Project on

Java Code Obfuscation

Submitted by

Neerja Bhatnagar

CS 265 Spring 2004
Java Code Obfuscation to Discourage Reverse Engineering

1. Introduction

Code reverse engineering involves figuring out source code corresponding to the given byte code or executable code. Reverse engineering is of concern to all software engineers, but especially to Java software engineers. This is because Java byte code is exceptionally easy to decompile, and hence reverse engineer [1]. Java byte code is easy to reverse engineer because Java byte code is very well documented, and most of the information contained in the source code is also present in the corresponding byte code [10]. Moreover, majority of Java applications are available for easy downloads over the Internet. Hence, Java software engineers have little control over the distribution of their Java byte code. Code is intellectual property, and needs to be protected. A lot of hard work, intelligence, time, and money are deployed to develop code.

2. Code Obfuscation – A Technique To Deter Reverse Engineering

Code obfuscation is a technique that discourages reverse engineering [9]. Code obfuscation scrambles the byte code, makes it uintelligible, and hence, difficult to understand. Code obfuscation alters the structure and appearance of byte code in order to make it uneconomical for an attacker to decompile it and reverse engineer it [4]. Despite the fact that the code has been obfuscated, it continues to perform the same function as the original program [9][4]. Code obfuscation scrambles the byte code, not the original source code.

3. Classification of Code Obfuscation Techniques

Code obfuscation techniques are classified into four categories – layout obfuscations, control obfuscations, data obfuscations, and design obfuscations.

Layout obfuscations modify the layout structure of the program. Layout obfuscation techniques rename identifiers, methods and classes, and remove debugging information from byte code. This technique can also replace method calls with method code. This is known as inlining a procedure. The inverse of inlining a procedure is outlining a procedure, in which arbitrary part of code is replaced with a method call [1][4][9].

Control obfuscations alter the control flow of the program. Control aggregation, control ordering, control computation, control flow abstraction, and opaque predicates are some forms of control obfuscations. Control ordering alters the order in which program statements are executed. A typical example of control ordering is to make loops go backwards instead of forward [1][4][9].

Data obfuscations change the data structures in the program. Data obfuscation techniques include data storage, data encoding, data aggregation and data ordering. Data storage obfuscation alters how data is stored in memory. A typical example involves converting a local variable into a global variable, and vice versa. Data ordering obfuscation alters the order of the original data. For example, instead of storing an array the typical way, the ith position in an array does not point to the ith element in an array, but to some mapping thereof [1][4][9].

Layout obfuscations, control obfuscations, and data obfuscations are collectively known as low-level obfuscations. Design obfuscations are known as high-level obfuscations. In this paper, we discuss design obfuscations in detail.

4. Design Obfuscations

Proponents of high-level obfuscations believe that low-level obfuscations are not sufficient to provide strong resistance to code reverse engineering. This is because high-level program constructs, for example classes, can give away valuable high-level design information [9]. This information can facilitate an attacker in gaining a general understanding of the code and what it does. Design-level obfuscations obscure application design. When combined with low-level obfuscations, high-level obfuscations can provide a solid resistance to reverse engineering.

5. Classification of Design Obfuscations

Design obfuscations are further classified into – class coalescing, class splitting, and type hiding obfuscations [4].

5.1 Class Coalescing Obfuscation

Class coalescing obfuscation combines two or more classes into a single class. If two or more classes have attributes with same type and same name, these attributes are renamed in order to distinguish among them (line 3 in Figure 2). Similarly, if two or more classes have non-constructor methods with same signatures, except for one non-constructor method, the signatures of all the other same-signature non-constructor methods are altered (line 26 in Figure 2). If two or more classes have constructors with same type and number of arguments, then these constructors are changed such that they have spurious arguments (line 13 in Figure 2). Class coalescing can virtually convert an object-oriented program into a non-object-oriented procedural program [4].

