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ABSTRACT OF THE DISSERTATION
Arithmetic Theories with Prenex Normal Form Induction
by

Christopher .J. Pollett
Doctor of Philosophy in Mathematics
University of California, San Diego. 1997

Professor Sam Buss. Chair

This thesis investigates bounded arithmetic theorics whose inductions axioms use
prenex formulas. The standard bounded arithmetic theories ave RY. S and T3
Their prenex versions are 125, $5. and T3. We show St =8 and Ty =Ty It is
unclear whether R} equals Rj. Nevertheless, we show Syt C R, and Ry is B (£9)-
conservative over R if i > 1. We extend BASIC. the base theory of R. Sy and Ty,
by three open axioms for pairing to get a theory EBASIC. contained in [?‘_Z which
we use as a base theory for our results. We define T = EBASIC+X'-IN D"
where $0-IN D7 is Sl-induction up to l-ary terms in a set 7. In particular. the
theory T._;'{M} is T4. For an operation o, a set 7 is o-closed if whenever #{a) and s(a)
arc in 7, there is a o s in 7 and a term r such that (t o s)(r(a)) = ta) o s(a). \We
write 7. 7% for the *-closure and #-closure of 7. We prove T, = T;7: however. it
is unknown if 7,7 = T_i—* The sct || are the terms [t| where t € 7. We define an

-1

algebra B! for the S definable multifunctions of Tli'l‘_l. We show the i-definable
multifunctions of T;" are the local search class FLS‘_-B’J and the i?+l-(10ﬁllil‘)l(‘
multifunctions of T;" are the class F P (wit.|r]). For T8, . -definability we get
FPSiskxi(wit. 1). We prove ffzi’:'l‘ifl = 'f._,iH'l"ﬂ is B(LY, ,)-couservative over T._I"'#.
We show To1 proves Ab, -IND'™. This gives a proof theoretic proof that sS4
proves AY, -LIND and R}, proves Ab,-LLIND. We consider éﬂ"ﬂ counsisting of
EBASIC. open-I1.N DV, and the replacement schema [I.-REPL7!. We show o

Xiit



[P 3) - . - -
- {Ve characterize the 7-bounded £_ -and -

is B(S!, ,)-conservative over T}
definable functions of T, and C".?M using parallel function classes. We show the
Tb.definable functions of R} are the class F NCE!. We weaken Co'™ to a theory
70471 by |7|-bounding [T§-formulas in replacement axioms. We show the A
definable functions of Co'™' are FTCY. The class FTCY, equals the standard
FTCO. We show FTCY, G FTC}y and el Co e show if T = ol
or if T8 = CH7 or if Gy = 7747 where 7 contains an unbounded term
then £F_, = [1¥.;. We scparate PEISGIAR) from PEEV({|1}) for reasonably

hehaved / and deduce oracle separations for our theories.
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Chapter 1

Introduction

Three important families of bounded arithmetic theories. R, . Si. and
Ti, were developed in Buss [13], Allen [2].Clote-Takeuti [19]. and Takeuti (19].
These theories have been intensively studied because of their close connection to
computational complexity. In this chapter, we introduce the background necessary
to properly define these theories and to briefly discuss this connection. Given this
introduction, we then motivate the use of prenex versions of these theories and
describe the format of the rest of this thesis. This thesis assumes the knowledge of
an introductory course in mathematical logic at the level of Enderton [22] or van
Dalen {50]. Two important logic results we state and use without proof are Parikh's
Theorem and Gentzen's Cut Elimination Theorem. Proofs of these results can be
found in Buss [13] and Takeuti [48]. Although we try to be self-contained. we
also assume some knowledge of computational complexity. A good introduction to
the computational complexity topics which we will sometimes casually introduce
can be found in Balcazdr, Diaz, and Gabarrd [3, 4] and can also be found in
Papadimitriou [37]. We state and use without proof the correspondence between
the polynomial-time hierarchy and the bounded arithmetic hierarchy. This can be
found in Buss [13]. We also state and use without proof the results of Chang and
Kadin [17] and Kadin {30] that if the Boolean hierarchy collaspes over & then the

polvnomial hierarchy collapses to the i + 3rd level.



I.A The Polynomial Hierarchy

In the 1930's many different formalisms were introduced by such lumi-
naries as Church, Godel, Post, and Turing to try to capture the idea of what it
means for a function to be effectively computable. All of these notions turned out
to be equivalent and Church’s Thesis states that these equivalent formulations do
in fact characterize the meaning of effective computable function. We call the class
of effectively computable functions the recursive functions.

Our model of a recursive set of natural numbers is a set of natural num-
bers, membership in which can be determined by a Turing machine in a finite
number steps on a given input of a natural number. Closely associated to the no-
tion of computable function is that of a computably listable set of numbers. A set
of natural numbers is recursively enumerable (r.e.) if there is a recursive procedure
which will eventually list out all of its members. If x is in an re. set then one
will see it listed out by the recursive procedure in a finite amount of time. but in
general if x is not in the set one has to wait until forever to find out. The set A" of
programs (coded as natural numbers) which eventually halt when fed themselves
as input is an example of a set which is recursively enumerable but not recursive.
Recursively enumerable sets are sometimes called £;-sets. If one attaches a ¥ -set
to a Turing Machine as an oracle so that in one time step the machine can ask
a question and get an answer about whether some number belongs to the ¥;-set.
one can get a much more powerful machine. The ¥,-sets are those sets which are
recursively enumerable by machines with oracles for £;-sets. Iterating this pro-
cedure one gets an infinite hierarchy called the arithmetic hierarchy of sets U, %,
and one can show £, C £,.,;. Complements of ¥,-sets are called [I,-sets. Sets
which are both £, and II, are called A,. It turns outs the recursive sets are the
A,-sets. Two good books on recursion theory where these issues are discussed are
Soare [46] and Odifreddi [36].

The arithmetic hierarchy get its name from the fact that if one takes
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formulas over the language of arithmetic 0. S. +. -. < then T,-sets correspond
to relations determined by formulas with at most n-alternations of quantifiers
(not counting bounded quantifiers) the outermost being an existential quantifier.
Similarly. IT,-sets correspond to relations determined by formulas with at most
n-alternations of quantifiers the outermost being a universal quantifier. The set of
relations computable by bounded formula is called £o. One of the most studied
theorics in logic is Pcano Arithmetic (PA). It consists of a finite sct of open axioms
Q for 0. S. +. -. < as well as induction for any formula in the arithmetic hierar-
chy. Well studied fragments of PA are the theories IT, which consists of Q and
induction for &,-formulas. Good book on Peano Arithmetic and its fragments are
Hajek and Pudldk [24] and Kaye [31].

The notion of recursive function suffered from the fact that although a
recursive function is guaranteed to halt it might take a very long time as a function
of the length of the input to do so. In the 1960’s and early 1970°s the notion of a
feasible computation was developed. Generally. it was believed that membership
in a feasible predicate should take at most polynomial time in the input length
to determine. However. there were problems like the satisfiability of a boolcan
formula (SAT) which could be solved in polynomial time provided one allowed
nondeterminism. In the case of SAT if one first “guesses™ a truth assignment for
the boolean formula in question one can verifv in polynomial time whether or not
the truth assignment satisfies the formula. Relations computable in deterministic
polynomial time were called P and those in nondeterministic polyvnomial time N .
It is unknown whether these two classes are equal, yet the intuition is that some
NP problems should take exponential time. The study of .VP began essentially
with Cook [21] who showed that SAT was in a sense the hardest problem in NP
in that every problem in NP could be reduced in deterministic polynomial time to
the S AT problem. Problems in VP with this property are called .V ’-complete. [t
turned out that many interesting problems were N P-complete [23] and so the study

of the P vs. NP began in earnest. Stockmeyer [47] in analogy with the situarion



The polynomial hierarchy

Y <

Figure I.A.1

with recursive and r.e. sets defined a presumably infinite hierarchy called the
polvnomial time hierarchy based on the class NP. The polynomial time hierarchy
is defined as follows: at the bottom of the polynomial time hierarchy we have
the class P = AP of deterministic polynomial time computable predicares. At
the next level up, we have the classes £f = NP and Il = co-NP. Here co-NDP
sets are complements of NP sets.  Using oracles. we then extend these classes
of predicates to a presumably infinite hierarchy of predicates. We write PY to
denote predicates which can be computed in P with an oracle set in . We define
NPY¥, and (co-NP)* similarly. We define A? = P%-i, ©F .= VP¥i,
and IT? := co-%f. Whether or not this hierarchy is proper is one of the
fundamental open problems in theoretical computer science. An answer to this
question would not only have applications to the study of algorithms but also to
the field of crvptography. An illustration of the inclusions in the polvynomial time

hierarchy is given in Figure [.A.1.

I.B Bounded arithmetic

Given the connection between T,-sets and formulas of arithmetic. it was
natural to try to find similar correspondences between the polvnomial hierarchy
and arithmetic. These correspondences do in fact exist as we will sec below where

we introduce the three classical theories of bounded arithmetic and discuss their



properties.

The three classical bounded arithmetic theories Rj. Sj. and T3 are for-
mulated over the language L, which contains the non-logical symbols: 0. S. +.
<. =, L%:r} |z|. MSP(z.i) and #. (Usually A/SP and = are not included in
the language of S} and T3, since when / > 1 they can be defined in these theories
given the axioms for the other symbols and using the induction axioms available in
these theories.) The symbols 0, S(z) =z +1. +. -, and < have the usual meaning.
The intended meaning of z =y is = minus y if this number is greater than zero
and zero otherwise, the meaning of |3z is z divided by 2 rounded down. and the
meaning of |z| is [log,(z) + 1], that is, the length of x in binary notation. The
symbol A/SP(x.i) stands ‘for most significant part’ is intended to mean Lr/2'].
In other words. the number obtained by cutting off the i last bits of .r. Finally.
r#y reads "r smash y and is intended to mean l=llyt,

The operation # is also written #»,. In general. r#,y = 2i#k-1iy | The
2 in S} denotes the presence of #; in the language: a 3 would indicate the presence
of # and #;. etc. The language L, is the language including #; for 2 < j < k.
The reason for the new svmbols in L, versus the language of Q is that because of
their more restricted nature it is harder to bootstrap bounded arithmetic theories.
In general the exponential function is not provably total in bounded arithmetic
and so we need the function # as a minimum to be able to do sequence coding.

To define R%, Si, and T} we first need to define the theory BASIC =
BASIC, . This is the bounded arithmetic theory which consists of a finite set
of quantifier free axioms for the non-logical symbols of L,. We list these axioms.

which are from Buss [13] and Takeuti [49], below:
l.y<r>y< Sz
2. =(z = Sz)
3.0<

3. (t<ynr=y)=Sr <y



=l
.

16.

17.

18.

19.

. =(r=0) D {2-2| = S(lzl) AIS(2- )| = S(|z])
=1

sz <y Dt <yl

- |z#tyl = Szl - y])

C0#y =1

(= 0) D 1#(2- 1) = 2(1#z) A 1#(S(2 - x)) = 2(1#x)

LY = yHT
|| = |y| D r#z = y#2
lz| = ful + [v] D a#y = (u#ty) - (v#y)

z<IT+y

200 z+0=1=

.+ Sy=S(z+y)

(r+y)+z=z+(y+z)



28. 21D (r-y<zr-=2

y<z)

29. —~(z = 0) D |z| = S|4z ]l)

30. z=[lr]=(2-z=yVvS2-1)=y)

31. M[SP(a,0) =a

32. MSP(a.i+ 1) = |3MSP(a.i)]

3. r+y=z:=(y+z=xV(z=0Ar<y))

We sometimes write Sz for S(z). The 1 and 2 which appear in the above axioms
are abbreviations for S0 and S(S(0)) respectively. We will frequently make use of
such abbreviations for numerals. For k > 2, the theory BASIC is BASIC plus
a finite set of additional axioms of the form |z#;y| = |z|#;-1|y| where 2 < j < k.

In R.. S} and T} the syntax of first order logic is enlarged to include
bounded quantifiers. These are quantifiers of the form (Vr <) or ( dr < t) where
t is a term not containing . The intended meaning of (Vx < t)is (Vx)(r <t D ---
and the intended meaning of (3z < t) is (3z)(z <t A---. A formula is bounded if
all its quantifiers are bounded. If a quantifier is of the form (Vo < |t]) or is of the
form (3z < |t|) then it is called sharply bounded. A formula is sharply bounded if
all its quantifiers are sharply bounded. As usual, a formula is open if it contains
no quantifiers.

Given these definitions we can define a hierarchy of bounded arithmetic
formulas. 8 = I1¢ is the class of all sharply bounded formulas. £7 is the smallest
class containing 12_, and closed under conjunction. disjunction. sharply bounded
universal quantifiers, and bounded existential quantifiers. I is the smallest class
containing £_, and closed under conjunction, disjunction. sharply bounded exis-

tential quantifiers, and bounded universal quantifiers. This hierarchy corresponds



in a natural way to the polynomial time hierarchy. In the standard model vh
formulas describe exactly predicates in ©F. Similarly. II? formulas correspond to
ITP-predicates. A proof of this correspondence can be found in Buss (13]. Thus. as
with the r.e. sets case, we end up with a connection between arithmetic formulas
and computation classes.

Another possible hierarchy of bounded arithmetic formulas is the prenex
bounded arithmetic hierarchy. We define £4 to be the set of formulas of the form
(3r < |s{)o and I18 to be the set of formulas of the form (Vi < |s|)o where o is
an open formula. The set S'; is the set of formulas of the form (3r < t)o where
o is a II°_,-formula. The set I1? is the set of formulas of the form (V& < #)o
where ¢ is $¢_,-formula. For i > 1, it is not hard to show that the sets described
by i?-formulas and Y’-formulas are equivalent. In Chapter II. we will actually
show various bounded arithmetic theories can prove this equivalence. Similarly.
sets described by IT18-formulas and IT%-formulas are equivalent. We call any formula
which is in J; S U 1% a prenez formula.

We define the classes of formulas £, | TI7, . v .and [1?, in the same
way as above except formulated over the language of Li. For k > 2. these classes
of formulas correspond to computational complexity classes of predicates involving
quasi-polynomial time computations.

Let |z],, denote m applications of the length of operator to r. ic.. lrfo
is .r, lz|, is |z}, and |z|;=; is |(z];)]- Let ¥ be a set of formulas. We now give the
different types of induction axioms which are used in defining the most common
bounded arithmetic theories. The U-PL™IN D axioms are the axioms PL™IN D,

for a € ¥ and where the formula PL™IND, is

a(0) A (¥2)(al[52]) 3 alz)) D (Va)allrlm).

The U-L™IND axioms are the axioms L™IN D, for a € ¥ and where the formula
LMIND, is
a(0) A (V) (a(r) D a(S(x))) D (Vx)a(lrn).



We usually write ¥-IND rather than U-L°IND. Similarly. we write
W-LIND rather than ¥-L'IND, write U-PIND rather than W-PL*I N D. write
W-PLIND rather than U-PL'IN D, and write U-LLIN D rather than U-L*IN'D.

Originally, the theory T; was defined as the theory with axioms BASIC
+ SL.IND, S} was defined as the theory with axioms BASIC + T.PIND. and
the theorv Ri was defined as the theory with axioms BASIC + T}-PLIND.
Since we have MSP in our language (in the usual formulation of Si and T, we
have to show it can be defined). one can use the methods of Buss [13] to show S}
can be axiomatized as BASIC + S-LIND and R} can be axiomatized as BASIC
+ SL-LLIND. (With the more careful bootstrapping of Buss Ignjatovic [11] one
can show this for S} without having MSP in the language.) This is how we will
define these theories. Since the conclusions of the induction hypotheses become
progressively weaker going from T} to S} to Rj. it follows that R, C S:CT;.

Another useful scheme of axioms are replacement axioms. These axioms
are useful for converting formulas into prenex formulas. We need the following
definition before we can define these axioms. Given a term ¢ in our language
we define a monotonic term ¢* called the dominator for t by induction on the
complexity of ¢. If ¢ is O then ¢* is 0. If ¢ is S(f) then ¢* is S(f*). If tis fogforo
a binary operation other than ~ or A/SP then t"is f*og". Lastly. iftis f =g or
AMSP(f.g) then t* is f*. It is easy to see BASIC proves t < t°. The U-REPL™

axioms are the axioms

(Vz < [s|m)(Fy < t)a(z.y) &

(Fw < 2- (£ #5)) (V2 < [s|n)a(z. 3z, |t°].t. w)))

where « is a formula in ¥. Here 3(z.|t*|,t.w) is a term in our language which
returns the value 3(z. [#*]. w) if this is less than ¢ and returns the value # otherwise.
The function 3(z, |t*|, w) is MSP(LSP(w, Sz - |t*]).z - |t*]) where the function
LSP(w. ) is w = MSP(w.x) - 2minlwl®)  (We will argue that LSP. min. etc. can
be defined in our theories later.) We will usually write U-REPL for U-REPL'.
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Let ¥ be a set of formulas. A theory T can ¥-define a function f(r). if
there is a W-formula A/(r.y) such that T + Vz3lyd,(r.y) and N E Age fla)).
We will mainly be interested in the ¥%-definable functions of a theory or the X sh
definable functions of a theorv. A predicate is said to Al with respect to a theory
T if it is provably equivalent in T to both a Yi-formula and a [1.-formula. We say a
predicate is Ab with respect to a theory T if it is provably equivalent to botha ¥ V"
formula and a IT?-formula. (By adding a trivial universal quantifier to the outside
of a £¢-formula one can show that a given $l-formula is logically equivalent to a
I1?, -formula, and by a trivial sharply bounded formula in front of the matrix of a
Tbformula one show the same Tt formula is equivalent to a Tt -formula. Hence.
any ©¢-formula is Ab | with respect to any theory. Similarly. any [M-formula is
Ab_ with respect to any theory.)

We now discuss what is known about the definable functions of various
hounded arithmetic theories. This and the discussion below will hopefully give
some indication of why it might be useful to study bounded arithmetic theories
to better understand various computational complexity classes. Buss {13] showed
that for i > 1 the Sb-definable functions of S} are precisely the Of-functions where
O? is the set of the functions computable in deterministic polynomial time and for
i greater than one, Of is the set of the functions computable in deterministic poly-
nomial time using a ©7_,-oracle. In {14] he showed the X} -definable functions
of T! are the 07, -functions. Allen [2] and Clote and Takeuti [19] show that the
T definable functions of R} are the functions in logspace-uniform FNC. FNC' i
the set of functions which are computable by a polylogarithmic depth and polyno-
mial size families of Boolean circuits. Logspace-uniform F.NC' means the circuit
computing a particular FNC function for inputs of length n can be computed in
logspace. A multifunction is a total relation. Krajicek [33] shows that the T b -
definable multifunctions of S are the multifunctions computable by machines in
FP=(wit,log). That is, those multifunctions which can be computed by Turing

machine which run in polynomial time with only logarithmically many queries to a
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SP_oracle such that if the oracle answers “Yes' to a query it also supplies a poly-size

witness string.

Remark I.B.1 We can generalize the notion of the class F P¥ (wit.log) to the
notion F P! (wit.s) where we restrict the number of queries on inputs of length
n to be bounded by O(s(n)) for some fixed function s. Classes of this form turn
out to be useful in generalizing Kraji¢ek’s result to other theories as we will show

later.

Given the above characterization of the L-definable functions of bounded
arithmetic it was hoped that various techniques that had been useful in answering
questions about Peano arithmetic would be useful in answering questions about
bounded arithmetic and in turn questions about the polynomial time hierarchy. In
particular, Godel's Incompleteness Theorem had been used to separate [Y,, from
IS, and it was hoped that it could be used to separate S% from S57'. Buss [13]
showed S} could sufficiently arithmetize syntax to prove a version of Godel's result.
However, he was unable to use his result to separate Si from S;*'. Since Buss [13]
there has been a good deal of research on what consistency notions are provable
in what theories of bounded arithmetic. but so far without success in showing S;
is different from Si'. Some of these consistency notions have been formulated
in terms of the consistency of various propositional proof systems. This and the
connection between propositional proof systems and the .VP=co — NV P? question
has led to a burgeoning field of research into trying to prove lower bound results
for stronger and stronger propositional proof systems.

Another area of active research is in showing independence results of the
P=N P problem from some significant fragment of arithmetic. A first step in this
direction was given by Razborov and Rudich [43] which showed that assuming
the existence of pseudo-random number generators there is no "natural” proof of
P#NP. A "natural proof” was a combinatorial property satisfving certain weak

conditions. They argued in their paper that all currently known methods of proving
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lower bounds were “natural”. They then showed if there was a “natural” property
then a pseudo-random number generator could be converted into a pseudo-random
function generator which the “natural” property could distinguish as not pseuclo-
random. Razborov [42] used this result to show the theory S3(a) cannot prove
P#NP assuming there are pseudo-random number generators. Here v is a 1-
ary predicate symbol with no defining equations. His original technique used the
characterization of the T8-definable multifunctions of T} in terms of projections
of PLS problems. He suggested his argument in his paper could be made using
interpolations and later simplifications use this method.

There are several reasons why a refined analysis of what is definable in
a bounded arithmetic theory is important. Buss [14] showed that the theory S5™
is St _ -conservative over T§. Also Krajicek. Pudlak. and Takeuti {35] have shown
if T} = S3*! then the polynomial hierarchy collapses. Thus. it is important as
far as computational complexity is concerned to know the precise relationship be-
tween these two theories. Another benefit of a refined analysis of definability in
bounded arithmetic is that it would potentially help in strengthening the S3 ()
independence result to stronger fragments of arithmetic or would help show in-
dependence results for separations of other complexity classes. [t is this author’s
personal conjecture that the above independence results cannot be extended to
the theories T3(a) since the construction used to make a pseudo-random function
generator from a pseudo-random number generator can essentially be carried out
in T3(a) [40].

It is especially interesting to carry out an analysis of definability for very
weak systems of arithmetic. This is because understanding why things break down
or why they continue to work in weak theories can often shed light on the stronger
theories such as S and Ti. To refine the current analyses of definability. in this
thesis we consider the S¢-definable functions of bounded arithmetic theories. It is
not hard to see that if a theory can prove L2-REPL and has some kind of pairing

function, that the notion of Li-definability and T%-definability coincide. Similarly.



in such a theory the notions of A? and A? will be equivalent. It is known. for
instance, that Tj, Si. and R} can prove T-REPL. so their S5 and Tb-definable
functions will be the same. On the other hand. it is not known if any of these
theories proves L2, -REPL, so in this case the notions of Tt -definability and
T4, -definability are potentially different.

Another issue we consider is what happens when we axiomatize the the-
ories Ry. Si. and T} with induction only for Sb_formulas rather than induction for
Tb-formulas. We call these theories with $b_induction Rb. S3 and Tj. In general.
we call these kind of theories prener theories. The advantage of prenex theories is
the following. Suppose one has a sequent calculus proof of a prenex formula in one
of the theories Ri. Si or T} (where rather than using induction axioms one uses in-
duction rules of inference). Then by cut-elimination we can get a free-cut free proof
of these formulas in which all of the formulas in the proof are prenex formulas.
If we applied cut-elimination to a proof of the same formula in Se.LmIND based
theories we could not guarantee that every formula in the resulting proof would
be a prenex formula. In carrying out the witnessing argument of Buss [13]. both
the argument itself and the witness predicates become simpler in prenex theories
because of this restriction on the formulas in the proof. Standard results known
about Ri. Si. and T} also seem to generalize in the prenex setting to much weaker
theories of arithmetic; whereas, they do not seem to generalize in the non-prenex
setting. In fact, because of the prenex restriction we are even able to strengthen

many of the standard results.

