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The Polynomial Hierarchy (PH)
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P = AY = deterministic poly-time rel'ns.

NP = X7 = nondeterministic p-time rel’'ns.

P
Af’_l_l — P> add > oracle set
sP  — NP add =P oracle set
i+1 1

Hf = co — ZP complements of ¥ rel’ns.

Open: Does PH collapse? Does P = NP7
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Complexity into Logic

Ly = {0, Sz ==z+1, +, -, <, =, |z|, [5]
sty = 2lellvly.

The Bounded Arithmetic Hierarchy is:

P =1II§ are the sharply bounded formulas.
i.e., Quantifiers are of form 3z < |t} or Vz < [¢].

2}) D N%_, closed under A,V,Vz < |t|, 3z < t.
P O =%, closed under A,V,3z < |t],Vz < ¢.

2?, IAI}D are the prenex formulas in ¢, M2, i.e.,
a ¥0-formula is of the form

(3z1 < t1)(Vzo < t2)
(@i < 1) (Qiamiqr < ltigal)A
where A is open.

It turns out ¢ = ¥ = 5 and A?
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Bounded Arithmetic Theories

Bounded arithmetic theories are theories us-
ing axiom schemas restricted to the bounded
arithmetic hierarchy. We will be talking about
definability in such theories and their connec-
tions with PH. Our base theory is:

BASIC := a finite list of open axioms for L.

Defining Functions in a Theory

A multifunction is a total relation. Let W be
a set of Lo-formulas.

T can ¥-define the multifunction f(z), if
T+ Vz3yAs(z,y) where Ay € W and

N Af(z,y) & f(2) =v.

T can ¥-define the function f(z) if
T+ Vz3lyAs(z,y) where Ay € W and

N = Az, ().




Example: A X%-definable multi-fn in BASIC:

flz) =y <&
Aw)(F)(y<4(z+DAy=w-zAw,z>1)

Example: f(z) = z + 2 is an open-definable
fn in BASIC.

Def’'n: A formula Ais AP in Tiff T+ A& A-
and T+ A < A" where A> ¢ =% and A" e .
The formula A is AP in T if 4> € £? and
Al end

Idea: A!is what theory proves is 2N




Axiom Schemas

T - set of 1l-ary terms (iterms).
¥ - set of formulas.
Write |r| for set of iterms |¢| where £ € T.

We form theories from BASIC with schemas
below. Here IND is for induction, REPL for
replacement, and COMP for comprehension.

V-IND7:
a(0) A (Vz)(al(z) D a(Sz)) O (Vz)a(l(x))

U-REPLI7!:

vz < 16(s)[3y < ta(e, y) © Fw < 2(t*#0(s))
vz < |6(s)|alz, B(z, [t],t,w)))

v-COMPI7I:
(Fw)(Vz < (b)) (a(v,z) & Bit(z,w) = 1)

Here a e WV, £ € 7, and s,t € Lo.



Classical Bounded Arithmetic Theories

T, = BASIC+x}-1NDlid}
i, = BASIC+x?-1N D}
L = BASIC+3b-1N DI}

Some facts about them

o S} 1CR%CSQCT§ <5 S5 (Bu,AlTa)
i+1

o T4 =S5 implies ¥, =M%, ,.(KPT)

o X7, ,-definable functions of Sut1 and T4 are
precisely the p-time functions with access to a
sP_oracle, FPTi. (Buss, Krajicek)

. Zb_|_1—definable multifunctions of S% is the

class FPZf(wz't, log). (Krajicek)

o X%-functions of R3 are FNC, the class of
poly-size polylog depth circuits and those of
T5 are projections of polynomial local search
problems (PLS).(Al,Cl,BK)

e S3(a) can't prove PRNGs exist.(Ra, Wi)

?



Questions

¢Is S, <sp R5™ 7 What makes one bounded
+1
arithmetic theory conservative over another?

Can the T} < Sé"’l result be strengthened?
i+1

e For i > 1 what are the Z?-multifunction of
T

e For i > 1 what are the ¥!- and =7 ,-definable
multifunctions of Riz? Does the trend FPZi for
7%, FPZf(wit, log) for S% continue to

FPTi (wit, log log) for RY7?

e What relativized separations occur between
these theories? From (Kraj,KPT) known

S5(a) € Th(a) € S5T1(a).




New Theories

EBASIC := BASIC +3 open axioms enabling
ordered pairs.

Thm EBASIC C RS.

If restrict to prenex formulas can perform wit-
nessing argument in extensions of EBASIC.
Let 7 be a set of iterms.

T4 .= EBASIC+Sb-INDT
Ci™l .= EBASIC+open-INDITI+Fb-REPLI

We call 73" and C'é’l'rl prenex theories.

We write id for the identity term id(a) = a.
We define cl to be the set of closed iterms. So
EBASIC = T4,

Thm
(1) T2 — T2>{7'd} Sz —_— T"" {Izdl}

(3) Tz {||'&d||} jB(Z %) Riz_



Definability Results

(Buss, Allen, Krajicek + new)

b b b b
2 ; A Zi—!—_lp ALy
T Bi,z Bi.2 Z p
T3 ﬂ'LS{id} ﬂ'LS{z.d} FP“i Ai"l‘l
K rel’ns*
Sy | FPTL AP FP=(wit,log) | P (log)
R, | FNC*= | NC*. | FPE (wit,log®) | P (log®)
(i>1)% | (4> 1) * o
i Bi
| 15 Ry

A ‘%’ indicates a new result.

