Rsync: Efficient File Synchronization Using Hashing
 David Shao

Rsync: Efficient File Synchronization Using Hashing

By David Shao

Project

CS 265, Spring 2004

Instructor: Dr. Stamp

Due Monday, April 5, 2004

Introduction

Suppose after making small changes to a file one wishes to synchronize the file’s contents with a backup at a remote location over a relatively slow network connection. Based on work for his Ph.D. thesis, Andrew Tridgell proposed and initially implemented an algorithm that attempts to minimize both the amount of data that needs to be transmitted and the number of round trip communications between the client that wishes to receive the synchronized file and the server that has the most up-to-date version of the file [Tridgell, 1999]. Tridgell’s initial implementation has grown into the open source rsync project [Rsync], one that enables the synchronization of entire directories for Unix-like environments. For this report, we follow Tridgell’s exposition of the basic ideas behind his file synchronization algorithm. [Tridgell, mostly Chapter 3]

Ideal Case

Suppose we know that the most recent version of the file, which we will say resides on the sender, and its earlier version remote backup, which we will say resides on the receiver, differ only in relatively few places, similar to the figure below where the two versions differ only in the locations colored respectively red and yellow.

Figure 1 Sender and Receiver Versions of the File Differ Only in a Few Blocks

For initial simplicity we can assume the versions of the file have the same length (just pad with 0 bytes if not), and we also assume the files can be divided into some number of equally sized blocks with relatively few blocks having any bytes different between versions.

We wish to synchronize the receiver’s version with the sender’s version. In this ideal case, the receiver already has most of the correct blocks—it just doesn’t know it. We therefore can hope to limit the amount of data that has to be sent by only transmitting smaller representatives instead of full blocks, in other words, by using hashes of blocks.

Idealized Protocol

We examine an initial attempt to synchronize files with the following properties:

1) The receiver only has to transmit the hashes of its blocks all at once to avoid latency from round trip communication.

2) The sender only has to transmit a sequence of commands and blocks for the receiver to reconstruct the sender’s version of the file, again all at once.

3) Receiver and sender will tolerate an extremely small probability of inaccuracy in synchronizing the file, perhaps smaller than the probability of machine or network error.

Property 3) cannot be avoided for the general case of trying to synchronize files that might have arbitrary data if we wish to do better than just transmitting the entire file.

Basic Algorithm

1. Receiver computes hashes for its blocks and transmits the hashes to the sender.

2. Sender stores the hashes from the receiver.

3. For each block of its version of the file, the sender first computes the hash of its block and then sees if it matches any of the hashes from the sender.

4. If the sender finds a matching hash, it records that the receiver only needs to copy data from the receiver’s own blocks.

5. If the sender does not find a matching hash, it records that the sender needs to send to the receiver the unmatched block.

6. Sender transmits to the receiver the sequence of commands from parts 3 and 4 that tell the receiver how to reconstruct the sender’s version of the file.

For the ideal case where most corresponding blocks are identical, the above algorithm will decrease the amount of data that needs to be transmitted by approximately the ratio between the size of a hash of a block and the full size of a block.

However, there is an implicit assumption that the regions where the files match are neatly lined up with each other in corresponding blocks. For an easy example where that assumption is not true, consider the common case where one is editing a source code file, perhaps adding a small comment at the beginning. That simple change of adding a few bytes throws off all of the alignments of the blocks, potentially resulting in all blocks being different in some small part, while most of the files are the same if the positioning of one were to be shifted slightly.

Weak and Strong Hashes

To deal with the case of small alterations, Tridgell proposed having the sender recalculate a hash not just at every block, but at every byte. But if a hash is calculated at every byte, the amount of work is increased by the size of a block. If the blocks were sized around 100 bytes, the amount of work keeping the same hash would be two orders of magnitude more, and Tridgell profiled blocks of larger size. In order for this extra work to be reasonable, the hash must be weakened.

In a seeming contradiction, the hash cannot be too weak because there would be false matches of blocks, leading to corruption of files; yet the hash cannot be too strong or it would take too long to calculate for each byte. Tridgell’s solution is to use two hashes: a weaker one that can be easily calculated that weeds out most of the non-matches and a stronger one that is less frequently calculated that ensures with extremely high probability that there is no false match.

MD4 as the Strong Hash

According to Tridgell, he chose MD4 as his strong hash algorithm because it was readily available, it was relatively fast, and it had a decent reputation. Tridgell’s rsync algorithm is not dependent on the exact strong hash method other than the important property that the sender and receiver must agree on which hash functions to use in common.

Modifications to the Idealized Algorithm

1’. The receiver calculates both a weaker and a stronger hash for each block and sends both sets of hashes to the sender.

2’. The sender stores both sets of hashes. Tridgell’s initial implementation stores weaker/strong pairs of hashes in a array sorted by the weaker hash. A separate array indexed by weaker hash values points at the starting strong hash, if any, of the blocks sharing that weaker hash.

3’. For each byte position the sender computes first the weaker hash. If there are corresponding blocks from the receiver that have the same weaker hash, compute the stronger hash and see if the stronger hash value matches any of the strong hash values.

