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1 Introduction

Once upon a time, I worked for a small startup company. The pay was excellent, but the
hours were long and vacation time was limited. I currently work as a college professor, where
the pay is not-so-good but the hours and vacation time are excellent. For several years, I also
worked for the government, where the pay is reasonably good and the hours and vacation
time are reasonably good. So, it could be argued that the optimal “time-money tradeoff” is
attained with a government job1.

A different sort of balancing act occurs with a time-memory tradeoff (TMTO). A TMTO
attempts to balance one-time work (the result of which is stored in “memory”) with the time
required to run the algorithm. A TMTO is not an algorithm per se, but instead it’s a general
technique that can be applied to improve the performance of many different algorithms.
Usually, a TMTO is developed to improve the speed of an algorithm by utilizing one-time
work, which results in increased storage (memory) requirements when the resulting algorithm
is executed. Of course, it is also possible to work in the opposite direction by reducing the
one-time work at the expense of more work each time the algorithm is executed. The goal is
to balance the one-time work (memory) requirement with the speed of the algorithm (time).
In some cases, the time versus memory tradeoff is obvious, but in some cases it is not so
obvious.

In this paper we consider three different applications of a TMTO. The first example,
popcnt(x), is very simple, but illustrates the basic concept. The second example, Shank’s
algorithm, is slightly less obvious, while the final example, Hellman’s cryptanalytic TMTO, is
even less obvious—and also happens to be one of the most celebrated examples of a TMTO.

2 A very simple example

Given a non-negative integer x, its “population count”, or popcnt(x), is defined as the
number of ones in the binary expansion of x. For example,

popcnt(13) = 3

1Personally, I like teaching, which changes the equation considerably—much to my wife’s chagrin. Ap-
parently, there’s no accounting for human nature.
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since 13 is, in binary, 1101.
Perhaps the most obvious way to compute popcnt(x) is given below, where len(x) is the

number of bits used to store the integer x, “>>” is the right shift and “&” is a binary AND.

// compute t = popcnt(x)
t = 0
for i = 0 to len(x)− 1

t = t + (x >> i) & 1
next i

This approach requires len(x) operations and essentially no memory.
We might be able to obtain a faster algorithm for popcnt(x) if we are willing to employ a

pre-computation and use some memory to store the pre-computation results. For example,
we could pre-compute popcnt(y) for each y ∈ {0, 1, . . . , 255}, and store the resulting values
in an array, say, p[y]. Then popcnt(x), where, for example, x is a 32-bit integer, could be
computed as

// compute t = popcnt(x) for a 32-bit integer
t = p[x & 0xff] + p[(x >> 8) 0xff] + p[(x >> 16) 0xff] + p[(x >> 24) 0xff]

where “0xff” hexadecimal ff. This approach requires 4 operations per popcnt(x), along
with the one-time work of computing p[y] and storage (or memory) of size 256.

We could instead choose to pre-compute popcnt(y) for all y ∈ {0, 1, . . . , 15}, in which
case we would need 8 operations for each popcnt(x) (assuming a 32-bit x) while using only 16
memory elements. The logical choices for time versus memory are summarized in Table 1. Of
course, the optimal “tradeoff” between the lookup table size and number of operations will
depends on many factors, including the specific architecture, but could easily be determined
by experimentation.

memory operations

0 32

22 16
24 8
28 4
216 2
232 1

Table 1: TMTO for popcnt(x) for 32-bit integers
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3 A not-quite-so-simple example

Let p be a prime. Suppose we can find g ∈ {1, 2, . . . , p−1} such that for any n ∈ {1, 2, . . . , p−
1}, there exists some k such that n = gk mod p. Then g is a generator of {1, 2, . . . , p − 1},
since any element in the set can be obtained as a power of g.

It follows that for any m ∈ {1, 2, . . . , p − 1} there exists a unique e ∈ {1, 2, . . . , p − 2}
such that m = ge mod p. The exponent e is know as the discrete logarithm of m to the
base g. When the base is clear from context, we simply refer to the discrete log of m. We
use the familiar notation

e = logg(m).