1.C Outline of thesis and results

We now briefly outline the format of the rest of this thesis. It turns
out that the theories S and T} are equivalent to Sj and Tj respectively. vet we
conjecture R} is not equivalent to R:. In Chapter II. we formally introduce our

prenex theories and prove these facts. To do this we consider a verv weak theory
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LIOpen which consists of BASIC+Open-LIND. We isolate several key theorems
needed to prove the existence of pairing functions and replacement axioms in R..
Si. and Ti. Adding this finite list of theorems which can be written as open
formulas to BASIC, we define a new theory EBASIC,. We call the & = 2
case EBASIC. We then define the theories T3"™ as EBASIC,+8-L™IN D and
briefly consider their properties. We define various classes of terms Termi™’. Let
id(a) = a. The class Te'rmz."'0 consists of 1-ary terms of the form }id},,. The class
Term}™ consists of l-ary terms of the form gmin(p(s)itl) where p is a polynomial. s is
in Termj” ™", and t is an Li-term. We finally define the theories T™ to consist of
EBASIC plus Sf_ ; induction up to any term in Term;c"‘j . These theories turn out
to be useful in characterizing the £¢_ j-definable consequences of the theories T,f"".
However. the number of indices in these theories is verv unwieldy. We. therefore.
consider more abstract theories 7;7. Here 7 is a collection of l-ary terms. The
theory 7™ consists of EBASICy together with 3--induction up to terms in 7. To
finish the chapter. we briefly discuss the properties of the theories T,:'

In Chapter III. we define multifunction algebras B; and Bﬁ' We show
EBASIC can 2t-define the multifunctions in B;2 and TH™ can £b-define the mul-
tifunctions in Birz] We also define the classes LSy of multifunctions computed as
optima of (¥.7)-local search problems. We show Tzi” can prove any (. 7)-local
search problem in T3 has a local optima. Thus, T3 can define these multifunc-
tions.

In Chapter IV we discuss the sequent calculus and give T;‘T and Cﬁ-
sequent calculus formulations. We then discuss the cut-elimination theorem and
Parikh's theorem. Both of these results are used in Chapter \' to prove converses
to out definability results of Chapter III

In Chapter V we prove our algebras and local search classes precisely
characterize the £'-definable multifunctions of EBASIC. T and T,7. To do
this we use a witnessing argument in the style of Buss {13]. We conclude this

chapter with a discussion on theories based on prefix type inductions.
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In Chapter VI. we show for i > 1 that the ©¢_ -definable multifunctions

of T;7 are precisely the functions in F P= (wit.|7]). We show that T_f"3 =i

t—1i

Tzi"l‘i"#!. We then give applications of these results to the theories EBASIC'. Ry,

T;™. and T,™’. Our conservation result will allow us to show ™ is S -

conservative over 7™/ and so we can use our characterization of the T -t
definable multifunctions of the latter theory to characterize those of the former
theory. In this chapter we also show Tt -definable multifunctions of EBASIC is
the class FP¥(wit.1). The results of Chapter III, Chapter V. and Chapter VI
generalize easily to the theories T;": however. we concentrate on the T;7 case as
it is the most significant from the computational complexity standpoint.

In Chapter VII we discuss various applications of the witnessing argi-

ment. We characterize the %2 . ¢-definable multifunctions of Ty7 for k > 1 as the

TP . . SiLT#] . . S
class FPSrs-1(wit, 1). We show Tp7"!™"" is conservative over T, with respect
to Boolean combinations of £?_,-formulas. In symbols. this is
Fir# Fit L T#
Tk jB(i‘,’H) Tk .

This implies T5 <pg ) S3t'. In general. this result implies

fri.m Fri+1n+1
m+2 53(\1'3“) T

We also show in Chapter VII that T3'™ can prove A?_-IN D™ axioms and o
can prove A2 -IND™ axioms.

In Chapter VIII develop the properties of prenex theories C .3'“'" defined
as

EBASIC+0pen-IND"'+3%-REPL".

We show these theories are B(XY, ,)-conservative over To™. In this chapter we
also show for i > 1 that Ri*'is B(St, ,)-conservative over R5*'. In general. we
show for i > 1 that T ML -REPLY is B(S!, ,)-conservative over T,

In Chapter IX we investigate the functions (as opposed to multifunctions)
definable in the theories T;"" and T;7. We show T31™ and T3 proves multifunc-

tions defined using AY, -COMP'! axioms are single-valued. We also show as a
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converse that for j < i+ 1 every 7-bounded £t -definable function in T, and
T+'™ can be defined using a A%-COMP'™ axiom. This enables us to give a char-
acterization for j < i + 1 the £-definable T-bounded functions of o™ and T3
in terms of parallel computations of f&’;-predicates. We suggest some characteri-
zations of these classes. In particular. we show the T%-definable functions of R,
are precisely the function in F NCZ. Our results are mainly for the case where
i > 0. In the last section, however. we show some results about the i’f“‘,:-doﬁnahlv
functions of C1™'. a subtheory of C3'™'. Here i?vlr! is the subset of £ where the in-
nermost universal quantifier is bounded by |7|-terms. In the 7 = {id} case. it turn
out one gets the class FTC? of functions computable by constant depth threshold
circuits. In general. one gets the class FTC 9 which we define. The predicate class
in FTC®, TC? is of interest to computer science both because of its connection
with neural nets and the fact that it is one of the weakest classes not known to be
different from VP. We give a nonconditional separation results between F TC'}"‘,i
and FTC?{,, and also between GO and EOU,

Chapter X shows some collapse and oracle separation results for the

i Nir oo pitLIT e AdeliT
theories T0'™ and C3'™'. We first show if T} = T, " or if T§ = ¢ or if
Tl S il . .

Ciim™ = TEH™ where T contains at least one unbounded iterm then £F_y = [T} ;.

The last equality implying a collapse is interesting since it gives some evidence
that TC? is not equal to NC or P. Then in the rest of the chapter we construct an
oracle X' which separates PE: ({||€]|}) from P= ({|¢|}) where ¢ is a nondecreasing,.
unbounded iterm. This oracle is then used to show fj'{f'm(u) - T_,i‘{{}(c») . By
ff?zi’{l} (a) we mean the theory obtained by expanding the language of T._f'm by a
new unary predicate symbol o with no defining relations. Many other separations
are also derived from this result.

Finally. we include some diagrams and tables of the principal results of
this paper in an appendix at the end.

Bounded arithmetic theories with generalized induction schemes have

been considered before in Razborov [41]. He considers second order theories with
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various bounds on induction and discusses their connection to the formalizability
of various arguments of circuit complexity. His results on generalized inductions

in Bounded Arithmetic are thus somewhat different from ours.



Chapter 11

Prenex theories

In this chapter we introduce a variety of prenex theories and develop some
of their propertics. We begin by defining the prenex versions of the theories Tj.
Si.and R We also define a weak theory LIOpen which we show is contained in
these theories. We will show LIOpen can do a simple form of pairing and can prove
some facts about sequence coding. Isolating these facts will allow us to define a
strengthened version of BASIC we call EBASIC and to define the prenex theories
T5™. For m = 0,1,2 the theories T;™ correspond to prenex versions of T;. S.
and R,. We also consider theories T)™ where 7 is a collection of 1-ary terms. The

theories Ti" consist of EBASIC and Tb-induction up to terms in 7.
II.A Preliminaries
We begin with the following definition.
Definition II.A.1 (i > 0)
1. Ti is the theory BASIC + S2-IND.
2. Si is the theory BASIC + S2-LIND.

-~

9. Ry is the theory BASIC + $8-LLIND

18
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We define L™[Open to be the theory
BASIC + Open-L™IND.

That is, L™IND, for ¢ an open formula. We write IOpen for LOIOpen and we
write LIOpen for L'IOpen.

Remark II.A.2 The theory IOpen is usually formulated over the language con-
sisting of only ‘0", *S". *+'. and *-’. Our version. since it has #. MSP. =. and |.ri.
is a fair bit stronger. We are mainly going to use the theory LIOpen in this thesis

so little conflict should arise between these two definitions of IOpen.

Theorem IL.A.3 (i > 0) R, C Si C T}

Proof: Let A(x) be a i?—formula. Then [ND, implies LIND, and LIND,
implies LLIND . since (Vr)A(z) implies (Vr)A(|x]) implies (V) A(]rl])- C

Our immediate goal is to determine the classes of formulas provably equiv-
alent to S8-formulas in the theories R5. 5§, and T3. This is important to determine
since our prenex theories will be able to prove induction for these types of formulas.

To do this we first show our prenex theories can open-define some simple functions.

II.B Some frequently used L>-terms

From the axioms of BASIC one can open-define the following functions.

their definitions are similar to those in {19}, but have been modified so that they



are all L,-terms:

olul — 9ivl!
9lyl™ — oHiul™

Qk-lyi“

Ra(z.y)
R_(z)
max(z, y)

min(r, y)

Qmin(lyl.r)

1#y
Qiyl"“#y
-_)_!y|" . Q(k—l)-lyl"
1
29,12
a—=2 [_Zaj
(1=z)-y+(1=(1=+x))-=

1= ((y=xz)+(r=y))

1= (y~x)
-l
1=

cond(RN<(z,y).y, 1)
cond(R<(z.y).x.y)

MSPQRY |y| = )

£ = MSP(z,i) - 2mini=i:)
MSP(LSP(w.Sx - |t|). z - |t])

3(i.1, )

cond(K<(B(x. |t]. w). s). 3(x. [t]. w). 5).

The & and the n which appear in 26¥" are fixed integers. Taking products

of terms of the form 255" we can construct terms representing 2°(*) where p is

any polynomial. We will often use the predicate r < y as an abbreviation for
Sz < y. Since the above definitions are all L,-terms we can use them freely
in an L,-formulas without increasing its quantifier complexity. It is a theorem
of Buss [13] that once we can Li-define a function f in a bounded arithmetic
theory we can add the function symbol to the theory without changing the T°

or IT? -consequences of the theory i > 1. A similar result also holds for adding



Ab-predicate symbols [13]. We will not need this more general result. however.

Remark II.B.1 For the purposes of this thesis, we view A D B as an abbreviation
for =4 Vv B. In transforming formulas into prenex ones we also will make use of
the fact that —Vz— and 3z are logically equivalent. This will allow us to push

negations inward into a formula.

II.C Pairing in LIOpen

The next step in establishing what formulas our prenex theories can prove
are equivalent to S¢-formulas is to show that theories as weak as LIOpen have a
pairing function. For this to be useful for all of the theories R} we first show that

RY O LIOpen. This fact follows from the next two theorems.

Theorem II.C.1 Let ¥ be a class of formulas over our language closed under
term substitution. Let =¥ denote those formulas which are negations of formulas

in ¥.
Then BASIC+U-L™IND is equivalent to BASIC+-Y-L™IND.

Proof:  Both directions of this proof are the same so we only prove the forward

implication. Let 4 € =¥. We want to show BASIC + W-L™IND can prove
A(0) A (Vz)(A(x) D A(Sz)) D (V) A(|z]m) (1L.1)

Let B(z,y) be the formula =A(y = z). This formula is logically equivalent to a

formula in ¥, hence, BASIC + ¥-L™IND proves
B(07 |ylm) /\ (VL')(B(.’L {ylm) D B(Sl' Iylm)) D B(iylm Iq{m)
So BASIC + ¥-L™IND proves

—A(ylm) A (V2) (=AY = ) D ~A(lylm = Sz)) D ~4(0)

1

from which (I1.1) follows.



Theorem I1.C.2 LIOpen C RS
Proof: Let A(z) be an open formula. Consider the following formula B(b)
(Vz < |e])(A(z) D A(min(z + 25 1eP))-

To keep the notation simple we are writing 2° rather than 2m(i<t%). This formula is
a IT3-formula. i.e.. logically equivalent to a -%t-formula. so by Theorem II.C.1 the
theory RS can prove LLIN Dg. The theory Rg can also prove (V.r)(A(xr) D A(Sr))
implies B(0). Further, RS proves B(b) D B(Sb) and B([|c|]) D (4(0) D A(le))-
So RY proves

(Vz)(A(z) D A(Sz)) D (4(0) D Alle]))-

f

which is equivalent to LIND 4.
We now proceed to show LIOpen has a pairing operation.

Lemma I1.C.3 The theory LIOpen proves

b< 24 5 MSP(a-2% +b.|d]) = a.

Proof: Recall the axioms for M/ SP in BASIC are

MSP(a.0) = e and

MSP(a.i+1) = |3MSP(a.i)].

To prove the lemma it suffices to prove the following three statements are provable

in LIOpen.

a < b> MSP(a.|d]) < MSP(b, |d)). (I1.2)

MSP(a-29 +24 = 1,|d]) =a (I1.3)

MSP(a 2", |d|) = a. (I1.4)



To prove (II.2) we first consider the formula
a<b>AMSP(a.j) < MSP(b.j).

Call this formula A(j). The first axiom for A/SP implies A(0). The implication
A(@j) D A(j+1) follows from the second axiom. Thus, LIOpen proves A(|d|) which

in turn implies
a <b>D MSP(a.|d]) < MSP(b.|d]). (IL.5)
For (IL.3). let B(j) be the formula
MSP(a -2 424 =1 j) =qa- 247 424~ ]

The formula B(0) follows from the first axiom for A/SP. The implication B(j) D
B(Sj) follows from the second axiom for MSP as well as the axiom for L%l_l

Hence. by LIN Dg. the theory LIOpen proves B(|d|) which implies
MSP(a-24 + 24 =1 |d|) =a (11.6)
Finally for (IL.4). let C(j) be the formula
MSP(a-29, j) = a- 2147,

Arguing in the same way as with B(j), the theory LIOpen proves C (|d]) which in

turn implies
MSP(a-2"% |d|) = a. (IL.7)
Combining the facts (I1.2), (IL.3), (II.4) proves the Lemma. since
a-24<q-244p

and since

a-29+p<a 244294~

]

provided b < 2!4,

One can generalize the above argument to show:



Corollary 11.C.4 The theory LIOpen proves

b < 2mintkidlid®) 5 \[SP(q - ™A 4 b min(k - [d]. |d) = .

Lemma I1.C.3 allows us to prove the next theorem which shows LIOpen

does indeed have some form of pairing.
Theorem I1.C.5 The theory LIOpen proves

(b < 29 Aa < 24) 5 (30, |d].a- 2% + b) = b A B(L.|d].a-2¢ +b) = a).

Proof:  Recall 3(z. \d|, w) is the function M SP(LSP(w.Sr-|d|)..r-|d]). Ifa =0
the theorem is not hard to show. so assume a > 0. From the axiowms for MSP one

can see that LIOpen proves 3(0.|d].a - 214 + b) is
LSP(a-2% +b,d]).
The definition of LSP gives us that LSP(a - 214 + b.|d|) is
@ 24 £ p = N\[SP(a- 24 + b, |d]) - 2min(la2 +bid)
As a > 0. the theory LIOpen proves this is just
a2 4 b= ASP(a- 29 +b,|d]) - 21

By Lemma ILC.3 if b < 2'4 then LIOpen proves this is just b. Now consider

3(1,|d],a - 2% + b) by definition this function is
MSP(LSP(a-2% 45,2 d]). |d]). (I1.8)
The function LSP(a - 214 + b,2 - |d}) is equal to

a-29 4+ b= ASP(a-2% +b.2-d]) - 2214 (1L.9)



Since a < 214 and b < 24, we have
a2 4 b < (21 = 1)l 4 il L] < 2P,
By a simple induction as in Lemma II.C.3. one can show LIOpen proves
MSP(2*4 ~1.2-|d]) =0.
Hence. LIOpen proves
MSP(a-24 +b.2-|d)) =0

Thus. equation (I1.9) is equal to a-214+b. So 3(1. |d|. a-2¥+b) which by definition

is cquation (I1.8) is equal to a by Lemma II.C.3. O

It is not known to the author whether any of the theories L™ [Open where
m > 2 can prove Theorem IL.C.5 or whether any of these weaker theories has some
other form of pairing. One could always add Theorem II.C.5 to these weaker
theories to obtain a pairing function. In any case. the next lemma gives us our

first method for converting formulas into prenex ones.

Lemma II.C.6 Let A(z) and B(y) be formulas in our language such that the
variable r does not appear in B and the variable y does not appear in 4. Let
m = max(s(a), t(a.s)) where s(a) and t(a,b) are terms in our language. Then

LIOpen can prove:

(Fw < 227™) 4(3(0. |m|, s, w), 3(L. |ml. t.w)) (11.10)

& (3r < 5)(3y L t)A(z.y)

(Vw < 2" A(3(0,|m|. s, w), 3(1.Iml. t, w)) (IL11)

& (Vz < s)(Vy < t)A(2,y).
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Proof: Each of these statements is proved in essentially the same way so we
only prove the first one. We use equality axioms and logical rules to prove

3(0.|m|,s,b-2™ +a) =aA B(1,im]. t.b-2™ +a) =b) D

(A(3(0. |m],s.b- 2™ +a), B(1, |m|,t,b- 2™ + a)) & A(a.b)).
Using Theorem II.C.5, the theory LIOpen can prove

(@< sAb<tAAab) Db-2™ +a<22™A

A(3(0. I, 5, b- 221 + a), 3(1.|ml. t.b- 2™ + a)).

Existentially quantifving first over the term b- 22imt L ¢ then over the variables a.

and b. the theory LIOpen can derive

(r < 5)(Fy < t)A(x,y) D

(Jw < 221m) 4(3(0. |ml. 5. w), (L. |m|. t. w)).
For the other direction LIOpen can derive

¢ < 22 A 4(3(0.1m], s.¢). 3(1. |m],t.c)) D

3(0.|m}.s.¢) < sA 3(1,|ml|.t,c) < tA A(3(0, |m]. 5.¢). 3(1. |m].t.c)).

Existentially quantifving first over the terms 3(1,|m/|,t.c) and 3(0, fin]. 5. ¢) then

over the variables ¢, we thus get

(Fw < 22 4(3(0, |m|, 5, w), 3(L. [, t, w))

D (3x < 8)(3y L t)A(x. y).

So LIOpen can prove formula (I1.10). Similar methods shows (IL.11). c

Remark II.C.7 Let 4 and B be formulas in our language. We recall some useful

tautologies

(Vy < £)(A(e) A B(y)) & Aa) A (Vy < t)Bly) (I1.12)



(Zy < t)(A(a) A B(y)) & Ala) A(3y < 1)Bly) (I1.13)
(Vy < t)(A(a) vV B(y)) & Ala) v (Vy < t)B(y) (IL.14)

(Fy < t)(A(a) vV B(y)) & A(e) v (3y < £)B(y). (IL.15)

We therefore have induction in Rb. Si and T; for any formula we can

prove equivalent to a i’?-formula using Lemma II.C.6 and Remark II.C.7.

II.D Replacement axioms available in prenex theories

In this section we show the class of provably T¢-formulas in these theories
is closed under a form of sharply bounded quantification. To do this we first need

the following technical lemma.
Lemma II.D.1 The theory LIOpen proves

Si-|a| < k D 8(i. la}. w) = 3(i. |a|, LSP(w.k))

Proof:  This proof is somewhat painful so we omit most of the details. Assume

Si-|a| < k and argue informally in LIOpen. We want to show
3. |al. w) = 3(i, |a]. LSP(w. k).
By definition this is
MSP(LSP(w,Si-la|),i-|a]) = MSP(LSP(LSP(w.k),Si-|a}). - |a]).

So it suffices to show LSP(w. Si - |a|) = LSP(LSP(w.k).Si-|al). Using the defi-

nition of LSP it is not hard to show

LSP(LSP(w. Si-|a|). Si-|a]) < LSP(LSP(w.k).Si-la]) < LSP(w. Si - |a}).



Then one argues LSP(LSP(w. Si - |al), Si - la|) = LSP(w. Si - |a]) since

LSP(LSP(w.Si-|a|),Si-|a]) =
LSP(w.Si- |a]) =~ MSP(LSP(w.Si-|a]).Si- la|)

and one can show MSP(LSP(w,Si-|a}),Si-|a]) = 0. C

Theorem ILD.2 (i > 1) $} proves [I_,-REPL and R} proves II%_ -REPL.
Proof: Let A be a [1?_-formula. Let .X' and 1" be the formulas
X = (V< |th(3y < s)A(z.y)
Y(u) = (Fw <2-(t#s™))(Vr < )z < uD Alr. i(l Is*i, s.w))).

We want to show Si - X & Y(|t]). That S Y(jt]) > X is obvious. We also
have that

SiF X DY(0)
and if Su < t then X D A(Su.y) for some y < s. If Y(u) holds then there is some

w < 2- (t#s*) such that
(Vz < [t])(z < u D Alz, 3z, ]5°]. 5.w))).

Lot ' ;= y-2min(SHs LIt L LS P(w, Si-|s*|). By Lemma [L.C.4 and LemmaILD.1

we have
(Vz < Itz < Su D Az . 5], 5. w)).

Hence,

X o (u<t|AY (1) D Y(Su).

Since Y is a i?—formula. we have by Lemma I1.C.6 LIND,-:
17(0) A (Vu < |t]) (Y (w) D Y (Su)) D (Vu < ()Y ([t]).

Thus. it follows S - X D Y (Jt]).
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(1

A similar proof shows R: proves [12_-REPL?.

Remark IL.D.3 It should be noted that having replacement for ﬁ?_l—forxxltxlels
implies replacement for both [1_, and £¢_,-formulas, since we can do the same
adding of dummy quantifiers that we did when we argued in Chapter I that every
Tt and [1’~formula will be A%, | with respect to any theory. This kind of padding
with quantifiers can also be used to show if a theory $t-defines a functions it also

st ~defines that function.

The idea for Theorem I1.D.2 was used in [13] to show the theory S} has
TU-REPL. In the prenex case. it relied on us being able to prove Corollary I1.C.4

and Lemma II.D.1.

Definition I1.D.4 The theory EBASIC = EBASIC, is the theory obtained by
adding Corollary I1.C.4, Theorem II.C.5 and Lemma [I.D.1 as axioms to BASIC.
Similarly. the theory EBASICy s the theory obtained by adding Corol-
lary I1.C.4. Theorem II.C.5, and Lemma II.D.1 as azioms to BASIC.
Let ;™ be the theory

EBASIC+%8,-L™IND.

Notice T30 = Ti, Ti' = Si, and T3* = Ri. It should be clear thar
Tim*l ¢ TE™ and, in general. Ty™*' C T;™. The theorv EBASIC can prove
Theorem I1.C.5 and Lemma II.C.6. Thus, using the argument in Theorem II.D.2
which makes use of Corollary I1.C.4 and Lemma II.D.1, we can prove the following

generalization:

Corollary II.D.5 (i > 1.m > 1) The theory Ty™ proves II_|-REPL™ and the
theory EBASIC proves

NGy <t)4G.y) &

i=0
Gw < 2- (F#2A"ON A A AG. 3 7] 1 w))

=0
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where A is a [I2_,-formula and t is a term.
One can improve Theorem II.D.2 for R‘2 in the following way.
Theorem II.D.6 (i > 1) R, proves

(vz < p(||t]) 3y < s)A(z.y) &
(Fw < 2- (s*#27U0)) vz < p(|[t])) Az, (. |s7|. 5. w)))

where A is a [1°_,-formula. t and s € L,. and p is a polynomial.