However, class coalescing suffers from few shortcomings. One of the shortcomings is that class coalescing obfuscation becomes very complicated when the classes to be coalesced extend other classes or implement interfaces. The complication arises from the fact that variable names and method signatures defined in superclasses or interfaces cannot be renamed [4]. Another shortcoming of class coalescing obfuscation is that it cannot be performed when the classes to be coalesced extend classes from Java standard library. This is because including classes from Java standard library in class coalescing makes the code non-portable. Classes with native methods in them cannot be coalesced because analyzing native code is very difficult [4]. An example of class coalescing obfuscation is presented in Figures 1 and 2.

5.2 Class Splitting Obfuscation

Class splitting obfuscation splits a class into multiple classes [4]. There are several ways to split a class. However, a valid split function preserves the dependencies among the class's methods and fields. A typical split function splits a class A into classes A1 and A2, and makes A2 a subclass of A1. It then splits the methods of class A evenly between A1 and A2. Another split function splits the methods defined in class A between classes A1 and A2, and makes method calls between A1 and A2. However, splitting a class using the superclass-subclass relationship provides stronger obfuscation [4].

Usually, it is very hard to split a class, unless the original code design was flawed in the first place. If the code design was not flawed, then the classes should have been split from the very beginning. Figures 3 and 4 illustrate an example of class splitting obfuscation.

5.3 Type Hiding

Type hiding obfuscation uses the concept of Java interfaces to obscure the design of a Java application [4]. A Java interface is an agreement between the interface and the class that implements that interface. A Java interface does not contain method implementations. Instead, interfaces contain constants, variables, and method signatures. Type hiding obfuscation transforms a concrete class into several interfaces. Each interface contains a random subset of constants, variables, and methods declared in the concrete class [4]. However, type hiding done this way is especially vulnerable to reverse engineering. But, when combined with low-level obfuscations like identifier renaming, type hiding provides a strong resistance against reverse engineering. Type hiding obfuscation can be made stronger when some randomly selected classes implement multiple interfaces, instead of each class implementing a single interface [4]. Figures 5 and 6 present an example of type hiding obfuscation.

6. A Few Obfuscator Products

· RetroGuard is a general-purpose byte code obfuscator. It is an open-source project. Retrologic claims that by using RetroGuard, class size is reduced, making the obfuscated application easier and faster to download [5].

· Zelix Klassmaster is the only product among the products listed here that provides name obfuscation, flow obfuscation, and string encryption. Name obfuscation changes the names of classes, fields, and methods to meaningless strings. Flow obfuscation alters the control flow of the program by obscuring if/else statements, and for and while loops. In addition to this, Zelix Klassmaster inserts illegal labels and goto statements in the code. The product also encrypts all string literals stored in the constants pool in the class files. Although these strings are decrypted at runtime, encrypted strings prevent an attacker from getting any additional information from reverse engineered code [11].

· The code obfuscator tool provided by Semantic Designs removes comments, white space and indentation, renames identifiers to meaningless names, and converts constants into unreadable ones [6].

· Duckware’s JObfuscator removes all symbolic information from source code by renaming classes, methods, and variables into meaningless names; but does not alter Java byte code. Duckware claims that obfuscators that alter byte code introduce bugs [8].
7. Conclusion

None of the obfuscation techniques discussed above are sufficient by themselves. However, all these obfuscation techniques combined together can provide a very strong resistance to reverse engineering. But one has to be careful about the interactions among the various obfuscation techniques. For example, splitting a class into two or more classes as part of class splitting obfuscation may actually improve the design of an application! Thus, in a not very well designed application, class splitting obfuscation might actually help an attacker, rather than deter him or her.

However, none of the obfuscation techniques are immune to persistent attacks from diligent attackers. Some opponents of code obfuscation claim that obfuscation slows down an application. Depending upon the obfuscation technique used, impact on performance should minimal or none at all. Decision to obfuscate or not is a trade-off between taking a slight performance hit and protecting intellectual property.