The discrete logarithm arises in many situations. For example, the well-known Diffie-
Hellman key exchange algorithm can be broken by solving a discrete logarithm problem [8].

Given p, g and m ∈ {1, 2, . . . , p− 1}, we want to find e ∈ {1, 2, . . . , p− 2} such that

m = ge mod p. (1)

One way to find e is to simply try each possible value e = 1, 2, . . . , p − 2 until a solution
to (1) is found. This would require, on average, a work factor of (p− 2)/2 and virtually no
storage (memory). However, there is a better approach that relies on a TMTO.

For any x ∈ {1, 2, . . . , p−2}, the value of e in (1) satisfies e/x = i+j/x, or e = xi+j, for
some unique i ≤ e/x and j < x. Shank’s algorithm [7] makes use of this simple observation
to yield a TMTO for the discrete logarithm problem.

In Shank’s algorithm, we first pre-compute a list Lr as follows.

1a. Let r = d
√

p− 1e

2a. Compute grj mod p for j = 0, 1, . . . , r − 1

3a. Let Lr be the list obtained by sorting the ordered pairs (j, grj mod p) on the second
coordinate

Then given any m ∈ {1, 2, ..., p− 1}, we compute a list Lm in the following manner.

1b. Compute mg−i mod p for i = 0, 1, . . . , r − 1

2b. Let Lm be the list obtained by sorting the ordered pairs (i, mg−i mod p) on the second
coordinate

Finally, the discrete log, logg(m), can be found as follows.

1c. Find an element of Lr and an element of Lm that agree in their second coordinates,
say, (j, x) ∈ Lr and (i, x) ∈ Lm

2c. Then logg(m) = rj + i mod (p− 1)
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The correctness of the result in 2c. follows since grj = mg−i mod p and hence by basic
properties of exponentiation grj+i = m mod p. The mod (p−1) in 2c. follows from Fermat’s
Little Theorem [2].

Note that if we had chosen a different value for r, the algorithm would still work, but the
lists Lr and Lm would be different sizes. By choosing r = d

√
p− 1 e, the memory requirement

is about 2
√

p− 1 and the time requirement is about 2
√

p− 1, neglecting the time required
to sort the lists and the comparisons required to finding the matching list elements.

For example, suppose p = 257 and g = 3. Then r = 16 and the sorted list Lr is found to
be

(0,1) (3,2) (6,4) (9,8)
(12,16) (15,32) (2,64) (5,128)
(13,129) (10,193) (7,225) (4,241)
(1,249) (14,253) (11,255) (8,256).

For m = 132, the sorted list Lm is

(9,23) (1,44) (3,62) (5,64)
(8,69) (12,77) (15,79) (6,107)
(0,132) (10,179) (2,186) (4,192)
(13,197) (7,207) (11,231) (14,237).

The pairs (2, 64) from Lr and the pair (5, 64) from Lm match in the second elements. There-
fore, the solution is given by

log3(132) = 2 · 16 + 5 = 37

and it is easily verified that 337 = 132 mod 257.
Notice that if we want to find another discrete logarithm with the same g and p, we

only need to recompute the list Lm, not the list Lr. For example, to find log3(200), we
compute Lm (sorted on the second component) as

(10,22) (12,31) (14,32) (3,55)
(9,66) (7,80) (11,93) (13,96)
(4,104) (2,165) (15,182) (8,198)
(0,200) (5,206) (1,238) (6,240).

from which we find the pairs (15, 32) and (14, 32) from Lm, giving log3(200) = 15 · 16+14 =
254. Therefore, if we have many discrete logarithms to compute for a fixed g and p, we
can amortize the cost of computing Lr, and hence the cost of each discrete logarithm is
dominated by

√
p− 1. This is a significant improvement over the work factor of (p − 2)/2

required by the näıve approach.
The current best-known method for computing discrete logarithms is Pollard’s rho algo-

rithm. The article [5] describes the basic algorithm as well as extensions.
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4 An even-less-simple example

Hellman—of Diffie-Hellman fame—describes a cryptanalytic TMTO attack in [4]. Before
discussing the attack, we first give a brief description of the necessary cryptographic back-
ground.

