Diana Dong
CS 265

Spring 2004

Java Applet Security

Concerns over internet security is a major issue in today’s networking world. Many users surf the internet everyday where Java applets, JavaScript scripts, and ActiveX controls are most likely downloaded automatically without prior user approval. This poses as a severe security risk when unbeknownst to the user, a malicious applet, script or control is downloaded that could run havoc on the local machine. However, designers of Java thought about this issue and built security measures into the language to protect against such a situation. The rest of this paper will cover different aspects of the Java architecture and how it relates to protecting users running Java applets over the internet.

The fundamental concept in applet security is the sandbox. The sandbox is a place where applet code can be executed. However, applets are prevented from running code outside the sandbox. Sandbox sets up a secure customizable environment where applet code can be safely executed without affecting other parts of the system such as prevention of file, network, and process access and no creation of process. The sandbox idea allows users to run any applet regardless whether the applet is malicious or not because everything is executed inside the sandbox and nothing outside of the sandbox can be affected. Thus, no user will need to verify the validity of an applet before executing one.

The major parts that make up the sandbox are Java Virtual Machine (JVM) safety features, class loader, class file verifier, and the security manager. The class loader and the security manager combined are what makes the sandbox customizable. Details of how each part works are covered below.
Built into the JVM architecture are features that make Java secure. Java is a strongly typed language that provides strict compile time checks. This along with the built in type-safe reference casting, Java makes it impossible for hackers to cast an object into another unrelated object for hopes of a loophole into the system. Java also prevents the program from overstepping its array boundary. This stops the program from accessing an area it should not access. Thus, no loophole for a hacker to exploit.
Another feature Java has is structured memory access. Java only allows access to its memory in a structured and safe manner, i.e. no pointer access. Without this feature, a hacker may exploit memory access to subvert the system. For example, a hacker might be able to access an area where the JVM is stored and hack the JVM to give the applet rights to access the local system. In addition to structured memory access, the memory layout in Java provides more protection against hackers. It is divided into several runtime data areas which consists of stack, method area, and garbage collection heap. All of these areas are laid out in memory by the JVM at the time of execution. This prevents any hackers from figuring out where and how the JVM will store the runtime data, thus, making it difficult for a hacker to figure out where and what to hack.
Class loader is another component of the sandbox. The class loader imports classes and interfaces used in a running program into the JVM. However, a distinction of trusted and untrusted classes are made. A trusted class such as those from the Java API are loaded by the primordial class loader and they become a part of the JVM. Untrusted classes are loaded and instantiated like any other object in Java by the class loader. These objects are allocated on the heap (see diagram 1 for illustration).

Diagram 1: Class Loader Architecture (source: Low Level Security in Java, Yellin)

Class loader adds to the security of Java applets in 2 ways. It stops malicious code from doing damage to other codes through the use of name space. Each class file is loaded into its own separate name space. Thus, classes in different name spaces cannot interact. Code is safe within each namespace. Another method of protection offered by the class loader is how it determines the border between trusted and untrusted classes. The class loader is responsible for guarding this border and ensuring no trusted classes will be compromised by untrusted classes. The class loader can be customized to define which classes are considered trusted and which are not. This will determine whether a class is loaded into the JVM or on the heap.
Another component of the sandbox is the class file verifier. A thorough check of class files is made before execution to ensure no class file bytecodes have been altered to do something illegal. This is to ensure a class file has not been altered by some other program or hacker to do something it is not allowed to do. Java uses a built-in theorem prover to check the integrity of the bytecodes. A four step process is used to check the integrity of the file.
In pass 1, the class file is read by the Java interpreter. In this step, the basic format of the class file is verified from the magic number in the first few bytes of the file to no extra spaces at the end of the file. It also verifies that each attribute has the proper length and all information contained in the constant pool is valid.
In pass 2, additional items are verified. During this stage, final classes and methods are checked to assure they have not been subclassed or overridden. Every class is checked that it has a super class except for the Object class. Constant pool is checked again, this time to verify constraints defined in the constant pool are valid such as all method and field references in the constant pool exist and have legal structures.

In pass 3, the bytecodes themselves are verified through the bytecode verifier. This is divided into a 2 step sweep through the bytecodes. The first sweep breaks down each virtual instruction into a series of instructions. Then in the second sweep, each instruction is verified including the stack and register contents of each instruction. In addition, control flow, references to the constant pool, and exception handling are verified.
Lastly, in pass 4, any bytecode that was not verified in pass 3 are verified here. This consist of verifying bytecode at runtime because it is more efficient to do it now than in pass 3. The 4 passes of the class verifier ensures all bytecodes in a class file are legal. This prevents any attempt by hackers to alter the class file to do something illegal.

The last component of the sandbox is the security manager. The security manager is another customizable component of the sandbox. It consists of methods which determines whether a request is allowed or disallowed. These methods can be overridden. The security manager specifies which requests are trustworthy and thus allowed and which are not. This mechanism along with the class loader defines the boundaries of the sandbox and limits the applet to within the boundaries defined.
It is worthwhile to note that even though Java provides the sandbox environment where even malicious code can be executed safely without concerns of compromising security on a local machine, Java also provides other mechanisms for security. In particular, ActiveX controls rely on digital signatures. A verifiable signature from a trusted source imply a safe ActiveX control. This too can be done in Java. Java provides a mechanism for digital signatures if a developer wanted to sign an applet.
The sandbox idea provided by Java offers a way of running any applets without concerns for security. This removes the burden of verifying trusted applets from the user. Thus, users can surf the internet without worrying about compromises to the local system. The sandbox is also customizable by changing the class loader and security manager. This allows greater flexibility for developers of Java programs. In addition, Java applets offers better security than that of an ActiveX control since it offers both digital signatures and the sandbox.

Bibliography

Last Stages of Delirium Research Group. Java and Java Virtual Machine Vulnerabilities and their Exploitation Techniques. Retrieved March 30, 2004, from http://lsd-pl.net/java_security.html

Greanier, T. Building a bigger sandbox. Retrieved March 30, 2004, from http://www.javaworld.com/javaworld/jw-08-1998/jw-08-sandbox.html

Venners, B. Java’s security architecture.. Retrieved March 30, 2004, from http://www.javaworld.com/javaworld/jw-08-1997/jw-08-hood.html

Venners, B. Security and the class loader architecture. Retrieved March 30, 2004, from http://www.javaworld.com/javaworld/jw-09-1997/jw-09-hood.html

Yellin, F. Low Level Security in Java.. Retrieved March 30, 2004, from http://www.javasoft.com/sfaq/verifier.html

