CS265 Project

David Wang

April 5, 2004

Project report

Two-way Authentication Using Hash and Shared Key

Introduction

Authentication is the initial step of most network communications. Before two parties can transfer secure information, they have to make sure that they are talk to the right person (or machine). It is also important that both parties in the authentication process can identify each other without leaking any secret information. However, authentication on the network is very challenging because the information being transferred on the insure link may be overheard, intercepted, modified, or replayed by any other parties on the network. 

Requirement

There are many different protocols used for network authentication with different concerns in mind. Some protocols are focused on efficiency so that they are easy to compute but not very secure; some protocols are focused on high security but not efficient to run. How to make the right protocol will be depending on the requirement of the application. For example, an online banking application will require high security over efficiency, but an online discuss forum application may choose high efficiency over security. Now, suppose that I need to design a protocol for an online stock broking application instead using SSL. The requirement is very clear that both security and efficiency are import. However, we may focus more on security when authenticating user during the login process but focus more on efficiency when processing users’ order after they logged in. It is also clear that two way authentication is needed because the users have to be sure that they are sending their account number and password to the right place; the stock broker website has to be sure that the users are who they claimed to be. According the requirement, I will introduce a protocol that focuses on the authentication process. The data transfer after login can use any shared key algorithm such as DES or AES. 

Protocol

Notations:

A – Users

B – Broker

(m1, m2) – Message m1 and Message m2

H (m1, m2) – Hash message m1 together with message m2

E (p, k) – Encrypt plaintext p using key k

D (c, k) – Decrypt cipher text p using key k

Assumptions:

The crypto algorithm and hash algorithm are secure. 

A and B both know key K, and A has password passwd and B can verify it.








Explanation:

When A wants to login, it chooses a random number Ra, encrypts Ra using key K, and sends “I’m A” with E(Ra, K) as a request to B. (A remembers Ra)

After broker receives the request, it decrypts the request to get Ra, chooses a random number Rb, appends Ra to Rb, encrypts (Rb, Ra) using key K, and sends it as a challenge to A. (B remembers Rb and A)

After A receives the challenge, it decrypts using key K to get Rb and Ra, compares decrypted Ra with the Ra it remembers (if not equal, quit), hash A’s password passwd with Rb, and sends it as a response to B.

After B receives the response, it hashes A’s password stored on the server with Rb, and then compare the result with the response. If they are equals, lets A login, otherwise, rejects A.

Analysis:

In the above protocol, there are three messages between A and B. In the first message, A encrypts a random number using the shared key K and sends to B. Only B can decrypt this message and recover the random number Ra. B can then send E((Rb, Ra), K) back to A as a challenge. At this point, B dose not need to worry about the request is really from A or not. If the request is not from A, the challenge B sends out will not give out much information. Also, any replays of the first message will not succeed because B will send out an encrypted random number whenever it receives a login request. Without knowing the key, this message will not make sense to intruders. On the other hand, if A receives this challenge, A can verify B by checking the Ra in the challenge. If Ra does not equal to the one A sends out, A will know that the challenge is not form B, so A can quit the login process. If Ra matches the one A sent out, A knows the challenge is form B, so A will send the H(passwd, Rb) to B. So, it is obvious that the replays of the second message will not be successful. Finally, after receiving the last message, B can verify A by computing the hash H(passwd, Rb) and comparing with the last message form A. If the hash computed by B does not equal to the message sent by A, B would reject the login request and then close the connection. Otherwise, B lets A to login and finishes the authentication process. Finishing the authentication process means that the server B will go back to the initial state before the authentication. This will prevent any replay of the last message. Moreover, this protocol can prevent offline password guessing since all the nonces being transferred are encrypted. However, we can see that this protocol can not prevent the modification of the message. So, it may be weak to the denial of service attack. One solution to this problem is that we can use HMAC with the message to prevent the modification. Also, it is important to notice that the password file needs to be protected on the server B. Encrypting the password file can do the protection, but this may hurt the performance. 

Implementation

The above protocol is implemented as a client server application. The GUI component on the client is written in Java Swing, and the server is implemented using JSP on Tomcat. The authentication process between client and server is implemented according to the protocol above. TEA CBC mode is used for the encryption and decryption. MD5 is used for the hashing. The client side executable and source code is in the archive file client.jar and the server side executable and source code is in the archive file server.jar. The Java Run Time Environment needs to be installed in order run the client side components. To sun run the server side executable, the Tomcat servlet container needs to be installed. For the detail of how to deploy the executables, please refer to the readme file in each archive file.

Conclusion

The protocol discussed above uses three messages to achieve two-way authentication. Because it is focused more on the security aspect, it may not be very efficient comparing with other protocols. This protocol can prevent replay and offline password guessing. However, we have to notice that the protocol it is weak to modification attack, and we also need to protect the password file on the server side.

Credibility:

The MD5 source code is borrowed form http://ostermiller.org/utils.










A











B





I’m A; E (Ra, K)





E ((Rb, Ra), K)





H (passwd, Rb)