A block cipher can be viewed as a function that takes a plaintext block of n bits and a
key of k bits as input, producing an n-bit ciphertext. This process is known as encryption.
The process must be invertible, so the block cipher must also be capable of combining the
ciphertext together with the key (the same key used for encryption) to recover the plaintext.
This inverse process is known as decryption.

For a given block cipher, let E be the encryption function, D the corresponding decryption
function, K a key, P a plaintext block and C the corresponding ciphertext block. Then P
and C are each n bits in length, while the key K is k bits. We write

C = EK(P ) and P = DK(C).

Encryption and decryption are illustrated in Figure 1.

Encrypt

?

P

-K - C Decrypt

?

C

-K - P

Figure 1: Block Cipher

An attacker’s goal is to recover the key K. If the attacker only has access to ciphertext,
then he must conduct a ciphertext-only attack. On the other hand, if he knows the plaintext
that corresponds to ciphertext, he is in the more advantageous situation of a known-plaintext
attack2. Even more advantageous—from the attacker’s perspective—is a chosen-plaintext
attack, where the attacker is able to choose some amount of plaintext and obtain the corre-
sponding ciphertext. In the remainder of this section, we consider a chosen-plaintext attack.

Assuming there is no known weakness in the block cipher algorithm, perhaps the most
obvious attack is to simply try decrypting the ciphertext C with each possible key K until
the (chosen) plaintext P appears. Since there are 2k possible keys, and we expect to find K
after trying half of the keys, the expected work is on the order of 2k−1, while the memory
requirement is negligible. At the other extreme, we could precompute the ciphertext C for
each possible key for the given (chosen) plaintext P . This would require one-time work of 2k

2You might wonder why any attack is necessary if the attacker already knows the plaintext. The assump-
tion is that the attacker knows some of the plaintext and by recovering the key he will obtain access to all
of the plaintext that was encrypted with the recovered key.

5



and 2k storage, but then each time we run the attack, only a single table lookup would be
required. The one-time work could be amortized over the number of number of times that
the attack is conducted. Of course, this assumes that the attacker is always able to choose
identical plaintext.

Hellman’s TMTO attack finds a middle ground between these two extremes. The attack
requires some one-time work, producing a table of results. This table (the memory part of
the TMTO) is then used in order to reduce the amount of work required (the time part of
the TMTO) in any particular attack.

To illustrate Hellman’s TMTO consider the following idealized example. Suppose we
have a block cipher with block size n = 64 bits and key size k = 64. Since the key is 64
bits, there are 264 distinct keys—said to be equal to the number of blades of grass on earth.
Since this is a chosen plaintext attack, we choose plaintext P and obtain the corresponding
ciphertext C = EK(P ). The challenge is to recover the unknown key K.

Let K0 ∈ {0, 1}64 be a possible key value. We denote K0 as SP , the “starting point” of a
chain of t encryptions and Kt−1, as EP , the “ending point”. Such a chain can be computed
as

SP = K0

K1 = ESP (P )

K2 = EK1(P )

K3 = EK2(P )
...

EP = Kt−1 = EKt−2(P ).

Figure 2 illustrates such a chain.

-SP Encrypt

?

P

-K1
-Encrypt

?

P

-K2
-Encrypt

?

P

-K3
- · · · · · · -Encrypt

?

P

- EP

Figure 2: Chain of encryptions

Suppose that t = 232 and, further, suppose that we can find m = 232 starting points such
that none of the resulting chains (each of length t) overlap3. Then each of the 264 possible
key values appears within one—and only one—chain.