Also §how for

k> 2, A§+k—preds of R%,S%,T% are Pzz’+k-—1(1).

wLS{Biiﬁ are multifunctions computable as local
optima to a new set of search problems we
define. For i > 1, Bjp = FP™i(wit,1). Cost,
feasible answer set, and nbhd multifunction are

in Bi,Q.

Cost is a fn and nbhd single-valued

at optima. The id means any cost bdd by a
td(Lo) = Lo-term.
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Structural Results
(Buss, Allen, Krajicek +new)

(a)
~i, {27l ; ; ;
TQ{ } jB(Z" 5 R2+1 C S +1 ~ CT: +1
ol YlB(Zz_H)
N 5% R C Tz
‘ Yl.B(Z?_H)-I_ tB(Zz—i-l)—i-
RLC S c
(b)
1—1
75 (o) ,-Z)Ab L(a)x RQ(a) L q ()

Sh(ar) & GAP, ()TQ(C‘!)

(c) Rh(a) G Ab(a)s Ti 1 (a)
(d) T4 ! = R} implies P =M 5 *

e A ‘x' Iindicates a new result.

o A ‘4’ indicates —< previously known.
7,-|—1

o §and T means = ,-REPLIIil} added.
e Collapse and oracle separations follow from

our definability results.
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Closing iterms under a base function

A set 7 of iterms is called product closed if
whenever s(z) and ¢(x) are terms in 7 there is
aiterm (s-t) in 7 and a term r in L, such that
(s t)(r(z)) = s(z) - t(z). We write 7+ to de-
note the product closure of 7. This is defined
inductively.

A class 7 of iterms is called smash closed if
the following additional conditions is satisfied
whenever s(z) and t(x) are iterms in 7 there
is a term (s#t) in 7 and a term r in Lo such
that (s#t)(r(z)) = s(z)#t(z). We write 77 to
denote the smash closure of 7. This is defined
inductively.
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Examples of Product and Smash Closure

An example of a product closed and smash
closed set of iterms is {id} since id(z - z) =
id(z) - id(z) and id(xz#x) = id(x)#id(x).

{|id|} is product closed but not smashed closed.

The class of terms of the form 22(zll) where p
is a polynomial; however, is smash closed and
product closed. To see this consider 2p1(lz(})
and 2p2{llzll) where p; and p, are polynomials.
Then

op1(llall) gop2(llall) = oprlllel)-pa(ilel)

and the right hand side is also a term of the
form 2PUlZl). A similar argument works for

product closure.
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Definability Results

- = =5 T =p
| 2 S | X,
‘ Tzi,'r TI'LSfP i-1(wit,1) FPZ (wit, |7.|) FPZfﬂ-wl ('wit, 1)
C | rLSTE @Y | R PR wit, ||r]]) | FPTen(wit, 1) |

|7}

L

L =

T57 | wLsy™ 0mD | PE(jr]) | PHhea(1)
rel'ns

G5 | wLSEFR ) | PE(Irll) | PR(1)
rel’'ns

The m means we map out a block of bits of a
sol'n to LS problem.

Other Definability Results

AS_I_l—predicates in Té’T are provably equivalent
to formulas of form

(Fz < 4(a))(A(z,a) N —B(z,a))
where £ € 7 and A,B € £
14




Structural' Results for New Theories

(a) | |
TH’l Il -<B( b 1) Té"f‘lsHT” U C£,|T|
@l
~i+1,| 7| ~i+1,|7|
T, -<B( £ ) C’
| o NB(EL)
5$T o 5$T (-; T27'3T

© T3 Zap @ T3 (@
(d) Tz+1,{||£||}(a) C R + (@ Tg’{f}(a)

(e) The following imply Zz+3 FIZ_I_3

i _ 1 P — ~i+1,|7]
C'%h-' — T;_I_]'J'T"

¢ is a nondecreasing unbounded iterm, £ ¢ 7/
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Examples of our results

1. Our general conservation results imply
=i {2rUiklD ~i+1,{||id||} +1
fge =B, 1o i =g, Bo

QED,
Our definability results applied to T2’{2p }

imply the $b-definable multifunctions of R5"?
are the class FPZf(wit,logO(l)) and Ag?—

p
oreds are PTi-1(log®?(1)) = NCTi-1. Can
use Ab-com P} axioms to show b-fns

are FNCZP

2. Our results imply the >-definable func-
tions of T§ are LSEh" 1),

3. Our results use a class of machines whose
multifunctions are FPZi (wit, |7|) but whose
computations are time O(|r]). This works
for general r. In particular, for EBASIC =

5% we get its >? ,-definable functions

i > 1 are FPTi (wit,1). We also give a mul-
t|1|"u|nct|on algebra version of these classes,
B T
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