Before we give the proof we note that the above result is stronger than
[1_-REPL?. To see this consider ||z||* where n is a fixed integer. None of the
functions in L, grow fast enough to bound this by a term of the form {r ()]} where
ris an Lo-term.

Proof:  Although there is a term s such that an Ly-term of the form nlit|l is
bounded by |[s|] we want to be able to generalize our result to the theorics .

so we first note that we can prove directly that

(Vz < n|it]])(3y < s)Alz,y) & (IL.16)

(3w < 2- (s'#27 1) (v < n|jt]]))Alz. Bla. |57 5. w)))
where 4 is a I:I?_l—formula and n is a fixed integer. To do this. we do essentially
the same proof as in Theorem [1.D.2. except that for each induction step we add n

elements to w to make the new w. Since n is finite this works out. We now argue

that we can prove

(Vz < nl|t|P) Ty < 5)A(z,y) &
(Fw < 2- (s"#277)) (v < nft*) A(z. 3(2. 5% 5. w)))

First, let

X = (Yo <n-|iti*)Ey € s)A(z.y)
Y(u) = (3w <2 (s #2" et NVr < n-w i) A(e. S s s )
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We want to show Ry F X & Y(|{t][). That R+ Y(|it]) D X is obvious. The
formula ') is equivalent to a S-formula. Hence. [y proves LLIN'Dy. We also
have RY = X D Y'(0). and by (IL.16). we have R, F X D Y(1). We can also use
(II.16) to show

X 5 (u < Jt] AY(w) D Y(Su)).

Thus, R: prove X D Y(||t]|). Repeating this speed-up several time allows us
to define replacement for any term of the form n - l|¢]lY. Tt is not hard to prove
replacement for a polynomial p of terms of this form from replacement for the

individual terms. o

Corollary IL.D.7 (i > 1,m > 1) T,™ proves

(VY < p(Islm))(Fy L B)A(r.y) &

(Fuw < 2- (= #2P05m))) (W < p(lskn)) A(e, 3. 8] £ )
where A is a [IP_,-formula. t and s € Ly, and p is a polynomial.

The proof of the corollary is essentially the same as Theorem [1.D.6.

II.LE Equivalence results

Another application of Theorem IL.D.2 is the following important theo-

rem.

Theorem IL.E.1 (i > 1)
1. Si and S} are equivalent theories.
2. T and Tz’ are equivalent theories.

3. R, and R, + T%_|-REPL are equivalent theories
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Proof: It is not hard to see that we can convert any S'-formula to a Zl-formula
using Theorem [1.C.3, Remark IL.B.1, Remark II.C.7. Remark IL.D.3. and m_ -
REPL. Hence. the above prenex theories can prove their induction schemes for

any Si-formula. c

It is conjectured that R: and R are not equivalent since it seems difficult
to show R} proves [T’ -REPL. However. the next result shows R}, can prove

*_,-REPL.
Theorem IL.E.2 (i >2) R} proves [1_,-REPL.

Proof: The idea for this proof was originally used by Allen [2] to show R} could

prove Yi-replacement. Let A be a [1%_,-formula. Let .\’ and 1" be the formulas

X = (Vo< [t)h)(3Ey < 5)A(z.y)

Vo= (Jw <2 (t#s)(Vz < ) (Alz. 3. |s7] 5. w0)).

We want to show sz Y < X. That Ré FY O X is obvious. Let Z(j) be the

following formula.

(Vu < [t])(Fw < 2t#s7) (Vo < t])

[(x < ominGhilth) = Ay 4+ < |t]) D A(u+ . 3. |s™]. 5. w))].

It is easy to see that R} can prove this formula equivalent to a [T-formula.
(Note we are counting sharply bounded quantifiers in the number of quantifier
alternations.) So by Lemma II.C.1 we have LLIN Dy for this formula. It is trivial
that R% proves X D Z(0). It is also not hard to see that R proves X A Z(j) D
Z(Sj). Together with LLIND; this implies X' D Z({|t||). As Z(]|t]]) D ¥ can

trivially be proven in R’2 this completes the proof. C

One can of course generalize this theorem to show:

Theorem IL.E.3 (i > 2.m > 2) Ti™ proves I¢_,-REPL™"".



Definition ILE.4 (i > 0) The class S8, M II2_, s the smallest cluss containing
$¢ and closed under Boolean operations and By < p(r(x)|m)) where r(r) is a
term in our language and where p is a polynomial. Similarly. the class ff—’_[ Ny
I 1 15 the smallest class containing Zf and closed under Boolean operations and

quantifications (3y < p(|r(2)|m)) where r(x) is an Ly-term and p is a polynomial.

In the m = 1 case of the above definition we simply close under sharply
bounded quantification since p(|r(z)|) can be rewritten in the form |s(r)] where s

is an Ly-term. We will usually write S NI, rather than 2_ N, [T2_,.
o i+1 i+1 i+1 i-1

Theorem IL.E.5 (i > 1) Any formula ¢ in the class of formulas containing if—’ﬂf[ﬁ'
and closed under conjunction, disjunction, and quantifications of the form (3r <t)
and (Qz < p(||tl])) is provably equivalent to a Sb_formula in R'z Hence. Ry can
prove LLIND,, for such formulas. Further for i > 2. we can replace SEATE in

the above with T2 NI

Proof:  We can use Theorem IL.E.2 and the method of proof in Theorem IL.E.1
to show for i > 2 that R} proves every £%_  -formula is equivalent to a <b -
formula. (The theory R; by this method proves every formula which is made up of
conjunctions and disjunctions of vb_formulas is equivalent to a formula of the form
(3x < |t|)¢ where ¢ is an open formula.) Using Remark II.B.1. this also shows

that R} proves every ITZ_,-formula is equivalent to a [1%_,-formula. The theorem

then follows from Lemma II.C.6 and Theorem II.D.6. =

Corollary IL.E.6 (i > 1) Any formula ¢ logically equivalent to o formula in the
negation of the class mentioned in Theorem II.E.5 is provably equivalent to o IT-

formula in R.

Proof: Let 4 be such a formula. Then =4 is logically equivalent to a formula in
class mentioned in Theorem IL.E.5. So - is provably equivalent to a £-formula
B in R,. Thus. R} can prove A equivalent to =B. By pushing the negation in to

the matrix. the theory RS proves A is equivalent to a I:I’,?—formula. C



In the same vein as the above theorem and corollary. we have the following

result for T,™.

Theorem ILE.7 (i > 1,m > 1) Any formula o in the class of formulas con-
taining Sf N1 Hf and closed under conjunction. disjunction. and quantifications
of the forms (3r < t) and (Qz < p(|t|m)) where p is a polynomial is provably
equivalent to a $0-formula in T:™. Hence. T;™ can prove L™IND, for such for-
mulas. Further Tz‘m can prove any formula logically equivalent to a formula in the

negation of this class is equivalent to a fIf-formula.

The above result allows us to prove the next theorem. which in turns

allows to us show how some of these prenex theories are related.

Theorem ILE8 (: > 1,m > 1) R§ proves the i\?-L[ND arioms. In general.
Ti™ proves the AY-L™~'IND arioms.
Proof: Let A(z) be Ab with respect to 73™. Let Ag(x) be the T formula

to which A(z) is equivalent and let An(x) be the I:I{-’-formula to which A(r) is

equivalent. The theory Tz”" can prove
(Vo < lelm1)(Ax(z) > An(min(z + 2" [¢[m-1))) (IL17)

is equivalent to a I:[?-formula. Call this formula B(b). We can now perform the

same proof as in Theorem II.C.2. G

Corollary ILLE9 (: > 1.m > 1) Si=' C Ri. Hence. fori > 2 we have Si-' ¢ Ri.

Rimlm—l ~ i,
In general. we have Ty """ ' C T,™.

O
—

Proof:  The corollary follows from Theorem II.LE.1 and Theorem ILE.S8.
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ILF The theories T3™/

One can actually improve Theorem IL.E.8 provided m > 1. Let p be a

fixed polvnomial. If one starts with the formula B(y) defined as
(Vz < 2PUelm))(Ag(z) D Ap(min(z + 2¢. 2PUeim)))) (11.18)

rather than equation (I1.17), than by I:I?-L"‘I N D one can prove using the speed-up

trick of Theorem II.D.6 one can derive.
A(0) A (Vr)(A(x) D A(Sx)) O (V) A(2P(elm)y,

Provided m > 1 and p is of degree greater than 1. the term 2Pt*l=) will majorize
lx|;n_1. As a specific example. in the R}z case we can prove the following induction

scheme for 4 a A?-predicate
A(0) A (V) (A(x) D A(Sz)) D (Vz)A(2p0HI)

where p is any fixed polynomial. Even 2il=l* will majorize |r| so this scheme is
potentially stronger than LIND,. This suggests that it might be interesting to
consider theories of arithmetic defined with this kind of induction up to terms of

the form 2°U=i=) First. a definition.

Definition II.F.1 We define Term;:”o to be the set containing the 1-ary Li-term
|x|m. For j > 0. Term;c"‘j is the class of 1-ary Ly terms of the form 2mint(s):t)

where t is an Ly-term, s in in Term{ ™" and p is a polynomial.

Recall from the beginning of this chapter, 2™+ can actually be defined

with an Le-term so the above classes of terms will in fact all be classes of L-terms.

Example IL.F.2 We give some ezamples of terms in Termy?. The term {}jrli]
Stitetiityr
will be in Term3?. the term 21=W° will be in Termy'. and the term 22" ) will
3. N PRy 2 .. 3,
be in Termy?. The term gmin(2<iz#el) = 9l=® ig i Term)®. In general. a term

in Term3™ for 0 < j < m looks like

LpjUrimy
opi (20213780 )



36

M so this class will contain terms of the

The min operation will kick in for Termy"
form 2% for n fized and all terms in this class will be bounded by terms of the

form 2",
We are now ready to define some new induction schemes.

Definition IL.F.3 Let U be a class of formulas in Ly. The U-L™/IND axioms

are axioms of the form

A4(0) A (V2)(A(z) D A(Sz)) D (V) A(€(2)).

where A is ¢ formulas in ¥ and ¢ is in Term;™ .

Fori>m > j >0 we define T,ﬁ‘"“j to be the theory

EBASICy+E!_-L™ IND.

The next theorem shows that T,:'""j - Té""'j -

Theorem II.LF.4 (i > 1, i > m > j > 0) The theory Té.m.j proves the _-\?ﬂ-

L™+ IND azioms. In particular, this implies T,™ += T.™/ "' s0 we have

rim __ im,0 ~i.m,l ~i,man—1 tom.m __ i—m
k =T 2T 221 21, =T,

Proof:  The lefthand equality follows by definition. The inclusions follow since
we defined the class Term;"’j specifically so that the proof method of Theo-
rem ILE.8 would go through. The equality between Ty™™ = T:~™ requires a lirtle
bit of work. That T,Z"" contains T,i""‘m follows since both of these theories are ax-
iomatized with induction for £8__, ,-formulas and the conclusion of the inductions
for T,:'"‘ is (Vx)A(x) which is stronger than (Vir)A(¢(x)) where ¢ € Term™™. On
the other hard as we said in Example ILF.2, Term,”™ contains terms of the form
2i=l* for any fixed k. Using Theorem II.C.1 we could have axiomatized these the-

<o

ories with IT2_ ,-formulas in their induction schmeas instead of =j_, \-formulas.
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Then in f,i"""" we can do induction on (Vy < 2%)A(y) where A(r) is a IT)

r—m.k”

-~

formula to derive the I ;Vng} axiom of T,:‘"‘.

By Definition ILF.3. T} = ~2,~_0,0' We write R5' for the theories Y Pl
The term |z| is less than 212!l which is in Term3"'. We will show at the end of this
chapter that this implies for ¢ > 1 we have S.f;“ - 1:1’;1. It is unknown whether
these two theories are equal. We will show in Chapter VIII that R i Ri. By
[16]. we know S3™' " R: and this can be viewed as a consequence of the facr
that terms in Te'rm:Z:‘l can be bounded by terms of the form |t| where ¢ is a term

in Ly. Thus. Si7' = Ry'. The general result we will show in Chapter VI is that

fori>m>j>0orfori>m=j=1 we have

TL‘..m.J jv"b T’:.m.
-+l

Notice the terms in Te-rm.é‘l can grow as large as any term L,. We will sce at the
end of this chapter this implies *2.'.1,1 will equal Ti~'. So by the above result. we
have

Tt = T <y T = S

which is a result already known from Buss {14].

II.G Theories with term bounded induction or replace-

ment

The theories we are considering have at this point become overloaded
with too many indices. In order to simplify our proofs in later chapters. we define
slightly more abstract theories which involve fewer indices. but which subsume all
the theories considered thus far. We begin by defining some general schemes of

induction and replacement.

Definition II.G.1 A set 7 of 1-ary terms in Ly is called a set of k-iterms (k-

induction terms). We call 2-iterms just iterms. Let 7 be a set of ilerms. The



W-IND™ azioms are the azioms IND.:
a(0) A (Vz){a(r) D a(Sz)) D (Vr)all(x))

where o is a formula in ¥ and € is a term in 7. We write IND?  for the set of
azioms IND? for each € € 7.
The U-REPL'™ are the azioms REPLY ,:

(Vz < [E(s))(3y < ta(z,y) &

(Fw < 2- (" #4())) (v < |€(s)])al. B(z. |- t.w)))

where a is a formula in U, ¢ is in 7. and 5 and t are in Li. We write REPL,

for the set of arioms REPLSES_, for each € € T.

As an example of the above definitions, let id(a) = a. Then the set {id }is
a set of iterms. S-IN DU} is just £2-IND and [%-REPLUY is just [I:-REPL"'.
Notice in the above definition we write |7| to denote the class of terms of the form
|¢] for ¢ in 7. We will frequently use this nomenclature. Let ¢/, denote the set
of closed iterms in Ly. We will write ¢l for cl. It is not hard to see that the
$b_I N D axioms are provable in BASIC. As another example of choices of 7
consider 7 defined as the set containing the term 1#(\MSP(x. [3]x]]). This term
has growth rate approximately 2ivZl which is a potentially interesting growth rate
between that of id and |id|. Notice iterms need not be monotonic we will see below
that this will not have any pathological consequences. We now define some useful

properties for iterms to have:

Definition I1.G.2 A set T of k-iterms is called product closed if whenever s(.r)
and t(x) are terms in T there is a iterm (s-t) in 7 and a term r in Ly such that
(5 - £)(r(z)) = s(2) - ().

A class 7 of k-iterms is called smash closed if in addition whenever s(r)

and t(z) are iterms in T there is a term (s#t) in T and a term v in Ly such that

(s#t)(r(r)) = s(x)#t(r).
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The obvious example of a product closed and smash closed set of rerms
is just {id} since id(r - r) = id(z) - id(x) and id(z#x) = id(xr)#id(r). The class
{}id]} is product closed but not smashed closed. The class Termy'. however. is

also smash closed and product closed. To see this consider ¢; and ¢, in Tp'rm:::'l. By

2 )

definition of Term?" these terms can be written in the form 2P{# and 2Pt

where p;, and pg, are polynomials and

9pe, iz 9P izl — pe, (lzlpey Ul

and the right hand side is also a term in Term3'. A similar argument works for
product closure. The product closure of {||z||} consists of all iterms of the form
p(|}x]]) where r is a polynomial.

One point of closing under smash and product is given by the next lemina.
We will also see in a Chapter VI that smash closure plays an important role in

conservation results between bounded arithmetic theories.

Lemma II.G.3 Let U be a class of formulas and let T be smash closed. Then

T := EBASIC+¥-IND™ can prove [ND_Q(I)#E"’(I) forany A in U and 6.0, € 7.
&(x)-€(r)
\ )

Similarly, if T is product closed T can prove IND

. . c~Fr(x)sEl
Proof:  Let 7 be smash closed and consider an axiom of the form [.\ D_A‘””" 20)

where 4 is in ¥ and ¢, ¢, are in 7. Since 7 is smash closed there is a term € in
7 such that ¢(r(z)) = ¢,(x)#€(z) where r is an Lp-term. Since the conclusion
of the induction hypothesis is weaker it follows that I.ND% implies [ NDI\" =
[NDW#EE) - This establishes the lemma. The product closure statement is

proven in the same way. O

There are many possible ways one could close a set under product or
smash. The naive smash closure of 7 is defined inductively by letting o9 = 7. then

letting
Oiv1 = 0; U {€1(2)#b(x) . 61(2) - ba(x) | €16 € ai}
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and finally letting the smash closure be U;o;. It is easy to verify this set of terms
will be smash closed. One can define the naive product closure similarly by deleting
the smash term from the definition of ¢;.;. The problem with these definitions
of smash and product closure is that a smash (resp. product) closed set is not
necessarily equal to its closure. Consider for example the case of the set {id}. This
set is both smash and product closed but its closure under the above definition
has infinitely many members. To remedy this situation we inductively define the

smash closure of 7 by letting oo = 7. then letting

oisr=0; U {6(x)#6:(z) | 6.0 € gy and (Vr € Ly)(VE € 0,)(=f(r) = #£2)}
U {{'l(l) . 62(;13) | é’[.fg € g and (VT‘ € Lz)(V( € O’,‘)("f(l') = ('1 . {_))}

and finally letting the smash closure be U;o;. It is easy to verify this set of terms
will be smash closed. One can define the product closure similarly by deleting the
smash operation from the definition of g;+;. Using these definitions of smash and
product closure a smash (resp. product) closed set is equal to its closure. The
next lemma shows that having induction up to terms in the naive smash closure
of a set is no stronger than having induction up to terms in the smash closure of

a set and similarly for naive product closure and product closure.

Lemma I1.G.4 Let 7 be the naive smash closure of 7 and let 7 be the snash
closure of 7. Let T' := EBASIC+U-IND™ and let T" := EBASIC+W-IND™.
Then T' =T".

A similar statement holds with regard to product closure.

Proof:  This is proven by an induction on the construction of the naive smash
closure. Since 7" contains T certainly 7" proves the W-IN D™ = W-[.V D axious.
Let 4 be in ¥ and suppose ¢, and ¢, are two terms in o3, the set of terms at the ith
stage in the construction of the naive smash closure of 7. Qur induction hypothesis
is that there are terms ¢ and & in 7" such that €}(r;(x)) = &;(«) where ry is an

Lo-term. Since 7 is smash closed there is a term ¢ in 7" such that ((r(r)) =
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¢ (r)#€(r). Thus. T" will prove IND"TF#EE gince [N DY implies [_\’Df;":',-'
implies [ ND&‘“)#["'(’) since the conclusion of these axioms become progressively
weaker. The product case of the construction is handled similarly. This completes
the induction step and the proof. The product closure statement is proven in the

same way. C

Definition I1.G.5 We write 7 to denote the product closure of .  We write (lr')
to denote the product closure of |7|.

We write T# to denote the smash closure of 7. We write (|7])# to denote

the smash closure of |7
The abstract theories we will consider in later chapters are the following:

Definition I1.G.6 Let T be a set of k-iterms.
For i > 0 we define ;" to be the theory

EBASIC+Xt-IND™
and we define Ci'™ to be the theory
EBASICy+open-IND™+I1¢-REPL™

The C in C&7 stands for collection axiom which is often what the replace-
ment axioms are called in bounded arithmetic. The theories C'.;'Ifi will appear again
in Chapter IV and will be discussed in detail in Chapter VIII. To see the theories
T, and C”.é'iri are more general than the theories considered thus far notice

m.j

Pl j ~i—j.Term;

e = T
cim_ i{lid]m)

" = T, ,

EB‘-LS‘ICIC = TI:’CI — l:';'lc”m

One can show using the iteration of induction arguments of Theorem ILD.G the

following important theorem about abstract theories:



Theorem II.G.7 (i > 0) Let 7 be a set of k-iterms.

R eilT

P -

9, i = T,j"‘*” = T

3. EBASICy+11t,-REPL"'= EBASIC;+11¢,-REPLI
i 7#|

4. C“yli,iT[ — C‘yliv(lfl) — C“vk

Using the argument at the beginning of Section IL.F one can show:

Theorem II.G.8 (i > 0) Let 7 be a set of k-iterms. The theory T proves

the A2, -1 ND™ agioms. Therefore,

TI:.T# C Tli+l.lr[.

The other theorems of this chapter also generalize using essentially the
same proofs to the theories T,”. We first give a definition and state the results we
will need in later chapters. We often assume 7 is a set of iterms without explicitly

mentioning it.

Definition I1.G.9 (i > 0) The class ifﬂﬂmﬁ?ﬂ is the smallest class containing
Y and closed under Boolean operations and (3y < p([€(x)])) where €(r) is a iterm

in T and where p is a polynomial.

Theorem I1.G.10 Let U be a class of formulas over our language closed under
term substitution. Let =¥ denote those formulas which are negations of formulas

in U. Then BASIC+Y-IND" is equivalent to BASIC+-Y-IND".

Theorem IL.G.11 (i > 1) The theories To™. To'™, and T,7""™" each prove I12_-
REPLI™.
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Theorem I1.G.12 (i > 1) Any formula ¢ in the class of formulas contwining
i? Miri I'If’ and closed under conjunction. disjunction. and quantifications of the
forms (3z < t) and (Qz < p(|€(t)])) where p is a polynomial is provably equivalent
to a £0-formula in T._f’{rl. Hence, T.Zi‘m can prove [ ND'Q-” for such formulas. Further
T;':Tl can prove any formula logically equivalent to a formula in the negation of this

class is equivalent to a fI?-formula.

Note the Theorem I1.G.12 has content even for EBASIC since EBASIC
is equal to Té‘idl. We finish this chapter with an important theorem which allows

to determine the relative strength of induction up to an arbitrary iterm.

Theorem I1.G.13 Let ¥ be a class of formulas closed under quantifications of

the form (Vx < t). Then if €, and ¢, are two iterms and

EBASIC, + (vz)(3y)(£u(z) < €2(y)) (IL.19)

then

EBASIC+9-INDt} C EBASIC,+¥-IN D!

If EBASIC proves (I1.19) we say £, surpasses €.
Proof:  Suppose A(a) is a formula in ¥. Then B(b) := (Vr < b)A(r) is also
in U. It is not hard to see that A(0) implies B(0) and (Va)(A(r) D A(Sr))
implies (Vr)(B(z) D B(Sz)). Finally, (I1.19) together with (Vo) B(¢,(x)) imply
(Vz)A(€(z)). Thus, EB.—lSIC'+IND{B€"’} implies [NDE{”. which suffices to es-

tablish the theorem. O

Corollary I1.G.14 (i > 0) Let 7 and 7' be two collections of k-iterms such
that EBASIC can prove every k-iterm in 7 is surpassed by a k-iterm in 7 then
1.7 C T,i‘rl. In particular, Si C Ry
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Proof:  The class of formulas provably equivalent to I1?-fornmulas in 7" satis-
fies the conditions of Theorem I1.G.13. Therefore. as every term in 7 is surpassed
by some term in 7', the theory 7,” proves the I1,-IND" axioms and. thus. by

Theorem 11.G.10 it also proves the £2,-IN D" axioms. C

Corollary I1.G.14 gives us some indication of the power of a theory of the
form T._i{ } where ¢ might not be monotonic since it shows this theory is contained
in any T, which has terms which surpass it (for instance. T}) and it contains any

ST AN ] . .
theory T, e involving a monotonic ¢ which ¢ surpasses.