Rolling Weaker Hash

In order to aid the performance of calculating so many weaker hashes, hashes that must be calculated for all byte offsets, the results of previous hash calculations should somehow be used. Using ideas similar to algorithms such as Karp-Rabin which probabilistically estimates when strings match [Gusfield, 77-84], Tridgell for rsync proposed using a rolling checksum property where almost all arithmetic operations are contributed from the previous calculation. The simplest example of a rolling-type checksum is an ordinary sum of bytes
[image: image1.wmf]å

=

+

L

k

k

i

b

1

)

(

 where
[image: image2.wmf]b

 refers to the sequence of bytes in the file being considered,
[image: image3.wmf]L

 is the block size, and
[image: image4.wmf]i

 is the offset in the file where the weak checksum is to be calculated. If we consider the sum at
[image: image5.wmf]1

+

i

, note that

[image: image6.wmf]å

å

=

=

+

+

+

+

+

+

-

=

+

+

L

k

L

k

k

i

b

L

i

b

i

b

k

i

b

1

1

)

(

)

1

(

)

1

(

)

1

(

; that is, the sum starting at
[image: image7.wmf]1

+

i

 is the same as the sum starting at
[image: image8.wmf]i

except that the first part for the
[image: image9.wmf]i

 sum has to be ignored, so it is subtracted away, and the last component for the
[image: image10.wmf]1

+

i

 sum has to be added in.

Figure 2 Sum
[image: image11.wmf]1

+

i

 Almost Same as Sum
[image: image12.wmf]i

As shown in the above figure, the top-most representation of sum
[image: image13.wmf]i

agrees with sum
[image: image14.wmf]1

+

i

 in the yellow region, differing only in the red byte which must be subtracted and the green byte which must be added to go from
[image: image15.wmf]i

 to
[image: image16.wmf]1

+

i

.

A simple summation of bytes is inadequate though because the summation is too symmetric—the sum is the same if the bytes are reordered. The summation of a string “All men are mortals” is exactly the same as that of the string “All mortals are men”, while we would wish the checksum to distinguish them. The solution is to asymmetrically weight the bytes in a sum in some fashion. Suppose we decide that the first bytes in a sum should be weighted more than the last—can we achieve a rolling-type of checksum? The following figure shows that for the simplest such weighting the answer is yes.

In the above figure the leftmost set of squares represents the summation at
[image: image17.wmf]1

=

i

and the rightmost set is the summation at
[image: image18.wmf]2

1

=

+

i

. The block size is an unrealistically small
[image: image19.wmf]4

=

L

. The first word
[image: image20.wmf])

1

(

w

 of the
[image: image21.wmf]1

=

i

 sum is given a weight of
[image: image22.wmf]4

=

L

, the next word
[image: image23.wmf])

2

(

w

 is given weight
[image: image24.wmf]3

1

=

-

L

, the next word
[image: image25.wmf])

3

(

w

 is given weight
[image: image26.wmf]2

2

=

-

L

, and the final word
[image: image27.wmf])

4

(

w

 is given weight
[image: image28.wmf]1

3

=

-

L

. We view assigning weights as stacking extra copies of the bottom words. The weighted sums for
[image: image29.wmf]i

 and
[image: image30.wmf]1

+

i

 share the yellow copies. The copies from weighted sum
[image: image31.wmf]i

 that are not used in sum
[image: image32.wmf]1

+

i

 are in red, while the copies needed in
[image: image33.wmf]1

+

i

 that do not come from
[image: image34.wmf]i

 are in green. Now there is a trick to viewing the added green copies—shift them down to the bottom while moving the yellow copies up as in the figure below.

Figure 4 Weighted Sum Rearranged

The green copies on the bottom for weighted sum
[image: image35.wmf]1

+

i

 are now seem to merely be the ordinary summation

[image: image36.wmf]å

=

=

+

+

+

=

+

+

4

1

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

L

k

w

w

w

w

k

i

w

.

Combining Ordinary and Weighted Summation

Tridgell for his weak checksum uses both ordinary and weighted summations by dividing a 32-bit (4 byte = 4 octet) checksum into a 16-bit half
[image: image37.wmf])

(

i

l

determined by simple summation and a 16-bit half
[image: image38.wmf])

(

i

r

determined by weighted summation. Let
[image: image39.wmf])

(

k

b

 represent the bytes of the file, then iteratively we use the above ideas to write

[image: image40.wmf])

(mod

)

(

)

1

(

)

(

)

1

(

)

(mod

)

(

)

1

(

)

(

)

1

(

M

i

r

i

l

i

Lb

i

r

M

i

l

L

i

b

i

b

i

l

+

+

+

-

=

+

+

+

+

+

-

=

+

for some modulus
[image: image41.wmf]M

 that keeps the sums small, say
[image: image42.wmf]16

2

=

M

.

