj then

we can compute all (complete) Xj
o CRC inverse allows us to find Xi-1 from Xi

 So how to find one complete Xi ?

 PKZIP Stream Cipher 24

Step 3: X-lists
 We know 〈Xi〉24…31 and pi for each i
 From update: Xi = 〈Xi−1〉0…23 ⊕ CRCtable[〈Xi−1〉24…31⊕ pi]
 This implies

1. 〈Xi〉0…23 = Xi+1 ⊕ CRCtable[〈Xi〉24…31 ⊕ pi+1]
2. 〈Xi+1〉0…23 = Xi+2 ⊕ CRCtable[〈Xi+1〉24…31 ⊕ pi+2]
3. 〈Xi+2〉0…23 = Xi+3 ⊕ CRCtable[〈Xi+2〉24…31 ⊕ pi+3]

 From 〈Xi+3〉24…31, 〈Xi+2〉24…31 and 3, get 〈Xi+2〉16…31

 From 〈Xi+2〉16…31, 〈Xi+1〉24…31 and 2, get 〈Xi+1〉8…31

 From 〈Xi+1〉8…31, 〈Xi〉24…31 and 1, get Xi = 〈Xi〉0…31

 PKZIP Stream Cipher 25

Step 3: X-lists
 Using Xi found on previous slide and

Xi = 〈Xi−1〉0…23 ⊕ CRCtable[〈Xi−1〉24…31 ⊕ pi]
 We can find the complete X-list
 Repeat this for each putative Y-list

o Gives us about 238 putative X-lists
 Correct X-list will (almost certainly) be

among these 238 X-lists
 How to select the “winning” X-list?

 PKZIP Stream Cipher 26

Step 4: Correct X-lists
 How to select correct X-list?
 We can compute 〈Xi〉24…31 in two ways:

Xi = 〈Xi−1〉0…23 ⊕ CRCtable[〈Xi−1〉24…31 ⊕ pi]
〈Xi〉24…31 = (Yi − 1) ⋅ C − Yi−1

 These two results must agree!
 Since testing 1 byte

o Probability of random match about 1/28

 We have about 238 putative X-lists, so…
 About 5 such comparisons and we’re done!

 PKZIP Stream Cipher 27

Step 4: Recover Keystream
 Once we have found correct X-list

o We know corresponding Y-list, Z-list

 For some i < n, we know state (Xi,Yi,Zi)
 From (Xi,Yi,Zi) we generate kj for j ≥ i
 We have the keystream and msg is broken
 Trudy wins again!

 PKZIP Stream Cipher 28

How Much Plaintext?
 Trudy wants to minimize known plaintext
 Require plaintext bytes p0,p1,…,pn

o So, how small can n be?
 Need 〈Xi〉24…31, 〈Xi+1〉24…31, 〈Xi+2〉24…31, 〈Xi+3〉24…31

to determine Xi
o We can assume i+3 = n, so n,n−1,n−2,n−3 needed

 And we need five more Xi to find true X-list
o Can assume we use i = n−4,n−5,n−6,n−7,n−8

 Cannot use Xi, i=0,1,2,3, for any of the above
o Since these are not found by the attack

 PKZIP Stream Cipher 29

How Much Plaintext?
 Bottom line

o Need 13 consecutive known plaintext bytes
o Since 4 + 5 + 4 = 13 (from previous slide)

 Can reduce the work (step 1 refinement)
o Requires more known plaintext
o “Work” determined by number of lists
o 28 additional known plaintext bytes reduces

number of lists from 238 to 234

o About 1000 additional plaintext bytes reduces
number of lists to a range of 227 to 224

 PKZIP Stream Cipher 30

Slightly Simplified Attack
 If we do not reduce number of lists (i.e.,

we do not implement step 1 refinement)
o Then work is on order of 238

 In this case, a simpler attack is possible
 “Simpler” means easier to program

o We do not have to save large number of lists
o Instead, we process each lists as generated

 PKZIP Stream Cipher 31

Simplified Attack
 Suppose we have 13 known plaintexts

o That is, p0,p1,…,p12

o Then we know keystream bytes k0,k1,…,k12

 From step 1, we first do the following:
for i = 0 to 12

Find all 〈Zi〉16…29 consistent with ki

next i
 Expect 64 〈Zi〉16…29 for each i
 Remainder of attack is on the next slide

 PKZIP Stream Cipher 32

for each 〈Z12〉16…29 // expect 64
for each 〈Z12〉0…15 // 216 choices

for i = 11,10,…,0
Find 〈Zi〉16…29 consistent with 〈Zi+1〉0…29

Extend 〈Zi〉16…29 to 〈Zi〉0…29

next i
Complete to Z-list (solve for bits 30 and 31)
Solve for 〈Yi〉0…7
Solve for all bits of Y-lists // expect 216 lists
for each Y-list

Solve for 〈Xi〉24…31
Solve for X9 using 〈X9〉24…31,〈X10〉24…31,〈X11〉24…31,〈X12〉24…31
Solve for X-list
if 〈Xi〉24…31 verified for i=8,7,6,5,4, return (X,Y,Z)-list

next Y-list
next 〈Z12〉0…15

next 〈Z12〉16…29

Simplified
Attack

 PKZIP Stream Cipher 33

PKZIP Conclusions
 PKZIP cipher is somewhat complex

and difficult to analyze
 PKZIP cipher design

o Appears to be ad hoc
o Violated Kerckhoffs Principle
o Mixed-mode arithmetic is interesting

 The bottom line…
o PKZIP cipher is insecure
o But not trivial to attack
o An interesting and unusual cipher!