Chapter 111

Multifunction algebras and local

search problems

In this chapter, we define multifunction algebras B,T2 and B;». We show
T can Tb-define the multifunctions in B!} and EBASIC can <b_define the mul-
tifunctions in B;,. We also define the classes LSY of multifunctions computed as
optima of (¥.7)-local search problems. We show T:_f" can prove any (¥.7)-local
search problem in 5" has a local optima. Thus. Ty can define these multifunc-
" tions. In Chapter V we will show that any T!-definable multifunction of o™ s
computable by a multifunction in Bl'rr_,I We will also show the corresponding results
for EBASIC. Hence, we will have precise characterization of the Tb_definable mul-
tifunctions of these classes. For complexity theorists it may seem more interesting
if we had given a characterization of the Lb.definable multifunctions of T,"™ in
terms of polynomial-time computations with limited access to an oracle set. We
give such a characterization in Chapter VI. We begin with our algebra characteri-
zations because we feel it helps shed light on what kind of reasoning is available in
our proof systems and it helps shed light on what it means for a theory to define
a multifunction which queries an oracle.

Throughout this chapter and the rest of this thesis when we refer to a set

of terms 7. we will mean a set of iterms.
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ITII.LA The algebras B, and B>

Before we introduce our algebras it is important to make precise what we
mean by multifunction and what we mean by various relations between multifunc-

tions.

Definition ITI.A.1 A multifunction is a set f C N x N such that for all + € N
there ezists (r.y) € f. We usually ezpress (z.y) € f as f(x) =y. Wewrite fog
for the composition of the two multifunctions f, g and define ( fog)(x) = z if there
is some y € N such that f(z) =y and g(y) = z. If f is a multifunction and r is
a function. we write f(x) > r(z) if there ezists y > r(xr) such that f(r) = y. We

define f(z) < r(r) if there exists y < r(x) such f{z) =y.
We now give some definitions of some operations on multifunctions nec-
essary to define our algebras.

Definition ITI.A.2

1. Let C be a multifunction. The function (ur < z)[C(z.§.z) = 0] returns the
least value T < = such that C(c. ¥, z) = 0 holds and returns z + 1 if no such

value ezists. This operation is called the yi-operator.

9. Let C be a multifunction. The multifunction (Wz < z)[C(r.§.2) = 0] re-
turns an t < z such that C(z,§.z) = 0 holds if one exists and returns = + 1

if no such value ezists. This operation is called the 1V -operator.
3. A multifunction f is defined using T-bounded primitive recursion (BPRY)
from (multi)functions g. h, t, and r if
F0,1) = g(2)
F(n+1,%) = min(h(n.T, F(n.1)), r(n.r))
f(n.£) = F((t(n, 1)), T)

for some r in Ly and for some Li-term t and some T-term (. We write

BPR™ for BPR].
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If g. h. t. and r are multifunctions then f obtained by BPR" is the mulri-

function which results by viewing each step in the above iteration as a composition

of multifunctions. The min step is well-defined as a composition of the multifunc-

tions with the term min from Chapter II. The output of the min step will be a

multifunction whose values are bounded by r.

Definition III.A.3

1.

<

(k > 2) The function algebra B, = Box is the algebra containing zero(r) =
0, S(x), L%J,J MSP. +, -, =. #4,... . #, and |a| and closed under compo-

sition.

(k > 2) The multifunction algebra B, is the smallest class contuining Bo .
containing (Wz < |z))[C(z.§) = 0] for any C in Box. and closed under

composition.

(k > 2) The multifunction algebra B, is the smallest class containing Bg,..
containing (W < |z|)[C(z. §) = 0] for any C in Byy. closed under compo-

sition. and closed under the recursion scheme BPRy.

(i > 1. k > 2) The multifunction algebra B; is the smallest class containing
Bi_1 k. containing (W < z)[D(x,§) = 0] for any D in B;_x and closed

under composition.

(i > 1,k > 2) The multifunction algebra B}, is the smallest class contamning
Bi_x. containing (Wz < z)[D(z.§) = 0] for any predicate D in B;_y.

closed under composition, and closed under the recursion scheme BPRy.

Lemma III.A.4 (i > 1) The algebra B], is closed under the following type of

TeCUTSIOn:

F(0.z) = g(T)
F(n+1,7) = min(h(n,Z, F(n,I)).r(n )
f(n.Z) = F(min(n.€(t(n.T))).F)
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where g and h are in B,. r and t are in Ly and € 1s in 7.
Proof: To define f we first define the multifunction f’ as

F'(0.5) = g()
Fi(n+1.7) = min(F'(n.%)+
min(h(n. Z. 3(n. |r*]. F'(n, £))), 1) - (i - 27, (€(8) + 1) - 277
f(n.5) = F'(€(t(n,T)).T)

From f’ we can define f as B(min(n, €(t)).|r*|, f'(n,T)). C

We will for the rest of the chapter mainly consider the case when & =2

however, our results readily generalize.

Definition III.A.5 Let C be a collection of multifunctions. We write C = 0 to
denote the set of relations of the form f = 0 where f is a multifunction in C. We

define C > 0 simalarly.

The next lemma will help us show that T3'™ can l-define the functions

in B,._,'
Lemma III.A.6

1. The relations in Bys = 0 can express precisely the open formulas of L,.
2. (i > 1) The relations in B;» = 0 can ezpress any predicate which is a Boolean

combination of £2_,-formulas.

3. (i > 0) The relations in B;» = 0 can be erpressed by i‘?-fm-mula.

Proof:
(1) The functions in By, are precisely the terms in L, as Bf, = By is
just the closure of the initial functions of L, under composition. In particular.

Bf, = By, can define the terms A-. K<, Ka. and K. which we defined at the
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beginning of Chapter II. From these terms one can express any open formula. Now
suppose t is a function in BJ, = Bq,. then since t is an Ly-term. # = () is an open
formula.

(2) The proof of the second statement is by induction on /. When /=1
by (1) it suffices to show B, can express a sharply bounded quantifier. Consider
the formula A := (3 < |t|)B where B is an open formula equivalent to fg =0 in

By = 0. Then A can be expressed as
(Ko (K=((We < [t)[fs = 0] |t + 1))] = 0.

For all j < i assume Bj, can express Boolean combinations of %_,-predicates.
Consider the £0_ -formula A := (3z < t)B where B is a II?_,-predicare which by

i—1

assumption can be expressed in B;_s» =0 as fg = 0. Then A4 can be expressed as
(K.(K-(Wr<t)[fs=0].t+1))] =0.

(3) We show the graph of any multifunction f(Z) in B;, can be expressed
in the form Af(Z. y) where A isa Tb_formula and y is bounded in A by a term £,
From this one can see that f(Z) = 0 is expressible as a i?-formula since Ap(F.0)
is a L2-formula.

In the i = 1 case. by Remark I1.D.3 we can express the base functions of
By with St-formulas. So it remains to show “3-formulas can express the graphs
of functions defined by sharply bounded 11 -operator on open formulas (by (1)).

Suppose f(x) = y is a function in By,. Hence. f is an Ly-term. So we
can define the graph of (Wz < [t]){f(xz) = 0]) = y with the following formula

which is equivalent in EBASIC to a X!-formula
(G < I)(f(e) =0Ay=2)V (Ve < Jt)(f2) > 0Ay = |t +1)].

Now suppose f = h(gi(F)),... .gn(Lr)) and we can Tb-define the func-

tions h(z,...2,) and g;(Z;) with graphs H. G;. Then we can define f with the
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following formula which is provably equivalent to a ©b_formula in EBASIC:

y <tA Gy <t) - (Bya < )GUTL- )

Ao ANGa(Zry) AH(yue - - yney)]-

For i > 1 we can use essentially the same argument to argue the graphs of
©b_formulas are closed composition. What is left to show is that one can express
with i?-formulas the graphs of multifunctions defined by 11 -operator on multi-
functions in B;_;». Suppose fc(r) is a multifunction in Bj_1». Our induction
hypothesis is that the graph of fc(r) = y can be defined with some ©b_ -formula.
C(z.y). We can define (IW'y < t){fc(x) = 0] = z with the following formula which

EBASIC can prove equivalent to a ig-formula

(Cz.0)Az=2)V(Vz <t)(~(C(z.0)Az=t+ 1)].

III.B Defining algebras in prenex theories

We now show that 73" can £b-define the multifunctions in B;5; and

i

EBASIC can Y-define the multifunctions in B;..

Theorem III.B.1 (i > 0) The theory ‘._,'.'17! can i?-deﬁne the multifunctions in

the algebra Birzi
Proof: Since functions in Bé?' = By are all Lo-terms, the theory
EBASIC Cc T,"™

can Y8-define them. For i > 1. it suffices by Remark I1.D.3 to show that Ty
proves the class Bif_,' contains the appropriate 1 -operators. and is closed under

composition and BPRY".
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(I -operator) We first show EBASIC can i'{-deﬁne (Wr < #h[f(r.2) = 0] for
f(z. %) a function in Bgy = Bj,. ie.. f is just an L,-terms. To do this one just

needs to notice that
(3y < ||+ 13z <) (f(z. ) =0Ay =)V (Ve < [t))(f(2.D) > 0Ay = H+1)].

is provable in EBASIC. Further the formula inside the scope of (3y < {t| + 1)
is equivalent to a Yi-formula by Remark I[I.C.7. Next we show EBASIC can
i?-deﬁne Wz < t)[fe(x.?) = 0] for fe(x,Z) a multifunction in Bi_1». By
Lemma I[I1.A.6, the relation f- = 0 is expressible by a i?_[—formula C(r.3). So

(W < 8)[fe(r.2) =0] will be :b_definable since

By <t+1)[Ex <tNC(@. D) Ay=1)V

(Ve < t)(=C(x.) Ay =t+1)]

is provable in EBASIC and the formula inside the scope of 3y < t+1)is
equivalent to a i?-formula by Remark II.C.7. Since Tj"ri contains EBASIC. this

shows T, is also closed under the appropriate I1"-operators.

(Composition) Suppose f = h(gi(Z1)....gn(Fa)) and that T, can £i-define the
multifunctions h(z,....z,) and g;(£;) where 1 < j < n and where h.g; € B,

Then there are f‘.?-formulas H. G,.... .G, such that
TR (VD) (3 S OH(Ey)
and
Tzi"r' Fo(VE;)(3y £ ¢5)Gi(E.y), forl<j<n
So

Tj‘m F(VE) - (VE) Gy < )3y < t1) - (Bun < t)GL(Tr )

A ANGo(Troy) NH(y1 -+ Yne )



The formula inside the scope of the (3y < t) is equivalent to a “h_formula provably
Y l i I

in EBASIC and the above formula defines f.

(BPR‘;E) Suppose f is obtained by BPR.LTi from g and h which are f'?-(loﬁnablo
in 75", 7 and t which are Lj-terms. and { in 7. Let G and H be the & <b_graphs of

g and h such that

T, = (VE)(Ty < 1)G(T.y)

T'zi‘IT{ F o (Vn,Zou)(3v < t)H(n. Fouv).
We can assume (0. %) < t,(F). So let A(n, T, w.y) be the formula

G(Z. H(0.1r ()], )70, 5). w))A
3 [ (O D (€D, B w) = y A
(V5 < [EONCHG. E. 3G, (6O D), w). 3(S1. [ (€t)]. ). w))
AB(S I (e B w) < r(n )V 3(S. I ()] D). w) = r(n. 7))

and let B(n.T) be the formula
(3y < r)(Gw < Q4TI A(n Fozowy)

Let F(n.7.y) denote the formula within the scope of the (3y < r). This formula

tiT!

is equivalent toa ¥ V‘b -formula provably in T and we can define f if we can show

(V& n)(3y < r)F(E(E(n, D). L. y)-

—

So it suffices to show (VZ.n)B(|é(t)|.E). The formula B is also equivalent to a
Tb_formula, so fj‘lfl can nse IN D' axioms. Since T3 proves (V7)(3y < 1)G. it
can also prove B(0,). Now suppose fj"ﬂ proves B(m, ) where m < {{(f)]. So

there are v, w, y satisfving A(m, Z. w,y). If we set y’ = h(m, L. y). and
uf, _ y, . Qmin((m+1)'lr-ivlf(C)I'!r.}) + LSP( m + 1 I, ‘)

then using Lemma I.C.4 and Lemma I1.D.1 which are axioms of EBASIC we can
show that T.zim proves A(m + 1, 7.z, w'.y’"). Hence. T_,"‘IT: proves B(mn +1..r). By

™
[

the INDT axioms, the theory T3"™' proves (VZ. n)B(|((t)|. F).
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el

The 7 = cl version of the above theorem shows the EBASIC = T._,
can Ti-define the multifunctions in chél It is not hard to see that By = B..
since defining a multifunction using BPR;'_,CI| uses only a constant number of itera-
tions, so the same effect can be achieved using a finite number of compositions of

multifunctions.

III.C Local search problems

The reason why Tz” cannot necessarily i?-deﬁne the multifunctions in
B, is that in general it could take an exponentially long string w to define a
function by BPR} using the method of Theorem III1.B.1. For example. this would
be the case if 7 = {id}. We know from Buss and Krajicek [12] that the Th.
consequences of T}} can be characterized by projections of polynomial local search
(PLS) problems. The PLS problems were first studied in Papadimitriou and Yan-
nakakis [38]. We modify their definitions to get local search problems which can
be used to characterize the £¢-definable multifunctions of T,7. We use 7(Li) to

denote terms obtained by substituting L-terms into 7 terms.

Definition ITI.C.1 Let ¥ be a class of multifunctions in Ly and 7 a class of terms
in Li. The multifunctions Fp(a.z), and Np(a.r) =0b in V. the single-valued
cpla.z) in W, tp(zx) in Lg, and Mp(r) in 7(Li) define o (¥.7)-local search

problem P with input x if
1. For all z, Fp(0,x) > 0.
2. For all x and a, Fp(Np(a,z).z) > 0.
3. Forall r and a, Fp(a,x) > 0D a < tp(x).
4. For all z and a, ~(Np(a,z) = a) D cp(a,z) < cp(Npla,r). ).
5. For all z and a, cp(a.x) < Mp(I).

6. For allr anda and b, Np(a.x) =a A Npla.x) =bDa=0.
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A solution Optp(z) = y to the above local search problem is a value y
such that Np(y.x) =y. If a theory T 2 EBASIC can prove the above conditions
hold (including cp being single-valued) then P is a (¥.7)-local search problem in

T.

The point of the last condition is to insure that Vp is single-valued when
Optp(z) = y. The idea of the above definition is that F is supposed to be a set
of feasible answers to the problem P, c is supposed to be a cost function. and Y
is supposed to return a neighbour to a given feasible answer. and our goal is to
find the feasible answer which maximizes the cost. For instance. one can imagine
a ticket scalper with one ticket to sell for the Stanley Cup going around outside a
hockey rink trving to find the person he can charge the most. He searches around
locally outside to find who is willing to pay the most for the ticket and then sells
it. There might be other people who would have been willing to pay more for the
ticket but not in his nearby vicinity.

One can also define local search classes in terms of minimization and the
classes will be equivalent to the ones defined above using the standard trick of
Theorem [1.C.1 and Theorem II.G.10; however, it is more convenient for us to use
maximization principles. The class PLS we mentioned earlier is the class of multi-
functions computed by optima of (O7. {id})-local search problems. An interesting
problem in PLS is given a weighted graph G. find a travelling salesperson tour T
of G that cannot be improved by swapping the successors of two nodes [29]. This

problem is based on a popular heuristic for the travelling salesperson problem.

Lemma II1.C.2 If (B;2. 7)-local search problem in T 2 EBASIC then the above
siz conditions which are provable in T are allVX8-formulas. That is as an universal

quantifier followed by a %2-formula.

Proof:  Using essentially the same proof as Lemma II.A.6. one can show the
predicates in B;, > 0 are all expressible by i‘ﬁ-’-formulas. Conditions (1). (2). and

(3) are then seen to be equivalent to a v&i-formula in T since T 2 EBASIC.



Condition (3) and (6) are equivalent to Vﬁf-formulas and hence. YE_ -formulas.
Lastly, condition (4) consists of a universal quantification of a I:If-’-formula implyving

a $b-formula and so is equivalent to a VE2-formula. =

Definition II1.C.3 We define LSY to be the class of multifunctions which can
be computed as optima of (¥.7)-local search problems.
We define LS to be the class of multifunctions which can be computed

as optima of (¥, 7)-local search problems in T.

When the theory is clear we will abuse notation and write LS ¥ for LS: “’-‘

The next lemma will allow us to show T can define every multifunction in Lb-

Lemma III.C.4 (i > 1)

(a) The theory T;™ and EBASIC+%!-MINT are the same where the SeNINT
arioms are:

A((a)) D Bz < Ha))[A(z) A (Vy < ) (= -A(y))]
for A € YeandlerT

1

(b) The theory T;™ and EB ASIC+XL-MAXT are the same where the & SONANT

arioms are:
A4(0) D (3r < €(a))[A(x) A (Vy < a))(y > £ D =Ay))]

for AeStand e

(c) The theory Ty™ and EBASI C+I1_,-MINT are the same.
2 L

(d) The theory Ty™ and EB ASIC+IT_,-MAXT are the same.

Proof:  (a) The proof of this is essentially from Buss [13]. Let A bea Cb_formula
and let B(a) be the formula (Vy < a)(=A(y)) where £ is in 7. This formula is
provably equivalent to a I1%-formula in EBASIC, so by [2-IND7 we have

-B(f(a)) D ~B(0) vV (3z < ¢(a))(B(x) A ~B(Sx))



and since A(((a)) D —~B(¢(a)) and A(0) D ~B(0). we have
A(a)) D A(0) V (3z < U(a))[(Vz < z)(=A(2)) A (Fy < Sr)Ay)].
From this EBASIC can prove
A(f(a)) D A(0) V (By < €(a))(Vz < y)(=A(2) A Aly)

which implies the desired £-A/I.N™ axiom.
For the other direction, we show EBASIC+X!-AMINT proves -y ND*
axioms and so contains T;” by Theorem [1.G.10. Let A be a IM%-formula. Then by

SeAINT:
~A(€(a)) D =4(0) v (3z < €(a)[~A(x) A (Vy < 2)A(y)]

and so

—A(0(a)) A A(0) D (Fz)(A(zx) A ~A(Sz))

which implies I.VDY.

(b) To prove the SLMAXT axioms for the formula A and the term 7.
one only needs to use i?-;\[ INT with respect to y on the formula A(((x) = y).
Similarly. to show £2-A[INT axioms for the formulas A(x) and the term 7. one
only needs to use iﬁ-’-ﬂ[ AXT with respect to y one the formula A(¢(x) = y). Thus.
EBASIC+S0-M AXT is also equivalent to T

(c) and (d) We show only (c) as (d) is similar. It suffices to show -
MINT implies i?-.f\[ INT as the other direction is trivial. Suppose A(x) := (3y <
#)B(z, y) is in £ and we want to prove the A[INY for £ in 7. Consider the m_,-
formula

B*(w) := B(MSP(w,21), 3(0, |t*]. t. w)).

By using Corollary I1.C.4 and Theorem IL.C.5 which are axioms of EBASIC.
EBASIC can prove (3r)A4(z) D (3w)B*(w) by setting w equal to x - 20y, So
given (3r)A(r) and using MIN ¢ axioms we get a minimal value w such that B*(«w)

holds. Finally. EBASIC can show r := MSP(w.2"") must be a minimal value
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such that A(z). This is because if A(z') for any 2’ < r then there must be some

y such that B(c',y) and then B*(w') for w' =1’ - 2"y and v’ < w. =

Theorem IT1.C.5 (i > 1) Let P be a (B, +)-problem in Ty7. Then T," proves
(Vr)(3y)(Optp(x) = y). Since Optp(z) =y is provably equivalent to a <b-formula

we get T2™ can S0-define the multifunctions in LSP=.
Proof: Let P be a (B;,,7)-problem. Consider the formula
A(c) := (3a < tp(x))(Fpla.z) > 0Acp(a.x) 2 ¢

which is provably equivalent to a i{-’-formula in T,7 since Fp(a,x) > 0 is provable
equivalent £2-formula and similarly cp(a,z) > c is equivalent to a Yh_formula.

Using $2-M AX7, the theory 75" can prove

4(0) >
(Fe < Mp(x))[Alc) A (V¢ < Mp(2))(¢ > ¢ D =A()].

Now T," can prove A(0) since O is always a solution to a local search problem and
all solutions have cost > 0. So this implies T,,” can prove there is a feasible answer
¢ which maximizes the cost. Given the definition of Np such a value ¢ must satisfy

the relation Optp(z) =c. 4

III.D Another pairing function

Our next major goal is to show the converses of Theorem ILB.1 and
Theorem II1.C.5. We will not reach this goal until Chapter V. Nevertheless. as
a first step in this direction we show that Bf, = By can define a slightly better
form of pairing than we have been using up to the present.

Let B = 2imaxzy)i+1 Qo B will be longer than either r or y. Hence. we

can code pairs as

(x,y) = (le&‘<(r.y)l +y)-B+ (leaX(r,y)’ +r).
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To project out the coordinates from an ordered pair we need the following function

which has the effect of deleting the most significant bit of a number.
1
DAMSB(z) = z = L§‘2|I|J.
Then
3(1,w) = DMSB(LSP(w. |_?12-|w|J))
and
32.w) = DMSBOMSP(w.(3lu]]))

will return the left and right coordinate respectively of the ordered pair w. (The
real Godel beta function can project out 3(i, w). the ith element of a sequence u.
However. as we never use this function in this thesis we will allow the suggestive
notation.) To check if something is an ordered pair one can use the predicate

ispair(w) which is true if and only if
1
Bit(w, L;|w|] = 1) =1A2-|max(3(1.w).3(2,w))| + 2 = |ul.

The above form of pairing can also be done in EBASIC. For integers .r
and y one can show there is a unique pair w = (z. y) satisfving ispair(w) and such

that 3(1,w) =z and 3(2.w) = y.



Chapter IV

The sequent calculus and

cut-elimination

Until this point we have not been specific about the deduction systems in
which we have been carrying out proofs for T; " and C;lf To show the converses of
Theorem IILB.1 and Theorem II1.C.5: however, we will need to work with proofs
in the sequent calculus. We shall use the same formulation of the sequent calculus
as in Buss [13] where a basic system called LA B was defined and then augmented
with the BASIC axioms and various induction rules. A good reference for material

on the sequent calculus is Takeuti [48].

