Zac Walker

CS265

Research Project

Capabilities and Security

Capabilities are a mostly theoretical alternative to access control lists. Mostly theoretical because the vast majority of operating systems use the access control list(ACL) abstraction to handle the complexities of access control. Modern computing has re-ignited the interest in the capabilities based access control model, and as a result, a few experimental operating systems based on capabilities are in development. Following in the footsteps of earlier capabilities based operating systems such as Multics, KeyKos, and Mach, the EROS or “Extremely Reliable Operating System” is the most notable recent attempt to legitimize the capabilities based OS.

At the time of the development of the UNIX operating system ACL’s and cap lists were equally viable technologies. The computing environment at that time was one of trusted hosts and contained networks. The added security advantages of capabilities were deemed unnecessary and the additional performance costs and programming difficulties were more than enough to make ACL’s the preferred access control model. With the advent of the internet and large scale networking where malicious hosts, users, and programs are commonplace, the need for security has become paramount. Unfortunately, ACL’s don’t do us any favors when it comes to protecting our computers against unauthorized access.

The Trojan horse type attack is a good example of where ACL’s fail and capabilities shine. A Trojan horse is a malicious program executed by a user expecting something good from the program. Once a program is executed by a unknowing user in an ACL environment, the Trojan horse will have access to all resources that the user has access to. This is how today’s computer viruses are able to access a victims address book and send itself to each member of the list. The access control mechanisms in ACL’s are attached to the subjects that are being acted on. Therefore a program run by a user is indistinguishable from the user itself. Capabilities provide straight forward protection from these types of attacks. Capabilities reverse the access control mechanism and attach access controls to the requesting objects. Each object has a set of capabilities that it may make use of. A malicious Trojan horse may still be downloaded by an unknowing user. The program may still be executed. The program will still run but when it tries to access the mailing list of a user it will not have access to that resource. Capabilities must be granted by an object which holds the desired capability.

One of the fundamental questions of access control is how to enforce the idea of “least privledge” or giving an object the least access necessary to perform a task. With ACL’s this is difficult. A program will be given the same access level as the user running it but this is not the most desirable result. When executing a program in a capabilities system it is necessary to pass the capabilities that the program will have along with the command to start the process. This implicit capability passing gives a much finer granularity of access control than that of an ACL implementation. Any object not represented in a processes capability list will be non-existent to that process.

Several attempts have been made to make a viable capabilities based OS. There has been Multics, KeyKos, Mach, and many others. Performance has been a major problem with these early attempts. Much of the problem was due to the hardware implementation of the capability system. Physical addressing of capabilities systems required special hardware which made the systems undesirable. Software based capabilities have become a much more feasible endeavor. There is even a programming language under development called “E” that is built on top of java and enforces the access control model of capabilities. EROS is supposedly the fastest capabilities based OS available. There are a number of complexities involved in the development of EROS that may not be obvious from the surface.

EROS is based on a set of primitives from which all objects grow. In fact all the capabilities that will ever be available to the OS are created when the OS is started. This sounds strange as it would be expected that processes would need to create and alter capabilities for the system to be viable. In fact all a capability is in its simplest form is a pointer to an object. EROS partitions all memory into nodes that are addressed not in the typical sense but by capability pointers. This brings up a difficult question. Where does it all begin. The system must be initialized at some point and would the system be vulnerable at initialization. EROS has an initial configuration that must be loaded into the system from a disk or CD. The EROS system is a persistent system meaning that the state of the machine including running processes and memory contents are maintained through power cycles. To achieve this a complete system image is written to disk every five minutes. Five minutes was determined to be long enough to prevent overloading the system with constant backups and short enough to prevent loss of significant amounts of work due to a power failure.

The persistence of the operating system is difficult to describe and is the corner stone of the systems security. The OS is in complete control of all resources that are or ever will be available to the system or its users. Each page of memory or virtual memory page, or disk space is known to the OS and pointed to by some OS controlled capability. Initially each of these capabilities is of one of the primitive types described by EROS. Even processes are identified by capabilities. It seems strange that a process capability will always exist even when the process come and go. From my understanding a process capability is simply an executable memory capability given to a user or handled by the OS. When the program needs to be run, a capability representing an area of memory available for computation and capabilities for any necessary resources are fed to the process by the requester. The definition of a capability says that a capability must be held and a connection to another object must be present for a capability to be shared. This is essentially what prevents the Trojan horse attack spoken of earlier. A Trojan horse would never be granted capabilities to the resources it needs to do harm.

EROS makes a clear separation of memory used for capabilities and memory used for all other purposes. The memory is partitioned such that only the OS has access to the capabilities at the lowest level and the OS may at its discretion share these capabilities with other objects. Again, capabilities are nothing but pointers in their simplest form. The EROS capability system makes it such that if a capability to a resource is not possessed it is as if the resource does not exist. The makers of EROS claim that it is impossible to forge a capability and this means it is easy to enforce the concept of least privilege. Simply never give out a capability beyond what is safe and the system should remain safe.

In capabilities based systems there is the concept of a “mediator” or middle man that adds security to a system. Suppose there is a proprietary piece of data or application that someone wants to give another limited access to. Remembering that a capability is just a pointer, it is possible to simply add another capability or a pointer in the middle of two collaborating objects to act as a proxy. An example might be a music file that a user has paid to listen too but may only listen to it five times before they must pay again. The user shouldn’t have direct access to the music file or the may simply copy it and use it indefinitely. With capabilities it is simple to give a user access to a mediator that will stream the bits of music to the user but only the mediator has access to the file. The mediator knows when the five times have been used up and stops the access. This would not be possible with ACL’s. A user would have to have access to the music file for the mediator running under his command to have access to the music file. The finer granularity of control is essential to EROS and all capability based systems security.

The weaknesses of a capability-based system aren’t obvious yet a few do exist. I imagine that if capabilities had been the preferred system for the past 20 years many more weaknesses would have been brought to light already. When the system is shut down the capabilities must be maintained in some persistent storage. If these stored capabilities are compromised an attacker could manipulate them to suit whatever he/she desired on a restart. Secondly, it is difficult to revoke capabilities. In fact it is not possible to revoke a capability in the sense of taking it back. Once a capability is given the new owner may share it freely. Therefore the owner of a capability must be very careful who they distribute a capability too. It is possible to nullify the object that a capability is attached too but this will affect all owners of the capability and there will be much overhead in initializing a new capability and re-distributing it to the proper users.

Levy, Henry,

Capability-Based Computer Systems

Miller, Mark

Capability Myths Demolished

Shapiro, Jonathan

EROS: A capability system

Shapiro, Jonathan

EROS: A Platform for Reliable Applications

Web Sources

http://www.eros-os.org/
http://www.skyhunter.com/marcs/capabilityIntro/
http://www.cap-lore.com/
http://www.erights.org/elib/capability/index.html