Extra Signature for Entire File

One might be concerned about the use of MD4 in light of research over the past decade indicating problems with collisions, see for example [RSA, 3.6.6]. However, rsync is not a method to insure file integrity in a hostile environment; instead, the concern is simply that the proper bits have been communicated. If one is concerned about the security of the network connection, rsync’s being developed to work in Unix-like environments means that the proper solution is to use a separate tool like ssh [Rsync].

Computing so many hashes over each position does increase the number of potential collisions even without hostile intent; therefore, Tridgell includes as an embellishment the sender and receiver both computing an overall file message digest for their respective versions of the file, again computed using MD4. If the MD4 sums do not match, the algorithm is restarted with a different seed value for the MD4 calculations of block checksums in order to avoid repeating a collision.

Synchronizing Entire Directories

One would like to be able to synchronize files without having to open a separate connection for each. Rsync allows such pipelining by having the receiver split off reception of commands into a separate generator process.

As shown in the above figure, the receiver only concerns itself with transmitting to the sender the hashes of each file to be synchronized while the generator is responsible for processing the commands from the sender to reconstruct the newer file versions. The reconstruction is completely safe because rsync does not overwrite the old files until it knows that the newer version has been completely reconstructed; that is, rsync requires twice the amount of storage originally used for the older versions so that it has room for temporary files.

Future Direction for Rsync

Tridgell’s thesis and the subsequent successful development of rsync into an important open source project have inspired various attempts by researchers to extend Tridgell’s ideas. For example, Rasch and Burns have recently proposed eliminating the temporary files discussed above in order to enable rsync to be used on lower memory/storage devices [Rasch]. A disadvantage for Rasch and Burns extension is that receiver and sender must keep track of a dependency graph, for if the sender detects that the receiver already has a block, that block can be anywhere in the receiver’s old version. The standard rsync implementation keeps the old version’s blocks around because it is able to use the temporary storage.

As rsync’s basic algorithms by now are proven, the work is more integrating into the requirements of Unix-like environments. As an open source project, rsync has achieved a focal point for concentrating resources on how to administer synchronizing directories of files. The source code becomes in effect a database recording the collective experience of its developers and users. One possible negative result is that there is no proper documentation of the protocol rsync uses over the network—everyone is assumed to be using the reference implementation both as client and server. There is another open source project underway, the librsync project, to provide the services of rsync in the form of a library callable from programming languages such as C, but librsync’s project page warns that librsync is not “wire-compatible” to the original rsync [librsync]. It cannot be wire-compatible because to be so would be to in effect re-use all of the code from the original rsync—the wire protocol is the rsync code.

We conjecture that the project has reached a point of maturity so that it is unlikely for its ideas to extend much further from its original purpose, but that as an open source project it will remain a standard tool for Unix system administrators.

References

[Gusfield] Gusfield, D. Algorithms on Strings, Trees, and Sequences. New York: Cambridge University Press, 1997.

[librsync] Librsync. Open source software project. Homepage http://librsync.sourceforge.net/

[Rasch] Rasch, D. and Burns, R. In-Place Rsync: File Synchronization for Mobile and Wireless Devices. Technical Report. Downloaded April 4, 2004, from http://hssl.cs.jhu.edu/ip-rsync/ip-rsync.pdf

[RSA] RSA Security, Inc. RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, Version 4.1. Downloaded April 4, 2004, from http://www.rsasecurity.com/rsalabs/faq/3-6-6.html

[Rsync] Rsync. Open source software project. Homepage http://samba.anu.edu.au/rsync/

[Tridgell, 1999] Tridgell, A. Efficient Algorithms for Sorting and Synchronization. Ph.D. thesis, Australia National University, February 1999. Downloaded March 23, 2004, from http://samba.org/~tridge/phd_thesis.pdf

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

Sum starting at i + 1

Sum starting at i

Figure � SEQ Figure * ARABIC �3� Weighted Sum at i Compared to i + 1

Receiver

Sender

Generator

Figure � SEQ Figure * ARABIC �5� Receiver/Generator and Sender

CS 265, Spring 2004
Page 7 of 7
4/5/2004

_1142545774.unknown

_1142546900.unknown

_1142547146.unknown

_1142547927.unknown

_1142548042.unknown

_1142548435.unknown

_1142548449.unknown

_1142548140.unknown

_1142547944.unknown

_1142547549.unknown

_1142547571.unknown

_1142547157.unknown

_1142547014.unknown

_1142547056.unknown

_1142547122.unknown

_1142547023.unknown

_1142546938.unknown

_1142546950.unknown

_1142546916.unknown

_1142546656.unknown

_1142546806.unknown

_1142546828.unknown

_1142546753.unknown

_1142546781.unknown

_1142546548.unknown

_1142546578.unknown

_1142546536.unknown

_1142545218.unknown

_1142545678.unknown

_1142545727.unknown

_1142545767.unknown

_1142545717.unknown

_1142545257.unknown

_1142545668.unknown

_1142545236.unknown

_1142544930.unknown

_1142545033.unknown

_1142545197.unknown

_1142544963.unknown

_1142544878.unknown

_1142544905.unknown

_1142544801.unknown