IV.A The sequent calculus

Proofs in the sequent calculus are made up of sequents. A sequent is an

ordered pair of two finite sequences of formulas represented pictorially as:

4,...,4, =2 By,... .Bn. (IV.1)
In the above sequent, the sequence of formulas A4;.... . A is called the antecedent
and the sequence of formulas B,.....By, is called the succedent. In gencral. a

sequence of formulas occurring in a sequent is called a cedent. We will use capital

Greek letters such as T and A for cedents. The symbol — is called the sequent
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arrow. The intended meaning of the sequent (IV.1) is

NET=AVY:
i j

A sequent calculus proof is usually viewed as a tree of sequents with the
result of the proof, the root of the tree called the endsequent. appearing at the
bottom of the proof, and the leaves of the tree, called initial sequents. appearing
at the top. The internal nodes of a sequent calculus proof are supposed to follow
from their children by means of a deduction called an inference. The types of
inferences allowed depend on the version of the sequent calculus being formulated.
We will work with the sequent calculus system LK By which allows the following

rules of inference for sequents of formulas in the language Ly:

Structural Inferences

(contract:right) [»443 (contract:left) A AT=>
ntract:right)  F——% contract:le TS
r—-A i r-A
(weaken:left) FREEEN (weaken:right) TSis
. I - A A B A ) . r.ABI'—=A
(exchange:right) TS5 A B AN (exchange:left) T B I S
Propositional Inferences
F-4A ) ATT—-A
—:lett - -
(Seleft) AT S A (Furight) 5 -A
A=A . AT - A
(A:leftl) TABT oA (A:left2) BAiT S A
) I - B.A - B.A
(A:right)

> AAB A



(V:left)

(V:right1)

(D:left)

(D:right)

A=A BT —- A
AvB.I'=A

r—-4.A
Fr—-4vBA

(V:right2)

r—->4.A B. I =+ A

ADBTI'—= A

A= B.A

r-4>B.A

Quantifier Inferences

(V:left)

(v <:left)

(V <:right)

(3:left)

(3 <:left)

(3 <:right)

Cut Inference

(Cut)

Vo) A(z).T — A (V:right)
A@), T = A

t<s.(Vz <s)A(xr),[ = A

a<s, = A(a). A
= (Vz <s)d(zr). A

A(a), I = A

(3z)A(x),T = A (3:right)

a<s,A(a),[ = A

(3r < s)d(z), T = A

L - A@#),A
t<s, [ = (3z<s)A(z), A

'—-4.A 4ATF—-=A
- A

6l

r—- 4.2

r=Bvi4iA

[ —= A(a). A
[ = (Vo) A(a). A

L

[ — A(2).
[ - (3r)Ad

——

r). A
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The symbols T, \,Q. and .\ above are supposed to represent finite sequences of
formulas. The ¢ and s which appear in the quantifier inferences must be terms in
Li. The variable a which appears in the quantifier inferences is called an eigen-
varisble and must not occur in the lower sequent. We call the sequents on the top
line of an inference upper sequents and we call the sequent on the bottom line of
an inference the lower sequent. The lower sequent of a propositional or quantifier
inference contains a newly formed formula which we call the principal formula of
the inference. The formulas in the upper sequents of a propositional or quantifier
inference from which a principal formula is constructed are called auciliary formu-
las. All other formulas in an inference other than principal and auxiliary formulas
are called side formulas.

We now describe the two types of initial sequents of in LA By proof:
logical axioms and equality axioms. A logical ariom is a sequent of the form
1 — A where A is an atomic formula in L. An equality ariom is a sequent of the

form — t; = ¢,
tl=S[,...,tn=8n—)f(tl,...,tn)Zf(Sl ..... ] ,l).

or
t, = Si1,- .- ,tn=Sn,:l(t[,... ~tn)_)-'1(sl ..... S n)-
Here t; and s; are Li-terms. f is a function symbol in L. and A is an atomic

formula in Ly.

Definition IV.A.1 An LK Bi-proof is a sequent calculus proof containing Ly-
formulas using the above rules of inference and using logical arioms and equality
arioms as initial sequents.

The theory LK By is the collection of all sequents viewed as formulus

derivable by LK By-proofs.
Proposition IV.A.2 The system LK By is consistent, sound, and complete.

Proof:  We refer the reader to Buss [13] and Takeuti [49] for the details. T
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Definition IV.A.3 A substitution instance of a formula A(a,.... .a,) with free

variables as indicated is a formula B such that B = A(t,,...t,) wherct; are terms.

Definition IV.A.4 The sequent calculus formulation of a theory T with a set of
Li-formulas as azioms is the system LK By erpanded to allow initial sequents of

the form — B where B is a substitution instance of an aziom.

We use the above definition to give a sequent calculus formulation of

EBASICy. To formulate T} and Co'™ we will use the following definitions.

Definition IV.A.5
A U-IND™ inference is an inference of the form:

A(b).T—A(Sb), A
1(0). T—=A(l(t(z))). A

where b in the above is an eigenvariable and must not appear in the lower sequent.

tisin Li. € is in 7. and A is a ¥-formula.

A W-REPL'™ inference is an inference of the form:

T—(Vz < [é(s)])(3y L t)A(z.y), A
T— (3w < 2- (" #4(s)))(Vz < [€(s)])A(z, B(z. |t°], t.w))). A
where A is a U-formula, ¢ € |7}, and 5.t € Li.

Theorem IV.A.6

The theory of the system LK By ezpanded to allow ¥-INDT inferences is the same
theory as the system LK By erpanded by ¥-IND™ azioms.

The theory of the system LK By ezpanded to allow U-REPLI™ inferences is the
same theory as the system LK By ezpanded by U-REPL" azioms.

Proof: We show only the first statement as both proofs are not hard and
somewhat tedious. Nevertheless, we thought we would provide an illustration of
what sequent calculus proofs look like. Let ¢ € 7. We derive the [ N D', axiom

from the rule.
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1(a)—A(a) A(Sa)—~>A(Sa)
A(a) D A(Sa), A{a)—>A(Sa)
(Vz)(A(x) D A(Sz)), A(a)—>A(Sa)
(Vz)(A(z) D A(S7)). 4(0)—>A(€(b))
(Vz)(A(z) D A(Sx)), A(0) > (Vz) A(¢(r))
(0) A (Vz)(A(z) D A(S7)). 4(0)—>(Vx)A(l(r))
.-1(0), A(0) A (Vz)(A(z) D A(Sz))—>(Vx) A(¢())
A(0) A (Vx)(A(z) D A(Sz), A(0) A (VT)(A(z) D - 4(Sz)—=>(Vz)A((r))
A(0) A (V) (A(x) D A(Sz) = (V) A(E(r))
— A(0) A (Vz)(A(z) D A(Sx)) D (Vo) A(€(xr))
For the other direction we first derive
A(0) A (V)(A(z) D A(Sz)) = A(€(2)) (IV.2)

with the proof
A(€(t))—=> A1)
(V) A(8(z))—> A(4(D)) A(0) A (Vz)(A(z) D A(Sz))—=>A(0) A (Vo) (A(r) D A(Sr))
1(0) A (V2)(A(2) D A(82)) D (Vo) A(E(z)), A(0) A (V) (A(z) D A(Sz))—> A1)

followed by a cut against INDY. Then we derive

(Vz)(A(z) D A(Sz)). A(0) = A4(0) A (V) (A(x) D A(Sr))

with the proof
(Vz)(A() D A(Sx))— (V)
A(0)— A(0) A(0), (Vz)(A(z) D A(Sx))—>(Vr)
(V) (A(z) D A(Sz)), A(0)— A(0) (V:l:)(-i():)D 1(Sz)), A(0)— (Vz)
(Vz)(A(z) D A(Sz)). A(0)—>A(0) A (Vx)(A(z) D A(Sx))

A(r) D A(Sr))
A(x) D A(Sr))
A(r) D A(Sr)

(
(
(

Cutting against (IV.2) gives us
(Vz)(A(z) D A(Sx)), 4(0) — A(€()) (IN.3)

Given a proof of the upper sequent A(a), = A, A(Sa) of the induction rule we

derive
F—A, A(a) D A(Se)
T—=A, (Vz)(A(z) D A(Sz))
Cutting against the (IV.3) yields the lower sequent of the induction rule. C

Given Theorem IV.A.6 we are justified in the next definition:
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Definition IV.A.7

T{™ is the sequent calculus theory of the system LK By expanded with EBASICy

arioms and L8-IN D" inferences.

C’,i’m is the sequent calculus theory of the system LK By erpanded with EBASI Cr

azioms, open-IND" inferences, and [18-REPL'™ inferences.

IV.B Cut-elimination and Parikh’s Theorem

The reason we formulate proofs over the sequent calculus is that they
have a particularly nice normal form which we will discuss after the following

definitions:

Definition IV.B.1 Let C be a formula in a sequent calculus proof P in the lan-
guage L. The successor of C is a formula in the sequent directly below C defined

according to the following cases:
1. IfC is in the endsequent of P or C is a cut-formula, then C has no successor.

2. IfC is the auziliary formula of an LK By inference or of a RE PLI™ inference.

then the principal formula of the inference is the successor of C.

3. If C is one of the formulas 4 or B in an exchange inference. the successor

of C is the formula denoted by the same letter in the lower sequent.

4. If C is a side formula in the upper sequent of an inference, then the corre-

sponding side formula in the lower sequent, is its successor.

If C is the left (resp. right) auziliary formula of an induction inference. then

IS4

the successor of C is the left (resp. right) principal formula of the inference.

A formula C is an ancestor of D in a sequent calculus proof P if there is
a sequence of formulas C = C\,... ,Cp = D such that for each ¢ the formula C;_,

is a successor in P of the formula C;.
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We call C a direct ancestor of D in a sequent calculus proof if ' is an
ancestor of D. and the formulas C and D are different occurences of the same
formula.

If C is an ancestor of D then we call D a descendant of C. Similarly. D

is called a direct descendant of C if C is a direct ancestor of D.

Definition IV.B.2 4 formula A in a sequent calculus proof is free if and only if
it is not directly descended from a principal formula of a non-LK By inference and
also not directly descended from an initial sequent.

A cut inference is free if and only if both of the cut formulas in the upper
sequent are free.

A sequent calculus proof is free-cut free if it has no free cuts.

The normal form for sequent calculus proofs is given by the following

cut-elimination theorem.

Theorem IV.B.3 (i > 0.k > 1) Suppose [ — A is provable in the sequent
calculus formulation of EBASIC, ‘,i'r, or C;7. Then there is a free-cut free

proof of T — A in the same theory.

Proof:  The proof is essentially the same as in Takeuti [48]. pp22-29.111-112

and in Buss [13]. )

Given a set ¥ of prenex formulas let LU be the class of formulas which
can be made into formulas in the set ¥ by padding the left hand side with zero or
more dummy quantifiers. The next corollary is the primary reason why we will use
the sequent calculus and in particular why we formulate 7,7 aand C .j_'m with rules
of inference rather just axioms. The proof is from Buss [13] modified slightly to
the prenex setting. We write |4|;;; to mean a quantifier of the form (V. < jf(t)})

where ¢ is in |7| and t is in L.

Corollary IV.B4 (i > 0.k > 1)
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Let ¥ D LS:?,A- be a set of L-formulas such that any subformula of a \-formula is
a U-formula. LetT — A be a sequent of ¥-formulas provable in EBASIC. Tlf'
Then T — A is provable in the same theory by a proof in which only U -formaulas

occur.

Let ¥ containing

LAl 2 U LEA| I

be a set of Li-formulas such that any subformula of a ¥-formula is a U-formula
and such that ¥ is closed under Li-term substitution. Let T — 2\ be a sequent
of ¥-formulas provable in c ,’CT Then T — A is provable in the same theory by a

proof in which only ¥-formulas occur.

Proof: Both statements are proven in essentially the same way so we only
prove the first one. Let P be a free cut-free proof of T' — A, a sequent of ¥-
formulas. Suppose C is a formula in P and C ¢ ¥. As ¥ D Li‘f{k. C cannot
be a direct descendant of the principal formula of an induction inference or the
direct descendent of an initial sequent. Hence. C is free and all of its descendants
must be free. Since P is free-cut free. some descendant C' of C' must appear in
the endsequent. As C ¢ ¥ is a subformula of C’, we have also that C' ¢ ¥. This

contradicts the fact that T — A is a sequent of ¥-formulas. C

In particular, Corollary IV.B.4 says a sequent of Lf?—formulas provable
in T, has a T;7-proof in which only L¥b-formulas occur.
Another important theorem provable from the cut-elimination theorem

is the following variant of Parikh’s Theorem [39].

Theorem IV.B.5 (i > 0,k > 1) Suppose (Vz)(Iy)A(x.y) is provable in one of
the theories EBASICy, TP", or Cy7 where A is a bounded formula. then there is

a term t in L, such that in fact (Vz)(3y < t)A(z.y) is provable in the theory.

This theorem holds in a more general theories than we give above. WWe

ask the reader to consult either Hdjek and Pudldk [24] or Buss [13] for a proof.



IV.C 3¢ versus [1%_;-definability
In this section. we give a simple application of Parikh’s Theorem.

Definition IV.C.1 The function f(z) = 3(1,g(z)) is called a projection of g(.r).

We define 7V to be class of multifunctions which are projections of mul-

tifunctions in V.

The reason why we are interested in projections is that we will show the
Yb_definable multifunctions of T;7 are precisely the class ﬁLSf 2, It is unknown if
the LSf “* is closed under composition. This is also open for PLS. This suggests
that LS+B “* might more naturally correspond to some weaker notion of definability-
We show below two weaker notions of definability which are not necessarily closed
under composition but whose projections are equivalent to S?-deﬁnability. We
make no claim about a connection between these notions of definability and local
search. However, we will discuss this problem a bit more after our results in the

next chapter.

Theorem IV.C.2 Let T O EBASIC be a theory in which Parikh’s Theorem
holds. A multifunction is St-definable in T if and only it is a projection of a

[1°_,-definable multifunction in T.
Proof: Suppose f is i?-deﬁnable in T with by the formula
By(z.y) = (3= < 8)4;(2.9.2)

where Ay is fIf_l. By Parikh’s Theorem T proves (3y < t)By(a.y). So f can be

defined as a projection of a ﬁ?_l-deﬁnable function by proving
(3z)(Fw < 241 ™0 (4 (z, AL, w), B(2, w)) A 2z = 3(1.w)).

On the other hand, consider a projection of a [12_,-definable multifunction f. Let

f be defined by the formula A;(z.y). By Parikh’s Theorem. T proves (Zy <
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t)A;(z.y). This last formula is provably equivalent to a b formula. The theory

T can thus iﬁ-’-deﬁne its projection by proving

(32)(3y < t)[45(z. y) A 3(1.y) = =]

Corollary IV.C.3 Let T 2 EBASIC be a theory in which Parikh’s Theorem
holds. A multifunction s f)?—deﬁnable in T if and only it is a projection of «a

Ab-definable multifunction in T.

Proof: The proof is essentially the same as Theorem IV.C.2. If fis i?-cleﬁnablo
it is projection of I:[?_l-deﬁnable multifunction and hence, it is a projection of a
Ab_definable multifunction. On the other hand. consider a projection of a Ab.
definable multifunction f. Let f be defined by the formula A;(z.y). By Parikh's
Theorem. T proves (Jy < t)As(z,y). Since Ay is A? with respect to T'. this last

formula is provably equivalent to a Li-formula. The theory T can thus Sé-define

its projection by proving

(32) 3y < )[40z, y) A 3(Ly) = 3]



Chapter V

Definability and the witnessing

argument

In this chapter we show the converses of Theorem III.B.1 and Theo-
rem [IL.C.5. So we show the £!-definable multifunctions of T‘_,"’m are precisely the
B'") multifunctions. As corollaries to this characterization we get characterizations
of the $¢-definable multifunctions of Si, R}, and T;™. We also get a characteriza-
tion of the Sf_ j-consequences of Té’m'j . In Chapter VI we will show for i > 1 the
algebra BI”', , equals the class FP= (wit, [7#]).

We conclude this chapter with some remarks about theories defined with

prefix induction schemes.

V.A The witness predicate

Let T be one of the theories EBASIC,, T37. or C37. In view of The-
orem IV.B.5, T can Y-define a function f if and only if there is a Sh_formula
Ag(z,y) such that T proves (Vr)(3ly < ¢)Af(z, y). To define a multifunction one
does not have to show uniqueness. A formula is an EX!-formula if it is of the form
(3y < t)4 where 4isa i?-formula. Because of the cut-elimination theorem all
the formulas in a free cut-free Tg"'-proof of a sequent of LE £l formulas will be in

LET®. We define a witness predicate in the following manner.



If A(@) € LI, then
Wit (w,d@) = A(@)
If A(@) is of the form (3z < t(&@))B where A € ! then
Wit (w,d) = w < @) A B(w.a)
If A(@) is of the form (3, < t)(3z2 < ty)B where A € ES? then

With(w,@) = ispair(w) A B(Lw) <t ABQ2.w) <A

B(3(1.2). 3(2. w), @).

Thus, if A is in LEY? then Wit?, will be provably equivalent in EBASIC
to a [1%_ -formula. The witness predicate as defined above is a simplified version
of the witness predicate defined in Buss [13]. The simplification arises because we
are working in the prenex setting. It is easy to prove from the definition of witness

the following useful properties.
Lemma V.A.1 (i > 1) Let 4 be any LESt-formula with free variables @. Then:
EBASIC - Wit'(w. @) D A(@). (\V.1)
There is a term ty such that
EBASIC+ A(@) & (3w < t4(@)Wit' (w. @). (\.2)
For this term t4 we also have

EBASIC - Wit (w,d@) D w < ta. (V.3)

Proof:

(V.1) This statement is immediate from the definition of .
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(V.2)Ifdisin ! then ¢4 is just the bounds on the outermost existential quantificr.
Otherwise, if the outermost two existential quantifiers are bounded by #, and f..

their pair will be bounded by 2%{max{ti.t2)+1),

(V.3) Follows from (V.2) and the definition of Wit},. In particular. the definition

of ispair forces any pair for a witness to be unique =

For a cedent of formulas [ = {A;,....: 4.} we use VI (resp. Al)
to denote the disjunction (resp. conjunction) of its formulas. We write u =
({wy. -+, wy)) to denote pairings of the form (wy, (w2, - AW wp)---)). We
will use this convention for defining witnesses for 11ith and Wit}

We define Witi (w.d@) by induction. If T is empty define With - (w. @)
to be 0 = 0. If T consists of a single formula A then Withr(w.@) is it (w. @).
Otherwise. if T is a cedent of formulas I' = {4,,... .- 4p}. let T’ be {As..... An}
and define 117t (w, @) to be

Wiit', (3(1,w), @) A Witr (3(2,w), @)

Now we inductively define Wit} - (w.a@). IfT is empty define With - (w. a)

to be ~(0 = 0). If " consists of a single formula A then 1 it\(w. @) is Wit (w.a).

Otherwise, if T is a cedent of formulas I' = {,,... ,4,}. let T be {Aa. ... 40}

and define Wit (w, @) to be
(Wit} (B(Low).@) Awy S ty)V Witk (3(2. w). @)

where t4 is the term from Lemma V.A.1.
From the above definitions it follows that both 1 iti; and 117t are
provably equivalent to I1¢_,-formulas in EBASIC. From the definition of witness

for a cedent it is also easy to prove the following lemma.

Lemma V.A.2 (i > 1) Let T be a cedent of LEif-fmmula with free variables d.

There is a term tr such that

EBASIC Wit p(w.d) Dw L tr
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and

EBASIC - Witl o (w.@) D w < tr.
We also have
EBASICF (3w < tr)IfI"itj'\r(w,E) — (Fuw < t_;)II'it{,A(er,(i)

if and only if
EBASICH+T — A.

Proof: This follows from the definition of witness for a cedent. the fact that
witnesses for a cedent are made up of pairings. and by the bounds for witnesses

for formulas given by Lemma V.A.1. O

V.B Witnessing arguments

The next theorem implies the £%-definable multifunctions of To™ are
contained in Bi;‘ With Theorem IILB.1 we have the %’-definable functions of

Tt . . .
T,"™ are precisely the functions in Bfrll

Theorem V.B.1 {i > 1) Suppose f'.‘zi"rl FT — A where T and A are cedents of
LES-formulas. Let @ be the free variables in this sequent. Then there is a Bl"_,
multifunction f which is £2-defined in TH™ such that:

TH™ - Wit L(w, @) D With A (f (w. @), d).

Similarly, suppose EBASIC + T — A where I and A are cedents of
LEif-formulas. Let @ be the free variables in this sequent. Then there is a DB, .-

multifunction f which is _53?-deﬁned in EBASIC such that:

EBASIC F With (w,d) > Wit (f(w.q). ).
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Proof:  This is proved by induction on the number of sequents in an T, " -proof
(resp. EBASIC-proof) of T — A. By cut elimination, we can assume all the
sequents in the proof are in LE Ef In the base case. the proof consists of a logical
axiom. an equality axiom, or an EBASIC axiom. In each of these cases the witness
predicate is the original formula. So we can choose f to be the identity function.
To define f for logical inferences or for the structural inferences is reasonably easy.

For instance. consider the (A: right case).

(A:right case) Suppose we have the inference:

[—4,A [—B,A
'—=A4AADB A

By the induction hypothesis there are g. h € B,ITJ such that
TH™ b Withp(w,@) D Withya(g(w,d),d)
R, + With(w,@) D With,s(h(w. @), a).
As T17it!  is provably equivalent to a I_,-formulain EBASIC. by Lemma I[T[.A.G.
there is a relation fyr = 0 in B;; = 0, which expresses 117it},\. We define the

function £ as

k(v, w,d) = cond( fiy(v.@).v. w)
So k will be a predicate in B;, C Bl. Now define f by
Flw.d) = {(0,k(3(2, glw,@). 32 h(w,q)).a).

The formula A A B must be open as it is an LX%-formula. So IWit!, z = AAB and
we do not need a witness for this formula. The function f is obviously in Bf_, and

it provides a witness, if needed. to the remaining formulas in the succedent. So
TH - Witk o (w, @) D Withagya (f(w. @), ).

The EBASIC version of this case is handled in the saie way.

We now prove the remaining cases.

(Cut rule case) Suppose we have the inference:



'—4.A A=A
[—A

By the induction hypothesis there are g. h € B:Tz' such that

T b Wit (w, @) D Withy, s (g(w. @

Q
A

RNy
-

=
N’

2
-

rhT e Wit o (w, @) D Wity (h(w.@
We define the function k as
k(v,w. @) = cond(fu (v,d). v, w)
Here fi- is as in the A:right case. We define the function f to be
flw.d) = k(3(2. g(w. @), h({3(L. g(w.@)). w).d).
Clearly. f isin B;s C B;TZI and it is easy to see that
o™ b Withp(w. @) D With y(f(w. @), @).

Again. the EBASIC version of this case is handled in the way.
(3:left case) Suppose we have the inference:

b<t A(b),[—A
Ar < tA(z), T—=A

By the induction hypothesis there isa g € B,‘Tzl such that
T3l b Withcupaar(w, @ b) D With s (9(w. d,0),d. b).

There are three subcases to consider. In each case. we need some way to determine
a value for the free variable b and then run g using that value. First. suppose
(3r < t)A(z) is an Ef‘,?-formula. If wis a witness for (= < t)A(x) AT, then
3(1, (8(1.w)) is a value for b such that A(b) holds and 3(2.3(1. w)) is a witness

for A(b). So let our new witness function be

Flw. @) = g({{0, 3(2, 3(1,w)). 82, w))). & (L. H(1. w))).
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[t is easy to see that
3 With, e anr (w. @) D Wit} y(f(w. @). ).

In the second case suppose (3r < t)A(x) is an S formula. If w is a
witness for (3z < t)A(z) AT. then 3(1.w) is a value for b such that A(b) holds.