3This is totally unrealistic, but it allows us to easily illustrate the TMTO concept. We return to reality
below.
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The “memory” part of the TMTO is implemented by storing only the starting points
and ending points of the chains, namely,

(SP0, EP0), (SP1, EP1), (SP2, EP2), . . . , (SPm−1, EPm−1).

In this imaginary example, m = 232 and hence the storage requirement—in terms of 64-bit
words—is 2m = 233.

The “time” part of the TMTO is implemented as follows. The attacker knows C and the
chosen value P . He begins computing the chain

K̃0 = C

K̃1 = EK̃0
(P )

K̃2 = EK̃1
(P )

K̃3 = EK̃2
(P )

...

K̃t−1 = EK̃t−2
(P ).

where at each step i = 0, 1, . . . , t − 1, the attacker compares K̃i to all of the endpoints,
EP0, EP1, . . . , EPm−1. Since C is a possible key value, it must lie somewhere within one
(and only one) chain. Therefore, for some i ∈ {0, 1, . . . , t − 1} we must have K̃i = EPj,
where j ∈ {0, 1, . . . ,m − 1}. Then given this i and j, he will reconstruct the chain starting
with SPj,

K0 = SPj

K1 = EK0(P )

K2 = EK1(P )

K3 = EK2(P )
...

Kt−1 = EPj = EKt−2(P ).

Provided K̃0 6= SPj (which is easily avoided by not selecting C as a starting point) then for
some ` ∈ {1, 2, . . . , t−1} we must have K` = K̃0 = C = EK(P ). Then since K` = EK`−1

(P ),
the attacker has found the desired key K = K`−1.

Note that the pre-computation phase requires on the order of 2t2m = 264 work. Having
paid this enormous initial price, then each time the attack is run, on average only 2t−1 = 231

encryptions will be required before an endpoint is found, followed by another 2t−1 = 231

encryptions until C is found, giving a total work factor of about 2t = 232. If the attack
is only to be executed once, a straightforward exhaust will find K with an expected work
of 263, in which case it would make no sense to pre-compute the paths. However, it the
attack is to be conducted many times, the pre-computation work can be amortized over the
number of attacks, while the work of 232 per attack is, in comparison, negligible.
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Alternatively, we could compute paths that only cover a part of the key space, thereby
reducing the pre-computation work. Then the probability of successfully finding an unknown
key is equal to the proportion of the key space that is covered. This is the way that a
cryptanalytic TMTO attack must be implemented since there is no feasible method to assure
non-overlapping chains.

The fatal flaw in the TMTO discussed above is the assumption that we can find non-
overlapping chains that partition the key space. When we generate a chain of encryptions,
there are two bad things that can happen. An individual chain can overlap with itself, or
two chains can merge into a single chain. Assuming that each new chain element is randomly
selected from the set of possible keys, it is clear that the more of the space that is already
covered, the more likely that a new chain will overlap with some previous chain.

Therefore, the goal of a cryptanalytic TMTO is to cover some percentage of the key
space with chains. Then the resulting TMTO attack will recover any key that is in some
chain. However, any key that does not appear in a chain will not be found with the TMTO
attack. The attack is therefore probabilistic and the objective is to maximize the probability
of success for a given amount of work.

In the simplest case, the key length k is equal to the cipher block length n and the algo-
rithm can be described as follows.

// Find (SPi, EPi), i = 0, 1, . . . ,m− 1
for i = 0 to m− 1

Generate a starting point SPi

K0 = SPi

for j = 1 to t
Kj = EKj−1

(P )
next j
EPi = Kt

next i

Notice that this process yields at most mt distinct predecessors. If the key K is among these
predecessors, it will can be found by the attack discussed below.

Given C = EK(P ), the attack proceeds as follows.

// Search for K within the pre-computed chains
Y = EC(P )
for i = 0 to t− 1

for j = 0 to m− 1
if Y == EPj then

Find K in the chain beginning with SPj

return(K)
end if

next j
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Y = EY (P )
next i
return(key not found)

If k 6= n then the situation is slightly more complex. In this case, we cannot compute
chains as described above since we can’t directly use the ciphertext as a key.