References:

[1] http://www.cs.arizona.edu/~collberg/Research/Students/DouglasLow/obfuscation.html
[2] Douglas Low, “Protecting Java Code via Code Obfuscation”, ACM Crossroads
 (http://www.acm.org/crossroads/xrds4-3/codeob.html)

[3] http://www.cs.auckland.ac.nz/~cthombor/Students/hlai/hongying.pdf
[4] Mickail Sosonkin, Gleb Naumovich, Nasir Memon, "Obfuscation of Design Intent in Object-

 Oriented Applications"

[5] http://www.retrologic.com/
[6] http://www.semdesigns.com/
[7] Hongying Lai, ”A Comparative Survey of Java Obfuscators Available on the Internet”

[8] http://www.duckware.com/jobfuscate/
[9] Christian S. Collberg, and Clark Thomborson, “Watermarking, Tamper-Proofing, and
 ObfuscationÐTools for Software Protection”

[10] http://www-106.ibm.com/developerworks/java/library/j-obfus/
[11] http://www.zelix.com/klassmaster/
1. public class A2 {

2. int a1;

3. int a3;

4. public A2() {

5. a1 = 0;

6. a3 = 1;

7. }

8. public bar() {

9. a3 -= 12;

10. }

11. public void foobar() {

12. a3 = 88 * 8;

13. }

14.}

15. public class A1 {

16. int a1;

17. int a2;

18. public A1() {

19. a1 = 0;

20. a2 = 1;

21. }

22. public A1(int i, int j) {

23. a1 = i;

24. a2 = j;

25. }

26. public foo() {

27. a1 *= 8;

28. }

29. public void foobar() {

30. a2 = a1 * 8;

31. }

32.}

Figure 1

1. public class A {

2. int a1; // A1.a1

3. int a12; // renamed A2.a1

4. int a2; // A1.a2

5. int a3; // A2.a3

// A1’s default no-argument constructor

6. public A() {

7. a1 = 0;

8. a2 = 0;

 }

// A1’s two-argument constructor

9. public A(int i, int j) {

10. a1 = i;

11. a2 = j;

12. }

// A2’s default no-argument constructor

13. public A(int bogus) {

14. a12 = 0;

15. a3 = 1;

16. }

17. public foo() { // A1.foo()

18. a1 *= 8;

19. }

20. public bar() { // A2.bar()

21. a3 -= 12;

22. }

23. public void foobar() { // A1.foobar()

24. a2 = a1 * 8;

25. }

public void foobarFromA2() {// A2.foobar()

27. a3 = 88 * 8;

28. }

29. }

Figure 2

class A1 {

 int a1;

 double a2;

 public A1() {

 a1 = 5;

 a2 = 6;

 }

 public A(int i, double j) {

 a1 = i;

 a2 = j;

 }

 public int foo() {

 return a1 - 10;

 }

}

class A2 extends A1 {

 public A2() {

 super();

 }

 public A2(int i, double j) {

 super(i, j);

 }

 public void bar() {

 if (a1 > 0)

 a2 = 8.0;

 else

 a2 = 5.0;

 }

}

Figure 4

class A {

 int a1;

 double a2;

 public A() {

 a1 = 5;

 a2 = 6;

 }

 public A(int i, double j) {

 a1 = i;

 a2 = j;

 }

 public int foo() {

 return a1 - 10;

 }

 public void bar() {

 if (a1 > 0)

 a2 = 8.0;

 else

 a2 = 5.0;

 }

}

Figure 3

interface I0 {

 public int foo();

}

interface I1 {

 public void bar();

}

public class A implements I0, I1 {

// code from original class A

// remains unchanged

 int a1;

 double a2;

 public A() {

 a1 = 0;

 a2 = 0;

 }

 public A(int i, double j) {

 a1 = i;

 a2 = j;

 }

 public int foo() {

 return a1 - 100;

 }

 public void bar() {

 a2 = 88.8 * 987.45;

 }

}

Figure 6

public class A {

 int a1;

 double a2;

 public A() {

 a1 = 0;

 a2 = 0;

 }

 public A(int i, double j) {

 a1 = i;

 a2 = j;

 }

 public int foo() {

 return a1 - 100;

 }

 public void bar() {

 a2 = 88.8 * 987.45;

 }

}

Figure 5

PAGE