Let our new witness function be
f(w.d@) = g({{0.0, 3(2.w))). @, 3(1. w)).
It is easy to see that
T3 - Withs, e anr(w. @) D Wit o (f(w. @), @)

The last case is when (Jz < t)d(z) € Li?_z. (Notice by the defini-
tions of £¢ and [I? if (3z < ¢)A(z) € LI, then (3x < t)A(x) € LT ,. So
(3z < t)A(z) € LE?_, is the only remaining case.) In this case. let fy be the
multifunction in B;_, o which by Lemma III.A.6 has the property that far)y =20
iff A(z). We define f to be the same as in the above case except rather than
use 3(1,3(1,w)) to give a value b we instead use the B, C B,"zl multifunction
(1Wz < t)[fs(z) = 0] to give a value for b. Note if (Ir < t)A(x) € < then t is
sharply bounded and A is open so this function is definable in By.,.

As usual we can do the EBASIC version of this case in the same way.

(3:right case) Suppose we have the inference:

C—A(t). A
t<s, =3z <s)A(x). A

By the induction hypothesis there isa g € BlhzI such that
T3 - Withp (w,8) D Wity a(g(w. @). @)

The definition of W'it! implies

T Withar(w,@) D t < s AT ith(3(2. w). ).



So if 4 is a £-formula we define f to be
flw.@) = {((¢(@),5(1.g(3(2, w),&)). 3(2. g(3(2.w).@)))
If 4 is a [T?_,-formula we define f to be
flw,@) = (t(a),3(2.9(8(2.w).a)))
For all other 4 we define f to be
flw.a@) = g(3(2,w).a@))
These functions are all BIITQl and it is not hard to see that
T, iticonr(w. @) O Witlg,eqa@zyva (f(w. ). @).

This same method handles the EBASIC version of this case.

(V:left case) Suppose we have the inference:

A@), I—=A
t <s.(Vz <s)d(z).T—A

By the induction hypothesis there isa g € BITJ such that
Tl b With yap (w. @) D With s (g(w. @). @)
The definition of Wit! implies

STl vpeag - - .
Tnzl T - "‘ Lt:ss/\(VISS)A(I)/\r(‘w? a) D t S S A II Ltszs_,.)__‘(I)Ar(d(Z, lL'). a).

By cut-elimination every sequent in the proof is in LEiﬁ-’._ so (Vx < s)d(«x) is in

LII2_,. We define f to be
flw,@) = g¢(8(2.w),ad)
This function is in B‘ ", and it is not hard to see that
Ty'™ b Witignvecaa@ar (@ @) D Wity s (f(w. ). @).

This same method handles the EBASIC version of this case.

(V:right case) Suppose we have the inference:



=1
v

b<t.T—A(b).A
[—(Vz < t)4(x). A

T

By the induction hypothesis there isa g € B{2‘ such that
To'™ b Wity ap (w. @.b) D Wity 1 (g(w. &.0). . b).

By cut-elimination, (¥ < t)A(z) € LII%_,. Since A is in L¥?_, by Lemma IIL.A.G
there is a multifunction f-4 in Bj_;» with the property that f_4(r) = 0 iff =A(x).
Let h(w, @) be the (Wz < t)[f-(z) = 0] and define f to be g((0. w).a. h(w.a)). It
is not hard to see that f the desired properties. Note if (Vz < t)A(r) € I1% then ¢
is sharply bounded and A is open so we can define this function in Bl'_,

This same method handles the EBASIC version of this case.

(i’i’-l ND'™ case) Suppose we have the inference:

A(b),T—A(Sb). A
1(0). T=A(E@)]). D

where ¢ is in |7|. By the induction hypothesis there is a g € B,‘T_, such that
1‘—21'.{7'! - "Vitﬂ(bw(wﬁ) 0 "I’""ti\(se)m(g(’U~ d). a).
Let h(m.w.d.b) be the function defined by

cond(I'Vz'ta(s,,)v,_\(m, @.b), m.g((m.3(2.w)).a.b))

Define the function f by BPR.%;I in the following way

F(0,w.d) = (3(1,w),0)

Fb+1,w,@) = min(h(F(bw,a),w,d,b).tvavss)

Define f(u,w,&) := h{min(u, |€(t)|), w,@). Recall tyav.se) is the term guaranteed

T3l - With gyar (w, @) D Witly gy A (f(0, w, @), @)
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From this one can then show that

TH b Wity gar(w. @) A Withy pva (f(b. w. @). b. @)

> Withygoyva(f(Sb. w.@). Sb.d).
Since t is in |7), it then follows by ¢-IN D™ that
Ty F Wit gar(w. @) D Withggeyva ()] w. ). @).

This case does not come up for EBASIC.

This completes all possible cases and the proof. g

We get a similar result to the above theorem for the theories Ty™ and the
class LSf 2 We will discuss relationships between our results and the results of

Buss and Krajicek [12] after Corollary V.B.3.

Theorem V.B.2 (i > 1) Suppose Ti™ + T = A where T and \ are cedents
of LE‘:.‘?-for“mulas. Let @ be the free variables in this sequent. Then there is a

(B;3.7)-problem P in T57™ such that:

T b With(w, @) D With,(Optp(w. @), @).

Proof: This is proved by induction on the number of sequents in an T.;’T-I)I‘O()f
of T — A. By cut elimination, we can assume all the sequents in the proof consist
of LES -formulas. The base case and all cases except the SEINDT case are
reasonably easy. We handle this last case and then show the (V : right) case to
illustrate why we need to define our local search problems using multifunctions .\'p

in Bi.g.

(X6-INDT case) Suppose we have the inference:

A(b), T— A(Sb). A
A(0). T=A(Je@)). A
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Here ¢ is a term in 7. By the induction hypothesis there is a (B;.. 7)-problem P

such that
Ta™ b+ Wit gyar (w, b, @) D Witlysyya (Optp(w.b.@).b.a).

By assumption, the problem P is defined using cp(w'. (w.b,@)). Np(u'. (w.b.d)).
and Fp(w', (w,b,d@)) in Bis. The tuple (w.b,d) is the fixed arity tuple which
consists of a witness for A(b) AT and consists of the free variables which appear in
the upper sequent of the inference. The input w' in cp. Np. and Fp is a candidate
witness for A(Sb)VA. The neighbour function on input w’. (w. b. @.) outputs a new
candidate witness w”. By the definition of P. there must be a least one candidate
witness since we must have Fp(0, (w.b.@)) > 0.

We now describe a (B;s.7)-problem P’ based on P which witnesses the
lower sequent of the above inference. The new feasible answers predicate F p will

be given by

Fp'(‘w’. (w, 5)) =

cond((w' =0V Fp(3(2.w'). (w. B(1,w"). @) > 0V Witly, s («'.@)). 1.0).

Using Lemma ITIL.A.6. one can show Fpr will be a multifunction in B;,. Notice 0 is
a feasible answer. Other feasible answers are ordered pairs. the first coordinate of
which is supposed to code a value for b and the second coordinate codes a feasible
answer for the problem P. The last type of feasible answer are witnesses for the
lower antecedent. Given the Lo-term tp which in the definition of (B, ». 7)-problem
bounds all feasible answers and the term ¢ 4(¢(¢)jva Which by Lemma V.A.2 bounds
the size of witnesses for the antecedent, it is not hard to construct a term fpr which
bounds the size of feasible answers of P'.

We now define a new cost function cpr(w', (w.@)). If w' = 0 this function

outputs 0. Otherwise, we define it as

cp (' (w,@) = (B(Lw')+1)- M{(w, @) +cp(3(2. w'). (w. 3(L. ). @))
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Here M is a term in 7(Lo) which majorizes cp(w'. (w.b.r)) for all values of b less
than €(f). By €(t) we mean the Ly-term which appears in the lower sequent of
the induction hypothesis. Notice A/ does not depend on b so M is not just Mp.
However. such an M exists since by the definition of P we have cp(w’. (w.b.T)) <
Mp(w, b. £) and if we substitute £(t) for b, we get a 7(L,)-term involving only w
and @ which provably majorizes cp. We can define AMp to be some function greater
than (£(t) + 1) - M + M in 7(Ls). This will exist since M and £(t) are in 7(L;). It
is easy to see cpr will be single-valued provided cp is. The last function we need
to define is the neighbourhood function Np(w', (w.@)). This definition breaks up
into several cases.

If w' = 0 we define Np (. (w,d)) to be (0,0).

If w' satisfies Wit!,,, o (w', @) then Np:(w', (w, d@)) just outputs w'.

If Np(3(2.w"), (w. 3(1, w'), @) # B(2,w') then we define
Np(w' (w.@) = (3(1,w'), Np(8(2, w'). (w. 3(1. w').@))).

If Np(3(2,w'), (w, 8(1,w"). @) = 5(2.w') there are two subcases either

3(2, w'") satisfies I'i"'ith(t)vA(ﬂ‘(?, w'),d@) in which case we set
Np(w' (w, @) = 3(2.u")
or it does not. in which case, we set
Np(w' (w.d@) = (0, (w, 31 w")+1.4d).

It should be reasonably clear that the functions Fer, cpr. and Npr are in
B given their definitions and since Fp, cp and Np are in B;,. So the above does

define a (B; . 7)-problem P’ and T, can prove this. Using SO INDT one can show

37 F Withgar(w. @ D Withgyva (Opte (w0, ). @).

(V:right case) Suppose we have the inference:



v
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b<t.[—=A(b).A
C—(Vz < t)A(z). A
By the induction hypothesis there is a (B, 7)-problem P such that

Tim b With oup (w. b, @) D Wit'y, A (Optp(w, b.@).b.d).

By assumption, the problem P is defined using cp(w’. (w.b. @)). Np(w'. (w.b.@)).
and Fp(w', (w.b,a@)) in B;z. Cut-elimination implies (Vr < t)d(x) € LIT®_, and
since A is in LY? , by Lemma IILA.6 there is a multifunction f-. in Bi» with
the property that f-(z) = 0 iff ~A(z). Let h(w.@) be the Bi, multifunction
(W < t)[f-azr) = 0]. We are now ready to define a (B;.,. 7)-problem for the lower

sequent. The new feasible answers predicate Fpr will be given by

Fpr(w'. (w.ad)) =
cond((w' =0V Fp(3(2,w"), (w. (1. w"),d@) >0V Withzenyava (' @))- 1. 0).

Using Lemma II[.A.6. one can show Fpr will be a multifunction in B;s. Notice O is
a foasible answer. Other feasible answers are ordered pairs, the first coordinate of
which is supposed to code a value for b and the second coordinate codes a feasible
answer for the problem P. The last type of feasible answer are witnesses for the
lower antecedent. Given the Lo-term tp which in the definition of (B;a. 7)-problem
bounds all feasible answers and the term f(y,<¢)ava Which by Lemma V.A.2 bounds
the size of witnesses for the antecedent, it is not hard to construct a term fp which
bounds the size of feasible answers of P'.

We now define a new cost function cpr(w'. {(w,@)). If w’ = 0 this function

outputs 0. If Fp(B(2,w"), {(w, 3(1,w'), @) > 0 we define this function to be
cp(8(2,u"), ({0, w), B(L, w'). @)).
Lastly, if w' is a witness to the lower antecedent, we define cpr as
Mp({(0,w), 3(1,w').a)) + 1.
We can define Mp ((w. @)) as

Mp({{0.w). 3(1,u"),@)) + 1.
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Notice /5 will be provably single-valued in T_;T if ¢p was since the query Fp > 0
is either true or false and does not introduce nondeterminism. The last multifunc-
tion we need to define is the neighbourhood multifunction Np/(w'. {w.@)). This
definition breaks into several cases.

If w' = 0 we define Np(w'. (w.@)) to be (h(w,d).0).

If u' satisfies Witfv:ge).uz)va(w’v @) then Np:(w'. (w.@)) just outputs w’.

If Np(3(2. '), (w. B(1, "), &) # B(2,u')) then we define
Np(w', (w,@) = (B(L ). Np(B(2, w'). (w, 3(L. w'). a))).
If Np(B(2.w"), (w. 3(1, "), &) = B(2, w') then we define
Np(w', (w. @) = 3(2.w).

It should be reasonably clear that the functions Fpr. cpr. and Np: are in B given
their definitions and since Fp. cp and Np are in B;,. So the above does define a

(B;».7)-problem P’ and T_ﬁ" can prove this. It is also not hard to see that
T;T }— II-Lti'*(w. 5) D II.[’tEVISt)4(.‘C)VA(OptP’(w’ (-1:). (—l.)

This completes the proof. |



Corollary V.B3 (i >1.m > 1)
1. A multifunction f is a £8-definable in T if and only if f is in BL.
2. A multifunction f is a f:?-deﬁnable in R; if and only if f is in Bi{.ﬁidii} .

3. A multifunction f is a £b-definable in EBASIC if and only if f is in Bl'ff =
B

4. A multifunction f is a iﬁ-’-deﬁnable n T2”" if and only if f is in Bi(.;d:"'}.
(i>1Li>m>j2>0)

5. A multifunction f is i?-deﬁnable in Tz” if and only if f isin ﬁLSf"-‘,

6. A multifunction f is i?_j-deﬁnable in Té‘m‘j if and only if it is in rLSP-

m.
Term.,'?

Proof: (1) For the ‘if’ direction we use Theorem IIL.B.1. For the other direction
consider Theorem V.B.1 when we take ' empty and A to be a Ei? formula (3y <
t(r))A(z. y) provable in Tzi’lr'. Then we get that there is a B,'Tl function f such
that

T3 k= With(z. f(x)).

Given the definition of witness we thus have
T5™ k= Az, (1. f(=)).

(2). (3), and (4) These parts follow similarly from Theorem IIL.B.1 and
Theorem V.B.1 and the definition of these theories as T3 theories.

(3) and (6) These follow from Theorem III.C.5 and Theorem V.B.2. For
instance, suppose (Jy < t(z))A(r,y) is provable in Tz” Then we get by Theo-

rem I11.C.5 that there is a (Bj,, 7)-problem P such that

T;7 F— Wit!, (z. Optp(x)).



Given the definition of witness we thus have
T = Az, 3(1, Optp(z)).

g

By Corollary V.B.3, the $_definable multifunctions of T} are ’/TLS{BI.:[’;. In
the T} case, Buss Krajicek [12] get LS {";f}. Our result shows the cost. neighbour-
hood, and feasibility predicates only have to be in B;, which is presumably a fair
bit weaker than the class FP. In fact, one can single-value any function in B,
in FTC®. That is. the class of functions computable by uniform constant depth
threshold circuits. This is because FTC? is closed under sharply bounded mini-
mization for any g € FTC?. In [28], it was shown that the ¥}-definable functions
of R D RY > EBASIC are precisely the class FTC®. We will show in Chapter INX

that the S¢-definable functions of (53'“‘"’” are also the class FTC®.

Remark V.B.4 We mentioned in Chapter IV that it is difficult to show local
search classes are closed under composition. This was why we introduced projec-
tions of these classes. We also suggested that local search classes without projection
might correspond to some weaker notion of definability than f.‘?-(leﬁnability. One
approach to this problem in the T, case is the following. First. expand the lan-
guage of T} to include function symbols for all the polynomial-time functions by the
method of Buss [13] where he creates the theory S3(PV"). Since Si C T). the latter
can Y8-define these functions. Now look at E,-definability and open-definability in
the expanded theory. Here an E)-formula is one of the form (Fx < t)open. One
should get by the same proof as above the E)-definable multifunctions of T, arc

7PLS and the open-definable multifunctions are PLS.

Remark V.B.5 A class of terms of the form |r| can be product closed. (Consider

{}id|}.) In these cases our characterization above coincide. showing mLS ?5’" = B,.

i)
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Theorem V.B.6 Fiz i > 1 and let T — A be a sequent of Lfl?_l-fm*mulus con-
sistent with ™. Then the £2-definable multifunctions of o7+ T = A} are
precisely the class Bl;’

Similarly, if T — \ is consistent with Tz” Then the i?—deﬁnable maulti-

functions of Ty™ + {T — A} are precisely the class 7LSP

It should be pointed out that there are potentially more (B; . 7)-problems in T_j' +
{T - A} than in T3

Proof: Certainly. To'™ +{I — A} can £¢-define the multifunction in B[%;. since
Ti'™ can. On the other hand. if we consider Ty1™ + {T = A} as the extension of
the sequent calculus proof system fé'm where we also allow [ = A as an axion.
We can carry out essentially the same witnessing argument as in Theorem \.B.1
to show that if 75" proves [ —» A’ where [ and A’ are cedents of LE Sh_formulas
then there is a B/ multifunction f which is $.defined in 73" + {I' — A} such
that:

TH™ 4 (T = A} F Withp (w. @) D With o (f (w. @). ).

We can use the identity function to give witness to initial sequents of the form

[ — A. The witnessing argument is otherwise the same.

a

The T;7 + {T — A} statement is proved in a similar manner.

Remark V.B.7 All of our results for this section generalize in a straightforward
manner to the theories Ti"". That is, the £?,-definable multifunction of 1™ are
precisely the class B],. The if{k-deﬁnable multifunctions of T;" are precisely the
class WLSf ¥  Essentially, the same proofs as we gave above go through. ‘e
concentrated on the k = 2 case in that it is related to the most computationally

interesting classes of functions.



V.C Prefix induction

We conclude this chapter with some remarks about prefix induction. In

Chapter I we briefly mentioned the induction scheme ¥-PIND of the form
a(0) A (Vz)(a L z]) D a(z)) D (Vz)a(r).

where « is in ¥. In general, one could consider the induction scheme ¥-P7[.ND

of the form

n

/\ a(n) A (¥2)(e(é(z)) D a(x)) D (Vz)a(z).

i=0

where o is in U. n is a constant, and ¢(z) is in 7. Here 7 is a nondecreasing set of
iterms with the property that z > n implies €'(x) < z for £ in 7. Intuitively. this
kind of induction scheme allows one to automate the following steps in the proof
a property A(z) in U: from A(¢) for some i < n, deduce .... A((€(x))). A(E(r)).
A(r). For example. to prove -A(100) with the ¥-PIN D scheme deduces A(0). A(1).
A(3). A(6). A(12). A(25). A(30). 4(100). The number of steps automated in a
deduction of A(zx) from a U-P{&IND scheme will be the number of applications.
m. of ¢ to r such that ¢™(z) < n. For instance, for ¥-PIND the number of
steps automated will be |z| since |r/2%1] = 0. Thus. it should come as little
surprise that for instance Si can be axiomatized with either -PIND or Ti-
LIND axioms [13, 11], since both induction scheme automate essentially the same
number of steps. Another prefix scheme which has appeared in the literature 6]

is the U-PPIND scheme
a(0) A a(l) A (Vz)(a(MSP(x |_ lz]])) D (Vr)a(r).

where a in 0. Let ¢ be A/SP(id, | 3|id|}). It is not hard to see that i) = 0 or
1 so this scheme automates ||z|| steps. As one would expect one can axiomatize
R, using L8-PPIND (see {7]).

If the number of steps automated by a U-PEIND can be represented

by some L,-term ¢ then using this scheme rather than ¥-I ND? probably does
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not buy one much. However, consider the following prefix scheme
a(1) A (VI)(a(|z|) D a(z)) D (VI)alr).

where o in ¥. The number of steps this scheme automates is the number of
iterations of [id| neccessary to produce 1. We will call this number lid|*. This
number grows at roughly the rate of the computer science function log™ (the
number of iterations of log, need at get a number < 1. Thus. it may be interesting
to study inductions which are of this power. On the other hand. it seems unlikely
lid|* can be defined with an L,-term. So in this case there is an advantage to prefix
induction scheme since to get a ¥-INDT equivalent we would probably have to

expand the language.

For the rest of this discussion we will assume the iterms in 7 are of the cor-
rect form. Let PT;™ be the theory EBASIC +5.PTIND. We now indicate how

to construct multifunction algebras for the theories PT, ,:T First. some definitions:

Definition V.C.1 A (multi)function f is defined using T-prefiz bounded primitive
recursion (PBTPRy) from (multi)functions g; for i =0....n. h. t. and r f

F(i.f) = g(X)fori=1,....n
F(m.Z) = min(h(m.Z, F(¢(m),T)).r(T))
f(m,) = F(t(m.I),T)

for some Ly-term r, for some Lg-term t. and some 7-term (. We write PB™PR
for PB"PR,.

From this we define the multifunction algebra PB], to be the smallest
class containing Bi_, x, containing (Wz < 2)[D(z,§) = 0] for any predicate D in

B;_\, closed under composition, and closed under the recursion scheme PBPR].

It is not hard to see that by arguments essentially the same as Theo-
rem IILB.1 the theory PT;" can define the multifunctions in PB],. The converse

also follows from essentially the same witnessing argument as in Theorem V.B.1
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where we formulate the sequent calculus version of PB], with the following rule
of inference

A(£(b)), T—A(b), A
A(0),... . A(n), T—=At). A

where A is a $8-formula and ¢ is in 7 and n is a fixed number. i.e.. a closed term

of the form S™(0).



Chapter VI

Machine classes and definability

in prenex theories

We now give machine characterizations of the © . -definable multifunc-
tions of the theories T3”. Our characterization will be analogous to that of the
Krajicek paper [33] where the £, ,-multifunctions of S were shown to be the class

F P (wit. log). We also show

Tl T# SielT# Tz-H i-r[
2
l-l =

We give specific applications of our results to the theories Ri. 3™ and ™.

In particular, we show the E"_ -definable multifunctions of R% are precisely the
p i 2 p

class FPE (wit.loglog). Lastly, we give a syntactic characterization of the .S?-

predicates of T47. In this chapter. we will often use the fact that |[77]is a product

closure of |7 and the fact from Theorem II.G.7 that o =75 Siad

VI.A Technical tools

To begin we define some rather restricted classes of machines which will
serve as a technical tool in our results. The idea is that for : > 1 the multi-
functions computed by these machines will turn out to be the class F PE(wit. 7).

We will then show our theories T;7 can X2 -define the multifunctions computed

90
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by this restricted class of machines and, hence. can define the multifunctions in
FP= (wit, 7). The reason we do not show T;” can directly define F P (wit. 7)
computations is that this would involve showing Tf_i" can manipulate polynomial
length sequences coding polynomial time computations. For a general set of iterms

7 this seems unlikely.

Definition VI.A.1 (i > 1) F[ITI]’Z‘:?(wit) is the class of multifunctions f for

which there is a machine M which operates in the following way:

1. M on input = runs in time |0y (h(z))| for some fized term ¢\, in 7 and
Lo-term h. i.e.. It runs in time c - |€y(h(z))| for some fized term (y wn
7 and Ly-term h. M has access to a £F witness oracle, but except for the
non-determinism inherent from the witness oracle. M is an otherwise deter-

ministic machine. M can only write in binary.

2. M has three tapes: an oracle query tape, a work tape, and an oracle response
tape. At the start of a computation, the input x is written in binary on M s
query tape followed by the number 2. The query tape head begins on the
square to the right of the 2. The oracle response tape s blank at the start of

a computation of M.

3. During a single step of a computation, M is allowed to perform one of the
following actions: (1) read the first square of the oracle response tape. (2)
step the query tape right, (3) write a 0 or 1 to the current square of the query
tape, or (4) perform one of the usual single step actions of a Turing machine
on a work tape. A query state is entered whenever there is a write to the
query tape. When a query state is entered, the oracle returns an answer in
one time step. A query to the oracle is defined to be the contents of the
query tape at the time that the query state is entered. The oracle read head
is always fized at the first square of the response and the first location of an
oracle response is always 1 or O depending on whether the oracle responded

‘Yes’ or ‘No'. If the answer is *Yes’ the remaining contents of the oracle tape
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will be a witness of the correctness of the answer of size at most |s(x)|" where
s is an Lo-term and n is constant. Although this witness must be correct. M

is cannot read from this witness as the oracle read head is fized.