For concreteness, consider the Data Encryption Standard (DES), which has a key length
of k = 56 and a block size of n = 64. We define a function f(x) from the space of cipher
blocks to key blocks by

f(x0, x1, . . . , x63) = (xi0 , xi1 , . . . , xi55)

where the indices ij ∈ {0, 1, . . . , 63} are distinct. We use the function f to reduce a cipher
block down to the size of a key which allows us to create chains as before. For example,
given a starting point SP and a function f we can create a chain of length t + 1 by

K0 = SP

K1 = f(EK0(P ))

K2 = f(EK1(P ))

K3 = f(EK2(P ))
...

Kt = EP = f(EKt−1(P )).

The TMTO attack is similar to the previous case. For simplicity, suppose we are given P
and C = EK(P ) and only one pair (EP, SP ). Then we compute

K̃0 = f(C)

K̃1 = f(EK̃0
(P ))

K̃2 = f(EK̃1
(P ))

K̃3 = f(EK̃2
(P ))

...

K̃t = f(EK̃t−1
(P ))

looking for an index j such that K̃j = EP . If such a j is found it follows that

f(C) = Kt−j = f(EKt−j−1
(P ). (2)

However, unlike the n = k case, it does not necessarily follow from (2) that K = Kt−r−1,
since there are several possible predecessors. In other words, false alarms are possible, and
the false alarm rate will depend on the size of n− k.
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In practice, several different f functions will be used in order to increase the chances of
covering the key space more uniformly and thus reducing the chance of collisions between—
and within—chains. The pre-computation process can be implemented as given below.

// Find (SP,EP ) pairs
for i = 0 to r − 1

Generate a function fi

for j = 0 to m− 1
Generate a starting point SP i

j

K0 = SP i
j

for k = 1 to t
Kk = fi(EKk−1

(P ))
next k
EP i

j = Kt

next j
next i

Notice that in this process we find rm chains, each of length t+1. This yields rmt predeces-
sors, any of which could lead to a given key K. If all of these rmt predecessors are distinct,
then the chance of finding a randomly-selected key is about rmt/2k.

For efficient searching, the pairs (SP i
j , EP i

j ) for j = 0, 1, 2, . . . ,m − 1, should be sorted
on EP i

j . Then given C = EK(P ) and the pre-computed (SP,EP ) pairs, the attack proceeds
as follows.

// Search for K within pre-computed chains
for i = 0 to r − 1

Y = fi(EC(P ))
for j = 0 to t− 1

for k = 0 to m− 1
if Y == EP i

k then
Find Kt−i−1 in the chain from SP i

k

if K == Kt−i−1 then // test via trial decryption
return(K)

else
false alarm

end if
end if

next k
Y = fi(EY (P ))

next j
next i
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Note that this algorithm also works for the case where n = k, except that no false alarms
will occur.

It is also possible to use “distinguished points” to obtain a slightly different version of
the algorithm [1]. This variant might be preferable in certain distributed attack scenarios.

In general, we require ` = dk/ne matched plaintext/ciphertext pairs in order to uniquely
determine a key of length k from cipher blocks of length n. So far, we have only considered ` =
1, in which case a single chosen plaintext (and its corresponding ciphertext) suffices. In the
case where ` > 1, we need multiple chosen plaintext/ciphertext pairs. We can easily handle
this case by simply defining a function f on multiple ciphertext blocks as

f(EY (P0), EY (P1), . . . , EY (P`−1)) = f(x0, x1, . . . , xn` − 1) = (xi0 , xi1 , . . . , xik−1
)

and making the obvious modifications to the algorithms above.
Finally, it is important to balance the work factor with the probability of finding a key.

The mathematics is beyond the scope of this article, but under reasonable assumptions, it
is shown in [6] that it is best to select

m = t = r = 2k/3,

which yields a pre-computation work factor of 2k and a probability of success of about 0.55.
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