Discrete Log

Discrete Log

Discrete Logarithm

Discrete log problem:

Given p, g and g^a (mod p), determine a

- This would break Diffie-Hellman and ElGamal
- Discrete log algorithms analogous to factoring, except no sieving
 - This makes discrete log harder to solve
 - Implies smaller numbers can be used for equivalent security, compared to factoring

Discrete Log Algorithms

We discuss three methods Trial multiplication • Analogous to trial division for factoring Baby-step giant-step • TMTO for trial multiplication □ Index calculus Analogous to Dixon's algorithm

Trial Multiplication

The most obvious thing to do... We know p, g and g^a (mod p) □ To find a, compute $g^2 \pmod{p}, g^3 \pmod{p}, g^4 \pmod{p}, ...$ Until one matches g^a (mod p) Expected work is about p/2

Baby Step Giant Step

Speed up to trial multiplication
Again, know p, g and x = g^a (mod p)

We want to find exponent a

First, let m = [sqrt(p - 1)]
Then a = im + j, some i,j ∈ {0,1,...,m-1}
How does this help? Next slide...

Baby Step Giant Step

Have x = g^a (mod p) = g^{im+j} (mod p)
 Therefore, g^j = xg^{-im} (mod p)
 If we find i and j so that this holds,

then we have found exponent a

• Since a = im + j

How to find such i and j?

Baby Step Giant Step

- Algorithm: Given x = g^a (mod p)
 Giant steps: Compute and store in a table, xg^{-im} (mod p) for i = 0,1,...m-1
- Baby steps: Compute g^j (mod p) for j = 0,1,... until a match with table — obtain a = im + j
- Expected work: sqrt(p) to compute table, sqrt(p)/2 to find j, for total of 1.5 sqrt(p)
- Storage: sqrt(p) required

Baby Step Giant Step Example

□ Spse g = 3, p = 101 and $x = g^a \pmod{p} = 37$

 \Box Then let m = 10 and compute giant steps:

giant step i	0	1	2	3	4	5	6	7	8	9
$3^{-10i} \pmod{101}$	1	14	95	17	36	100	87	6	84	65
$37 \cdot 3^{-10i} \pmod{101}$										

- Next, compute 3^j (mod 101) until match found with last row
- □ In this case, find $3^4 = 37 \cdot 3^{-20} \pmod{101}$
- And we have found a = 24

Index Calculus

 \Box Given p, g, x = g^a (mod p), determine a Analogous to Dixon's algorithm • Except linear algebra phase comes first Choose bound B and factor base • Suppose p_0, p_1, \dots, p_{n-1} are primes in factor base Precompute discrete logs: log_a p_i for each i • Can be done efficiently o Corresponds to linear algebra phase in Dixon's

Index Calculus

Next, randomly select k ∈ {0,1,2,...,p-2} and compute y = x ⋅ g^k (mod p) until find y that factors completely over factor base
Then y = x ⋅ g^k = p₀^{d₀} ⋅ p₁^{d₁} ⋅ p₂^{d₂} ⋅ ⋅ p_{n-1}<sup>d_{n-1} (mod p)
Take log_g and simplify to obtain

a = log_g x = (d₀log_g p₀ + d₀log_g p₀ + ... + d₀log_g p₀ - k) (mod (p - 1))

</sup>

And we have determined a

Note p – 1 follows from Fermat's Little Thm

Index Calculus Example

- □ Spse: g = 3, p = 101, x = 3^a = 94 (mod p)
- □ We choose factor base 2,3,5,7
- □ Compute discrete logs: $\log_3 2 = 29$, $\log_3 3 = 1$, $\log_3 5 = 96$, $\log_3 7 = 61$
- Select random k, compute y = x · g^k (mod p) until y factors over factor base
- □ For k = 10, find $y = 50 = 2 \cdot 5^2 \mod (101)$

Index Calculus Example

- □ For k = 10, have y = 50 = 2 · 5² mod (101)
 □ Then
 - $a = (\log_3 2 + 2 \log_3 5 10) \pmod{100}$ $= 29 + 2 \cdot 96 10 = 11 \pmod{100}$
- Easy to verify 3¹¹ = 94 (mod 101)
 Work is same as Dixon's algorithm
 In particular, work is subexponential

Conclusions

Many parallels between factoring and discrete log algorithms • For example, Dixon's and index calculus For discrete log, not able to sieve o Therefore, no analog of quadratic sieve □ For elliptic curve cryptosystems (ECC) • No analog of Dixon's or index calculus... o ... since no concept of a factor base • So ECC is secure with smaller parameters