4. The oracle tape after the first location is partitioned into blocks of size |t|™
where |t(z)|™ < |s(z)|* and t is an Lo-term. The output of M is defined to
be the contents of the first block of the oracle tape after the last query has

been written.

One thing to notice about the above definition is that depending on
and h it is possible that two different inputs of the same length to an F []T|].§ Cwit)
machine have different run-time bounds. The reason we put |- | outside the ¢(/2(r))
is that it will keep our notation and some of our arguments simpler. The squeamish
can always pretend that the class we are dealing with is the subclass of F [ITH:T : (wit)

of machines with #’s of the form g(2'*!).

Definition VI.A.2 Let = be a set of iterm. We define F P (wit.|r]) to be the
class of multifunctions computable in polynomial time with fewer than O(|((h)})
witness queries to a L¥-oracle where € is a fized term in T and h is an Ly-term

that depend on the multifunction being computed.

The way in which this definition differs from that of Remark [.B.1 is that
here |7| is a set of terms and the bound on the number of queries might be differcnt
for two inputs of the same length; whereas, in the remark there was a single bound
of the number queries which was a function of the length of the input. we write
F P (wit, {|¢]}) rather than F P=(wit, |€|) to make this distinction clear. In the
case where |7| consists of only one term |¢] we write F’ P=l (wit. {|¢|}) rather than
F P=!(wit, |¢]) to make this distinction clear. Given the restricted nature of the
class F [|'1'|]2Z é’(wit), the next result, which is based on a result in [16]. is somewhat

surprising.
Theorem VI.A.3 (i > 1) The following equality holds:

FlIrll (wit) = FPZ (wit, |7])
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Proof:  Given any machine M in F [|T|]§f(wit) it is not hard to construct a
machine NV in FPZf (wit, |7]) which accepts the same language. First. on input .r
the machine computes ¢ - |¢(h(z))|. where € is a term in 7 and A is in L. and then
begins simulating A/. After M halts. it writes as its output the contents of the
first block of M'’s oracle tape.

On the other hand suppose M isin F PZi (wit. |7|) with number of queries
bounded by c-|¢(h)| for ¢ € T and h € L,. We may assume without loss of generality
that A/ is a two tape machine and when A/ terminates the output of A is all that
remains on M’s worktape. Consider the following procedure on an F' [Irl]f z‘(u'it)

machine V.

Input z2 /+ on query tape.x/

Forj =1,...(c- |[¢(h{z))]) =1
/% ¢ - |¢(z)] = max. # of queries in M. This counter is
implemented on the work tape. The stepping and writing below are for
the query tape.*/
If j # 1 then Step Right.
Write 1.
/* N's £F oracle answers the question:
“Is there a valid computation of M on the input r with
the first j queries answered by the string to the right of the 27"
Remember: There is a query whenever there is a write to the query
tape.x/
If oracle head = 0 Write 0

End For

We choose our oracle such that the encoding it uses for each step of M’s

computation has length 2{¢(h(z))|” where the first |€(h(x))|" blocks are used to
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encode the contents of A’s work tape; the second [¢(h(z))|" squares are used to
encode the state of M’s oracle tape. We also requirc that the encoding of steps
of M is from right to left so that the last step of M’s computation appears to the
right of the first square of the oracle response tape. We then use |¢(h(xr))|" as our
block size for N'’s oracle tape. The output of the above F [|T|}§ Y (wit) machine N
will thus be the final contents of the work tape of a valid computation of A/ on

input z. i.e., the output of the machine M. &

VI.B Defining machine classes in prenex theories

We now use Theorem VI.A.3 to show T3 can £¢_ -define the functious in
F PE! (wit. |7]). Notice this will show EBASIC can vt -define the multifunctions
t+1

in F P (wit.1) since Ty® = EBASIC.

Theorem VI.B.1 (i > 1) The theory Ti™ can £ . 1-define the multifunctions in
the class

FP% (wit, |7]).

Proof: By Theorem VI.A.3. it suffices to show TE7 can ¥%_ -define any machine
in F[]Tl];:f(wit). Let M(z) be a machine in the class F[Irl]gf('wit) that uses a oracle
Q(q) and runs in time c- |é(h)| for € in 7. Without loss of generality. we can write
this ¥¥-oracle as (3z < t(q))B(z,q) where B € I, and ¢ € L,.

An instantaneous description (ID) of a configuration of M is a 7-tuple
(the notion of 7-tuple can be easily defined using composition of ordered pairs) of
the form:

W
(u,r,0,w,t3,t; ,tp)-

Here u represents the state of M, r represents the input. o represents the first
square of the oracle response tape, w represents any witness returned by the oracle.

t9 is a number which after deleting the most significant bit represents the contents
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of the oracle query tape to the left of the 2. t% is a number which after deleting the
most significant bit represents the visited squares to the left of work tape head.
and t% is a number which after deleting the most significant bit represents the
visited squares to the right of the work tape head.

Following [16] we define a precomputation of M to be a sequence of
configurations of M’s execution with respect to an unspecified oracle. We can put
an upper bound on the size of an ID based on M ‘s runtime and use this upper
bound as a block size in our encoding of this sequence. We access this sequences
elements with the 3 function. A precomputation specifies that the first /D of M

must be of the form:

(1.2,0,0,1,1,1).

It also specifies that each ID must follow from the previous according to M:
however, when M enters a query state by performing a write, the next ID can
have either 0 or 1 as the oracle response and if 1 is the response it can have anything
for the witness. Since M'’s runtime is less than c - |¢(h(z))| for some 7-term ¢. and
L,-term h. we can write a formula checking if a number codes a precomputation
with a single quantifier of the form (Vj < ¢ |¢(h(x))I)-

A Q-computation is a precomputation in which the 1 answers are correct
for the oracle Q but the 0 answers are not required to be correct. We define

QComp},(w.z,v) to be the following formula:

QCompi,(w.z,v) := w is a precomputation of A/(z) and
(Vj < c-|e(h(x))])(YAns(w, j) & Bit(c- [€(h(z))| = J.v) = 1)
and (Vj < c- [€(h(2))])(Bit(c - [¢(h(z))| = j,v) =12

CorrectYes(w, j))

Here YAns(w,j) says the first oracle square of the jth ID in precomputation w
was 1. It can be defined with an open formula using 3 and using projections
of the pairing function. CorrectYes(w.j) is just the predicate B(z.q). where ¢

is the contents of worktape 1 at time j and z is the minimum of t(¢) and the
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witness on the oracle tape at time j. Both z and ¢ can be defined as Lj-terms
so CorrectYes(w, j) is a I12_,-formula. Hence. QComp}, is provably equivalent in
T&™ to a [1?_ -formula. Since the number of distinct /Ds in a computation of M

on input z is bounded by c - |¢(h(z))|. v in QComp}, can be bounded by
2N < (¢(h(2)))H < £(h(a))

where ¢ is a 7-term. This will also bound the number of potential queries. An
A-computation w can be bounded by an L,-term t dependent on the length of
Af’s IDs. Since these I Ds contain oracle witnesses t need not be sharply bounded.

As QComp}, is provably equivalent to a [1?_,-formula, we know
¥ := (3w < t)QComp),(w, z.v)

. . - - 1. .
is provably equivalent to a St formula. Now 7,7 can prove there is a precom-

b_
putation of r with all the oracle answers 0 using INDj},. Lemma II.C.4. and

Lemma II.D.1. So T;T proves (Jw < t)QComp},(w, z.0). Let A(u) be the formula
(v < £(h(2)))(Bw < t)(QComp} (w, r.v) Av > u).

We thus have 4(0). The formula 4 is provably equivalent to a i?-formula. SO
using IV D’ axioms which are provable in Ty by Theorem ILG.7. we either have

A(l'(h(x))) or
(3u < €(h(z)))(A(u) A ~A(u + 1)).
Hence, we can show there is a maximum value v < ¢'(h(x)) for which
(Fw < £)QComp,(w. T, v)

holds. All of the 1 answers in v must be correct since QComp}, holds. We argue
that :i";'" can prove all the 0 answers must also be correct. Suppose the jth 0 was
incorrect. We could then change it to a 1 and set the lower order bits to 0. thus.

making a number v’ > v. Now from JwQComp?,(w. x, v) we can show

Tgl'r = (Ew’)QCompf{,(uz’, .t
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by letting w’ be w up to the jth query, then coding a 1 with a valid witness on the
response tape for the jth query and then coding M's computation where all the
answers to subsequent queries are 0.

Therefore, T,” proves M(z) has at least one computation with correct
oracle responses. Define the function Output(w) which when given a precomputa-
tion w outputs the contents of the first block of the witness string using pro jections

of the pairing function and MSP. So for i > 1 the theory T_ﬁ" can prove:

(Vz)(3y)(3v < € (K ()
(3w < t)(Output(w) =y A QC’ompf\,,(w,r, v))
A=(F' < O (K (2))(Fw' < ) > v A QComp), (w'. r.t")]

Further the formula inside the scope of the (Jy) can be put into the form of a

—_—

E?H-formula using Theorem II.G.12. Remark II.C.7. and Lemma I1.C.6. c

VI.C Query definability

To prove the converse of the above theorem we would like to know that
47 can vt  -define the composition of F P! (wit, |7|) functions and that we can
define this composition in a “nice” way. First, let us be a bit more precise in our
definition of “nice”.
Definition VI.C.1 We say a multifunction f(z) =y is Q"7 -definable in a theory

T, if there is a formula of the form

B(z,y) := (Fv < (s(2)))[(Fw < t)(Out(w) = y A A(r. w.v))

A=(F' < €(s(x)))(Bu’ < t)(v' > vA Az, w'. )]

where A is a TI%_,-formula, Out(w). s are Lo-terms, and € is in 7 such that N |=

B(z.y) © f(r) =y and T proves (Vz)(3y < t)B.

A variant of Q“7-definition (also called query definition) was first given
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in the Buss paper [14]. Since the formula inside the scope of the (3y < f) is
provably equivalent to a Sf -formula in TQ‘T the multifunction f(r.y) will also
be ¢, |-defined in T5™. The proof of Theorem VI.B.1 shows the multifunctions in

FPE (wit.|r|) are Q""-definable in L.

Lemma VI.C.2 (i > 1) The theory Ty" proves its Q" -definable multifunctions

are closed under composition.

Proof:  Suppose f and g are Q"-definable functions in Tz” Let f be defined

by proving in Tj' the following formula Bj:

(vx)(3y < t7)(3vy < Ep(sp(0)))
(Bwf < tf)(Outf(wf) =yAN .-lf(.'L‘. wy, L'f))

A=(Fv) < €y(s(x)))) (3w} < ty)(vy > vy A Ap(e. wh. vp))]-

and let g be defined by proving in T57 the formula B, similarly. To define h = gof.
2 g

consider the formula Cp:

(V) By < t5)(3ey < 45(5()))) By < Lo(39(2)) By < 1)
(w, < tg)(Outg(wy) =y A Ap(z, wy. vp) A Ag(Out(wy). wy, tg))
A (3v} < Usp(x))) Fuy < €o(54(2)))) (T < £7)(Fwy < L)

(vy > vV (Up =g A Uy > vg)) A Af(z. wh. vy) A Ag(Out(wh). wy. vy))].

Since TQ' proves B, and By, it will prove Cj,. Now Cj, can be converted into the
desired By, using Theorem I1.G.12 and pairing. In doing the pairing we bound the
size of the pair (uy, vg) by (£5(sf) - €g(sg))® then use cond to guarantee vy < (;(sy)
and v, < ¢,(s,). Using product closure this bound can be put in the form £(r)

where ¢ is in 7 and r is in Lo, so the function h is Q" -definable in T,". O

Lemma VI.C.3 (i > 1) The theory T;’T# proves its Q" -definable multifunctions

are closed under BPR;™.
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Proof:  The recursion scheme BPR.‘_,T#| was defined at the beginning of the last
section. Recall a function f is defined by BPR'Z"#5 from functions g. h. F. k. and
rif

F(0,2) = g¢(%)

F(n+1,%) = min(h(n,Z, F(n.%)),r(n. 1))

f(n.2) = F(le(k(n. D)), T)
where r and & must be in L, and ¢ must be in 7#. Let h'(n. vecz) be the multifunc-
tion min(h(n, £,y), r(n,)). This is Q" *-definable by Lemma VI.C.2 provided h.

and r are. Suppose g is defined by proving

(VD) (3y < tg)(Fvg < b(s4()))]
(Fw, < t,)(Outy(wy) = y A Ag(T, wy, vy))
AT, < £y(s4(8))) By < tg)(vg > vy A Ag(T. wy. vg))]-

where £, is in 7% and suppose k' is defined by proving

(Vn. z, )3y < ) (Fow < bw(sw(T)))]
(Bwp < tw)(Outp(wp) =y A Ap(n, T, 2, Wy, vw)) A

"(32);1, < fh:(sh:(i’)))(ﬂw;l, < thl)('U,,l: > v A .—1,1:(71, 2. I, ’lU;l,, l;ll))]
where ¢, is in 7#. Let Af(n,Z, w,v) be the formula

Ag(E, 30, r[,w), B0, [si ], v)) A (V5 < [€(k(n. 2))])

((Aw (G, Outw (B, Ir*], w)), £ B + L, |rl,w), 3G + 1. [sil- s v)

: - 2 ¥ . : -
Since A, and Ay are II2_-formulas, 7,™" can prove Ay is equivalent to a m_-

formula. Using i?—[ ND™ induction on the formula A(u) defined as

(Fuy < 2+ (E(sh)#w (k) By < 2+ (r"#Ew (K)))(Af(z wp.vp) Avp > w)
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as we did in Theorem VI.B.1. Tzi’r# can then define f in by proving

(Vn.z)(Jy < r)(Fv < 2- (&(sh)#4(K)))]

(Fu; < 2- (F#E(K)(Outs(ws) = y A Ap(z. wp.vp)) A

(30 < 2+ (G (s )l () By < 2+ (P #w (B)) (0 > v A Ap(e. . e,
Here Out; (1) is Outy(B(|tw (k(n. ). |r*], ww)). Since k is in 7%, it will also be

the case that 2 - (€(s},)#€&w(k)) is in 7#. O

The next lemma can be proved in the same way as Lemma [TL.A 4.

Lemma VI.C.4 (i > 1) The theory T proves its Q“ 7* _definable multifunctions
are closed under the following type of recursion:
F(0,2) = g(2)
F(n+1,%) = min(h(n,Z, F(n,f)),r(n 7))
f(n,%) = F(min(n.{(t(n.L))).7)
where g and h are in B, r and t are in Ly and ¢ is in 7.

The pairing function and 3-functions of the last chapter are computable

in F P (wit, |7]). So they will be Q*-definable in T3".

VI.D More witnessing arguments

We now carry out a witnessing argument to prove the converse of Theo-
rem VL.B.1. To do this we will use the same form of witness predicate as in the last
section, except we will be working with _IJ_I—formulas and so we will use predicates

of the form Wit for A an EX!, -formula.

Theorem VI.D.1 (i > 1) Suppose T;" =T — A where T and A\ are cedents of
LESt U LSt formulss. Let @ be the free variables in this sequent. Then there us

a FP= (wit. |7]) multifunction f which is Q7 -defined in Ti™ such that:

To b WithEl (w, @) D Wit (f(w. @). @).
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Proof:  This is proved by induction on the number of sequents in an T_;T proof
of T — A. By cut elimination, we can assume all the sequents in the proof are
in LESY | U L%!. In the base case, the proof consists of an EBASIC axiom. a
logical axiom, or an equality axiom. In each of these cases the witness predicate
is the original formula. So we can choose f to be the identity function. To define
f for logical inferences, cut inferences, or for the structural inferences is the same
as in witnessing argument for the i?-deﬁnable functions of Tz" The (F:right) and
the (V:left) case also remain the same as in the witnessing argument in the last

section. We prove the remaining cases.

(3:left case) Suppose we have the inference:

b <t A(b),[—=A
3z < H)A(x). T—=A

By the induction hypothesis there is a Q*"-definable g in F PE (wit. j|) such that
Ty™ b Withetaap(w. @ b) D Witi{(g(w. @.b).a.0).

There are three subcases to consider. In each case, we need some way to determine
a value for the free variable b and then run g using that value. First. suppose

(3z < t)A(z) isan E Zf . -formula. In which case, if w is a witness for
(3z < t)A(x) AT,

then 3(1, 3(1,w)) is a value for b such that A(b) holds and ;3(2. 3(1. w)) is a witness

for A(b). So let our new witness function be
Flw,@) = g({{0. (2, B(L,w)). 82, w))). & A1 B(L ).

[t is casy to see that

T, F Wit anp(w-@) O Wit 5 (f(w.@). ).
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In the second case suppose (3r < t)A(z) is an E¢_-formula. If w is a
witness for (3 < t)A(r) AT. then 3(1.w) is a value for b such that A(b) holds.

Let our new witness function be

f(w. @) = g({{0.0. 3(2. w))). & (1. w)).

[t is easy to see that
T3'™ F Wit aar (w. @) D WitiN (f(w. ). ).

The last subcase is when (3z < t)A(z) € LY or (3r < t)A(x) € LE .
In this case we define f to be the same as above except rather than use 3(1.3(1. w))
or (1, w) to give a value b we instead use the multivalued function which queries
a witness oracle about (3z < t)A(z). If the latter is satisfiable then the oracle will

return a value satisfving it. Notice 3(1, 3(1,w)) in f would in this case be null.

(V:right case) Suppose we have the inference:

b < t.T—>A(b), A
T—(Vzr < £)4(z), A

By the induction hypothesis there is a Q' -definable g in F P (wit.|7]) such that

T37 b Wityhy o (w, @ b) D Withis(g(w. . b). @.b).

By cut-elimination, (Vz < t)4(x) € LIT®. Thus, (3r < t)=A(z) is a Tf-predicate.
So we ask an oracle for this predicate for a value b < t such that —=(A(b)) holds.
If such a value exists we set f(w, @) = g({0, w),@.b). If no such value exists we let

F(w.d) = (0.0) since (Vz < t)A(z) would in that case be a valid LIT’-formula.

(S6-INDT case) Suppose we have the inference

A(b), T—A(Sb), A
1(0), T = A(U(r(c,a))). A

where ¢ is in 7 and r is in Ly. By the induction hypothesis there is a Q" -definable

g in FP¥ (wit, |r|) such that

T37 = Wit (b)/\[‘(u’ b,a) O W zt‘:Ele valy(w.b.@).b. @).
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Let f be the F P (wit,|r]) function which does the following: First. f computes
v = €(r(c, @) and makes the query [4(v)]? If the answer is *Yes’ then f outputs a
sequence of zeros. If A(v) is valid any value will witness it and hence the succedent
will be witnessed. If the answer to the query is ‘No’, f makes the query [4(0)7].
If it receives ‘No’ as a reply it outputs 0; the antecedent will be false.

If the reply was "Yes’, then f performs a binary search for a value d<r
such that A(d) holds but A(Sd) does not. This takes |v| many queries to an oracle
of the form (3i < ¢(r(c.a)))(i > dA A(d)). Using pairing this predicate is provably
equivalent to a £i-formula in 73". The theory 757 can prove using SOAANT
axioms that there is a maximal d satisfying the above formula. So it can prove
the d found by this binary search will be such that .4(d) holds but A(Sd) does
not. Using this value of d. f can run g(w, @, d) to get a witness for the succedent.
This step involves only a composition of Q' -definable functions in F P (wit. 7).
Thus,

[T - Wit (0)/\[‘(“ @) > Wit (e(r))v_\,(f( a).d).

This completes the cases remained to be shown and the proof. o

Theorem VI.D.2 (i > 1) Suppose T' birl = :"‘2"'*'1’11#I FT — A where [ and A
are cedents of LET, 1-formulas. Let @ be the free variables in this sequent. Then
there is a FPE (wit.|r#|) multifunction f which is Q' -defined in f_,i"'# such
that:

T - Wittt (w, @) D With (f(w. @), ).

Proof:  This is proved by induction on the number of sequents in an T
proof of ' — A. By cut elimination, we can assume all the sequents in the
proof are in LEL! 1~ All of the cases of the witnessing argument except for the
(Sb, -IN D!} case can be handled in the same way as Theorem VL.D.1. e now

show how to do this last case
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(b, -INDG™) case) Suppose we have the inference

A(B).T—A(Sb), A
A(0). T=A(Jes)]). A

Here £ is in 7# and s in L,. By the induction hypothesis there is a Q% -definable
g in FPE (wit., (|7#])) such that
To™ b Withih o (w,b,8) D Wit 5,1 (9(w, b.3).b.d).
Using Lemma VI.C.4, Q"*-define the function f by B PR,(ZI‘;” in the following way
F0.w,@ = (8(1,w).0)

) = min(g(F(b,w,@),w,a.b).tyav.)

Qf

F(b+1,w,

Define f(u,w,d) := g(min(u, |€(s)]), w. @). Recall tyav. is the term guaranteed to

hound a witness for A(Sb) V A by Lemma V.A.2. It is easy to see
To™ B Witd oo (w, @) D Wit (f(0,w.d).@) (VL1)
Also. it is not hard to show

T b Wit o (w. @) A Wity (f(b.w,@).0.@) (V1.2)

D Wit Ly a (f(Sb.w. ). $b.@

S
o
—_

—

.

—

(W)
=

We would now like to show this implies
i, 7% it — i - =
T, F W ztA((l))M.(w,a) oW Zt.4(|1l(s)[)vA (|¢(s)|, w, @). a@).
To do this we Q“"*-define a function h by BPRY™ in the following way:

HO,w,d) = f(0,w,d)
Hb+1,wad) = fb+1w,a)- 20" avase + H(b w. @)

h(leGs) w.@) = H(t(s)].w,a)

We have deleted min’s from the above recursion for readability sake. It is not

hard to come up with terms to bound the above sum. Now let By(w.d. u') be the
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formula which Q“*-defines h. Then from (V1.1) above
T & By(w,@w') AWt o (w. @) AWt (36| 5y 4l v b.)
D Wit gy a (3(Sb. [t vl w). Sb.0)
By [1-IND™ on
Wity a (B0 [£ay.al- w).0.0)

a [1®-formula and (VL.1), this implies

T2 F Bu(w, @ w') A Wity (. @) D

Wit v BUEE)L [ svah @), 16610
Hence, from the definition of A, the theory Tg'f# proves the desired

Ta™™ b Wit (w, &) D Wity pva ()], w. @). @)

{1

This completes the proof.

VI.E Implications of the witnessing argument

We end this section with a series of corollaries which we can derive from

the above results and those of the last section.
Corollary VLE.1 (i > 2)
B 2 T =1

By choosing T appropriately, we thus have:

(i>m>j>0or(i>m=j=1)
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4- T-;.In.j jih T::.m.

1=3+1 -

Proof: Suppose 1™ = Tzi'”#’ proves A(@). Then by Theorem VI.D.2 we have
Tzi—l"'# proves Wit} (f(w. @), @) where f is an F P (wit. |7#|) multifunction. So

. ~i—1.T#
by Lemma V.A.1, the theory 7, """ proves 4.

(1) This follows if we choose 7 = {id}.

(2) This follows if we choose 7 = Term>'. Recall Ry is
EBASIC+Sb_-INDTerm:"

(3) This follows if we choose 7 = Termj*. Recall T3™ is
EBASIC+Xb_-INDTerm:™

(4) This follows from (3) since

i, J pimg—1
T;z jfﬁ@ 2 J fi:b ,

t—j)+1 i—-j+2

T .‘ VO r '7
jéb Tzl m - Tzl m'
1

By logr we mean log, z. We write log™ n to denote

m

loglog - - -logn

and we write log!® n to just denote n where n will usually be the length of an

input to some function.

Corollary VI.LE.2 (i > 1)
A multifunction f is 2'1’ . -definable in T;T ioff f is computable by a mul-
tifunction in F P (wit, |7|). By choosing T appropriately, we thus have:

(i>21,m2>0)

(a) A multifunction f is §?+1-deﬁnable in T} iff f is computable by « multifunc-

tion in F PE (wit. poly).
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(b) A multifunction f s i??l-deﬁnable in S5 iff f is computable by a multifurnc-

tion in F P (wit.log).

(c) A multifunction f s ‘2?+1-deﬁnable in R}z iff f is computable by a multifunc-
tion in F PEi (wit, loglog).

~

(d) A multifunction f is §?+l-deﬁnable in T;"" iff f is computable by a multi-
function in F P (wit. logt™).

(e) A multifunction f is ifﬂ-deﬁnable in T.j'”’m for m > 0 iff f is computable

by a multifunction in F P (wit, (log™~1)om),

(f) A multifunction f is f’.f_j+l-deﬁnable in To™ and o™ fori>m>j>0

iff f is computable by a multifunction in F PS?—J(wz't, [Term;"‘j ).

(g9) A multifunction f is i?H-deﬁnable in EBASIC iff f is computable by «

multifunction in FPE (wit.1).

Proof:  For the ‘if’ direction we use Theorem VI.B.1. For the other direction
consider the Theorem VL.D.1 when we take I’ empty and A\ to be an EX?, |-formula
(3y < t(r))A(z,y) provable in T37. Then we get that there is a Q*"-defined (and

hence. FP¥ (wit.|7|)) multifunction f such that

7 F— Wit Yz, f(z))-
Given the definition of witness we thus have

Ti™ b= Az, B(1. f(x)).

The other results follow from the T3 result, the definition in Remark LB.1. aud
Definition VI.A.2. We are making use of the fact that |z|,, is in 8(log" ™" (11])).

ad

Statement (a) in the above corollary was essentially known from Buss [14]

and statement (b) was known from Krajicek [34].
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Corollary VL.E.3 (i > 1) The following equality holds:

B/, , = FP= (wit, |r#|)

1+

Proof:  We know T4 = 3070 = 747! by Theorem ILG.7. The £2.,-definable

multifunctions of T;H"Tl are BE_‘LQ from Corollary V.B.3 and the £%_ -definable

multifunctions of -2'.‘:1‘:7#; are the same as those of T;'T# by Corollary VLE.L.
Together with Corollary VI.E.2 this implies the result. &

Corollary VILE4 (i >2,i>m > j > 0)

1. A multifunction f is a E?-deﬁnable in T2” iff there is an (Fng)—l (wit.1).7)-
local search problem P in T;T such that 3(1,0ptp(c)) = y if and only if
flz)=y.

i n

2. A multifunction f is a ¥2_,, ., -definable in fimm=l gnd Ty™ if and only if
there is an (F P=-m(wit. 1), Term3"™ ')-local search problem P in Ty

such that 3(1,0ptp(z)) =y if and only if f(x) =y.

3. A multifunction f is a }:‘_.ﬁ-’-deﬁnable in T} and fj’l’l if and only if there is an
(F PE-1(wit, 1), {id})-local search problem P in T} such that 3(1. Optp(r)) =
y if and only if f(z) = y.

4. A multifunction f is a »t.definable in R;“ and R5*" = T.Zi*l'z'l if and only
if there is an (F P=-1(wit, 1), Term2")-local search problem P in RSN such

that 3(1,0ptp(x)) =y if and only if f(z) =y.

Proof: Recall from Chapter III that B;s = Bllcél Hence. with Corollary VI.E.3
this implies B;s = F PE-1(wit. 1) provided i > 2. The above results then follow

from Corollary V.B.3 and the definition of (B; . 7)-problem. C
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Corollary VI.LE.5 (i > 1) The Al -predicates of T37 are the class P=(|7]). By
choosing T appropriately, we thus have:

(i>1.m2>0)

(a) The Al -predicates of Tj. S5, and R: are the classes P, P¥!(log). and

P (loglog), respectively.
(b) The A, -predicates of T;™ are the class P= (log™).
(¢c) The Ab-predicates of T,™ where i > 1,m > 0 are the class
P-4 ((log™")%W).
(d) The iﬁ-’_j +1-predicates of Tz'"” and Tz”" where t > m > j > 0. are the class
PE- (|Termi)).
(e) The i?+l-predicates of EBASIC are the class P%' (1) where we allow a ma-
chine in P (1) is allowed O(1) many queries to a ¥-oracle.
Proof: Suppose f € P=(|7]). Since
PE(|7|) € FP= (wit.|r]).
by Theorem VI.B.1, T4 can £, -define f. Hence, T, proves
(Vz)(Jy < 1)As(z.y)-

where Ay isa Sf .-formula. The theory T_fT can prove the formula (3y < 1)A4,(r. y)
is equivalent to

(Af(.’l,', Hoy=1)A (.-1/‘(.’11, 0)Dy= 0)

which by Theorem II.G.12 is provably equivalent to a l:IﬁJ .-formula.

On the other hand suppose A is Ab .1 With respect to T,7. Let Ay be the

vt -formula to which 4 is equivalent and let Ay be the 1%, ,-formula to which A

is equivalent. Consider the formula B(z,y),

(mAn(@) Ay =0)V (de(z) Ay =1).
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Certainly, the theory TQ” proves (Vz)(3y < 1)B(z.y). By Remark IL.B.1 and

Theorem I1.G.12, the theory T, proves (3y < 1)B(z.y) is equivalent to a ESY, -
formula. So by Theorem VI.D.1 there is a F PE (wit. |7|) function g such that
T3 = With(z. g(x)).
Given our definition of the witness predicate this implies
Ti7 + B(z. 3(1, g(2))- (VL4)
Let f(x) = 3(1.g(x)). Since g is Q*"-definable, the theory TZ” proves f can be
defined in the form
(Vz)(3y < t)(3v < €(s(z)))[(Fw < 8)(8(1, Out(w)) = y A C(r. w. 1))
A=(T' < U(s(z)))(Fw’ < )" > vAC(z.w'. )]
where C is a i?-formula. Out. s are Lo-terms (Out is supposed to return the output
of g) and ¢ is a #-term. From the definition of B, we have flz)=1¢& B(x.1) &
A(z). We claim f(z) = 1, which is just the predicate,
(Fv < €(s(x))[(Bw < 1)(B(L. Out(w)) = 1A C(z.w. )
AT < 0(s(2))) (B’ < ) > vAC(z, W' '))]
is computable in P= (|7|). This follows because the formula inside the scope of
(Jv < ¢(s(x))) is the conjunction of a formula provably equivalent to ‘f.'{-formula
with a formula provably equivalent to a I:I?-formula. Thus, with O(|¢(s(x))|) queries

to a TP-oracle one could search for a value that satisfied the first predicate inside

the (3v < €(s(x))) but did not satisfy the second. !

The Si and T} statements in the last corollary were known from Buss {14]
and Krajicek [34]. An easy observation from the proof of Corollary VL.E.5 is the
following:

Corollary VI.E.6 (i > 1) The theory T3" proves its Ab, | -predicates can be writ-

ten in the form

(Fv < {(s(x)))[A(z.v) A=B(z,v +1)].
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where A and B are ‘_:?-formulas and  is a 7-term and s is an Ly-term.

(a) The theory S} proves its Af 1 -predicates can be written in the form
(3v < p(Is(2)))[A(z-v) A =B(z. v +1)}.
where A and B are F‘,?-fonnulas and p is a polynomial and s is a term in L.
(b) The theory R}Z proves its A?+1-predicates can be written in the form
(Fv < p(|Is(2)I)) Az, v) A =B(z,v + 1)]-

where A and B are i?-formulas and p is a polynomial and s is a term in Lo.

(¢c) Fori > 1.m > 0, the theory T;"™ proves its Ab . -predicates can be written in

the form
(v < p(is(@)|m)) Az, v) A =Bz, v+ 1]

where A and B are i?-formulas and p is a polynomial and s is an Ly-term.
(d) Provided i > 1.i > m > j > 0. the theory T.;""'j proves its i\?_1+1-predicat(z.s
can be written in the form

(Fv < €(s(z)))[A(z.v) A =B(z.v + 1)].

where A and B are L-formulas and € is a Termy ™ -term and s is an Ly-term.

(e) The theory EBASIC proves its _Xf . 1-predicates can be written in the form
VE_o[A(z,v) A ~B(z,v +1)].

where A and B are 38-formulas.
Proof: From the proof of Corollary VI.E.5 every Ab . 1-predicate in T,7 is equiv-
alent to a formula of the form

(3v < €(s(z)))[(Fw < £)(8(1, Out(w)) = 1 AC(z. w.v))

/\ﬁ(:_:w, < E(S(IL‘)))(BUJJ < t)(‘l." SUA C(-L u}l’ 'L"))]'



where C is a £-formula. The above formula is in turn provably equiavient to
(Fv < €(s(@)[(Fw < 1)(3(1. Out(w)) =1 A C(z.w. v))
A=(F' < €(s(x)))Fu’ <)V 2 v+ 1AC(z.w'. "))
Set A(x.v) to bea i?-formula provably equivalent to
(Fw < t)(3(1, Out(w)) = L AC(z, w, v))
and set B(r,v + 1) to be the ﬁ?-formula provably equivalent to
(F' < O(s(x)))(F’ < t)(v' 2 v+ 1AC(z. w'.v')).
This then gives the corollary. a
Corollary VI.E.6 is similar to a result of Buss Hay [10] where they show
the predicates in 2, N I, , equal the class P%(log) and can be written in the
form (3v < |s(z)])(A(z,v) A ~B(z.v)) where A and B are ©t. The S} case of

our result shows the A%,  -predicates of S which are the P (log) relations can be

written provably in this form in Si. This is a somewhat different statement.
Theorem VI.LE.7 Fizi >l andlet - A bea Ll:If_l-sequent consistent with

T;7. The i?ﬂ—deﬁnable multifunctions of Ty™ + {T — A} are precisely the class
FPE (wit.|7]).

1

Proof: The argument is essentially the same as Theorem V.B.6.

Remark VI.E.8 The results of this section generalize in a straightforward to
the theories T,:‘T for k& > 2. Using the same proof as in Theorem VL.B.1, we can
st | c-define F[|7'[]ké?""(wit) machines in 7. An F[lrl]f?'“(wit) on input - runs
in time O(}€(s(«x))]) using an oracle for a i?'k-set, whiere s is an Lg-term and ¢
isin 7. In terms of quasi-polynomial computations, using the same proof as in

Theorem VI.A.3 one can show

g £t
Flmile " (wit) = FP " (wit, |7]).
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where an F Pf g“'(wit,h‘l)-computation on input r runs in time |s(r)| for s an
Li-term and can make O(€(|t(z)|)) queries where ¢ is an Li-term.

The witnessing argument and its corollaries also go through using the
same proofs as above, thus, showing that the xb 1 £-definable functions of 1.7 are

)
precisely the class FP, "*(wit, |7]).

Remark VI.E.9 Given the above remark. it is not hard to use Corollary VILE.1

to show for i > 1 and k > m > 0 that

Tim <5 T,;i,i e (VL3)

mll

This will be true since for such k. |Li42|m terms and Term," terms will have

the same growth so

__ gi+lm+l, l
T k+2

Yet. the generalization of Corollary VI.E.1 implies

z+lm-rl 1 i+, m+l
T.- <& S T,y

One other observation: in [16] it was shown that Sj < Ry by
(V1.5) above we have S} < Sev Ri*Y; thus, we also have R_f,“ X R‘*'. In

Chapter VIII we will show for & > 0,

i+1 i+l
Rk~2 =2t 3 Ry



Chapter VII

Applications of the witnessing

argument

In this chapter we give some applications of the witnessing argument with

respect to prenex theories.

VILLA The ¥, ,-definable multifunctions of prenex theories

We begin by briefly discussing the vb,  -definable multifunctions of the
theories T_i’ where k& > 2. To make sure the reader is not confused by indices we
emphasize we are talking about £, ,-definability not £ -definability.

The first thing to notice about the X2, -definable multifunction of T,7 is
that since EBASIC is contained in all of these theories, these theories can at least

vt ,-define the multifunctions in the class F Psfﬂ-l(wit. 1). The second thing to
notice is that FP= (wit, |7|) is contained in FPSe-1(wit. 1) for k > 2. This is
because with a single query to a f_| witness oracle one can ask for a witness of
the sequence of steps in a computation of an F PE(wit. |7]) machine }/. Then
using this witness one can read off the final output of 3.

Now consider what happens with the witnessing argument for a proof of

a sequent of LEiI? o U LEb-formulas T — A in the theory T57. All of the cases

can be handled as in the EBASIC = T._f“kd version of Theorem VI.D.1 except we

114
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now also have a ¥8-IN D" inference case. Recall how this case was handled in the

T3™ version of Theorem VI.D.1. Given the inference

A(b),T—>A(Sb), A
A(0), T=A(¢(r), A

where ¢ is in 7 and r is in Lo, one uses an F' P (wit, |7|) machine to binary search
for a value ¢ < #(r) such that A(c) holds but A(Sc) does not. This machine
was then composed with the machine that would provide a witness for the top
sequent. Now by induction we can assume the top sequent can be witnessed
with a function in F P+e-1(wit.1). Since FPZ (wit.|r]) is contained in the class
F P¥+e-1(wit. 1). this whole case can be handled by a machine in FPE-e-t(wit. 1),

Thus, the following witnessing theorem goes through.

Theorem VII.A.1 (i > 1.k > 2) Suppose Tf_IT FT = A\ where I and N\ are
cedents of LEE:“’I-’ ok U Li?-formulas. Let @ be the free variables in this sequent.

Then there is a Q"'-definable in To" F P2f+k-l(wit, 1) multifunction f such that:
Tom = Witk (w, @) D With¥ (f (w, ). @)
When i = 0 there s a FPXZ-l(wit, 1) multifunction f such that

N | Witk (w,d) > With \(f(w.@).a).

For the i = 0 case we can certainly perform the above witnessing with a
multifunction from F P¥k-1 (wit, 1) (the induction case can be handled by a function
in FP since these will all be subtheories of S}); however. it seems difficult to prove
in 7y"". From the above theorem the next theorem and its two corollaries follow

by the same type of proofs as in Chapter VL.

Theorem VIL.A.2 (i > 0,k > 2) A multifunction f is a iLk-deﬁnable maulti-
function of Tz“' if and only if f is in the class FPSf?k—l(wit, 1).
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Corollary VIL.A.3 (i > 0.k > 2) The Ab,, -predicates of T,™ are preciscly the
predicates in PSiee-1(1).

Corollary VII.A.4 (i > 1.k > 2) The theory Ts" proves its Ab_, -predicates can

be written in the form
" o[A(z. v) A =B(z. )]
where A and B are £, _,-formulas and p is a polynomial.

It should be stressed that although EBASIC. THM and T;7 all have
the same %} +k—deﬁnable multifunctions, it does not seem to be the case that cither
EBASIC or Tg’m can carry out the witnessing argument needed to show they have
the same £ . x-definable functions as T5". This is because neither of these theories
seems to be able to simulate the £%-IND™ case of the T, witnessing argument

which required £2-IN DT to prove.

VIL.B A strengthened conservation result
We begin with the following result.
Theorem VIL.B.1 (i > 1,k >0)

+1 : ik
(a) The theory T’ i) is conservative over T, with respect to Boolean com-

binations of _,i?l‘,ﬁ,.z-formulas. That 1s,

i ~i+1,(i71)
TI.+2 —B(z_)) Tk+2 :

(b) T; 2 —=B(£%)) 55“-

(C) 53 B(\*b 13) R;+l.

i, ri+l,m+1
(d) T <gigs  Teoy™

T+1k2)
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Proof: (a) Suppose (@) is a Boolean combination of T8 poo-formulas provable
in T"'l ”TD Then A is tautologically equivalent to a formula of the form A, V, Ay
where each Ap; is either a ZH-[ r+o-formula or a ., . ,-formula. So T,::l,( g
proves each disjunct V,An;. Consider one such disjunct V;4,;. Let An be the
cedent of X2, , ,-formulas in this disjunct. and let I', be the ¥b . ._,-formulas
that are equivalent to the negations of 31 ' 1.k+2-formulas in this disjunct. Hence.
Téié‘“ﬂ) proves ['n = A,. Now this sequent can be proved with a proof such that
all formula are LY, ., U LE%; . By Lemma V.A.1

Tl T#

S ATR D (Fw < tr,) Wit (w. @)

and
1.0 " (Gw < ta,)W it (w.@) D VA,
We can then carry out the witnessing argument of Remark VL.E.9 to show
TiF b (Gw < tr,)Withe (w,8) D (Fw < t4,)WitlH, (w. )
Hence.
T+ Ty = An.
Thus, T35 proves V;4,;. So 375 proves A(@).

The remaining parts of the theorem are special cases of (a). c

The proof of Theorem VIL.B.1 was adapted from the proof in Buss [14]
that
Tzi + zf-REPL jB(S?-H) S‘§+l.

One interesting corollary of the above theorem is the following:

Corollary VILB.2 (i >1,k>m >n>0)

i+n,n i+m,m

= .
Tk+2 B("‘x?ncl L+2) Tk&o

In particular,

i+m.m
Tk—- —B(“"_'_l L+z) Tk+2



Proof: This follows from Theorem VII.B.1 since

ri+n.n ri+n+ln+1
R < s bkl 4 s
Tk"’z _B(S?+n+1.k+'.’) Tk“'g _B(£?+n+2.k?2)
< ’i-{rm—l.m-l_< N ‘i—:-.m.m
—B(EY, no k) TkF2 —B(EY,  sa) Th2

VILC A?_-INDU™

We now give a new proof that S proves A2 -LIND. This fact was
previously shown in Buss, Krajicek, and Takeuti [16] using an unpublished model
theoretic argument of Ressayre that Si+X¢, -REPL{IM!} is Tl-conservative over
Si. We use two known results in our proof: (1) the result of Buss [14] that S} proves
£b, NI, -LIND and (2) the result of Kraji¢ek [34] that the Ab-predicates are the
class P¥(log). Once we have shown S} proves A2 |-LIND we show T3 proves
b, Ay M2, ,-I.NDI™ and use this together with Corollary VL.E.5 and our proof
method for Si to show that 7' proves A?,-I NDU™, As particular cases. this
shows Si proves At -LIND and Rj proves A%, |-LLIND. In Corollary IN.A.3 we
show give a proof theoretic proof that S3+32, ,-REPLU!} is B(T2, | )-conservative
over Si. Together with the A2, -LIN D result this suffices to show S proves Ab -
LIN D without relying on results not shown in this thesis. The R}, result and the

general result were previously unknown.
Theorem VII.C.1 (i > 1) S} proves the A% |-LIND azioms.

Proof: By Buss [14] the theory Sj can prove $¢  NII%,-LIND, and by
Krajicek [34], P=(log) are precisely the A%, -definable predicates of S. Recall
how the proof of this latter fact went. Let 4 be A?,, with respect to Si. Let Ap
be the IT2, ,-formula it is equivalent to in S} and let Ag be the T2, -formula it is

equivalent to in Si. Consider the formula B(Z, y)

(~An(@ Ay =0) vV (Ac(@) Ay =1).
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Certainly, S} proves (VZ)(3y < 1)B(Z.y). Thus, by the witnessing theorem in
[33] (which is similar to the 7 = {|id|} case of Theorem V1.D.1). there is a

F P=(wit, log) function g such that Sit+ Witfaygl) 5(g(F).Z). So by the definition

of the witness predicate,
Sy - With(3(2. 9()). £. 3(1. g(2)).

and also

Si+With(w. %, y) D B(Z,y)
Thus. the theory S} proves B(Z, 8(1.g(Z)). Let f(£) = 3(1.¢(F)). Then Sj proves
f(r) =1 & A(z). This function f can be defined in Si using almost the same
notion of Q¥#}_definition that we used in Chapter VI. That is. it can be defined

with a formula of the form:

(va)(Fy < 1)(3v < plls(z))[(Gw < 1)(Out(w) =y A Az w.v)

A-(F < p(ls(z)]) Gw’ < ) (V' > v A Az, w'. )]

where A is a [T’-formula and where s and Out(w) are Ly-terms. But this is a
V(b NI, | )-formula, so S proves LIN Dj(z)=1. As Si proves f(r) =1 & A(r).

i+l

we also have S} proves LIND . Hence, S} proves Ab _LIND. 5

i+1

We will now make appropriate modifications to the above argument to
show Ri proves A-LLIND axioms and also that T proves the Ab_-I.N D! ™)
axioms. We first show 731" can prove 2, Ny 118, -1 ND'"l axioms. To do this
we need the next two theorems, both of which are modifications of results found
in Buss’ paper [14]. First, we define a type of comprehension axiom for bounded

formulas.
Definition VILC.2 The U-COMPI™ agioms are the azioms COMPL':
(Fw)(Vz < |¢(b)])(a(v,T) & Bit(r,w) = 1).

where « is a formula in ¥ and € is a term in 7.
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Theorem VIL.C.3 (i > 1) The theory To'™ proves the £2-COMP™ azioms.
Proof: Let B(n.v) be the formula

(Fw < 24O (3w’ < 2PV < Jw| = 1)(3(0, |w]. w') = Bit(1, w)A
B + 1, |w|.w') = 33, lwl, w') + Bit(j + 1. w)) A 3(jw| = 1. Jw]. w') =n
A(Vz < [€(b)])(Bit(z, w) = 1 D A(v, z))].
The first two lines of the above equation are used to say w' is a sequence of blocks
of size |w| which count up the number of ‘On’ bits in w and that n is this number.

We note T.zi"ﬂ + B(0, v) and T;’lrl +n > jAB(n,v) D B(j.v). By Theorem ILE.7.

B is equivalent to a ¥?-formula. Further,
T, = B(lE(b)]. v).
so it follows from /N Dg that
TH™ F (3n < |€0)])(B(n.v) A=B(n+1.v)).

So T._f‘m proves there is a maximum value for n such that B(n.v) holds. Thus. the
string w whose existence is asserted for this n will have bit x turned on if and only

if A(e.x). O

We can now use the same sort of speed-up argument as we did with R}

and I1°_ -REPL? to get the following corollary.

Corollary VIL.C.4 (i > 1). Let A(v, ) be a £-formula and r(v) be a La-term

and p a polynomial. Then

T3 F (3u)(¥r < p(16(r)))(A(v, 2) & Bit(z. w) = 1)

Theorem VIL.C.5 (i > 1) T#™ proves £, Ny 1%, ,-INDV. In particular. R}
proves $0_, Ngyigiyy 18, -LLIND.
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Proof:  Using Remark I.C.7. it is not hard to see that any formula A(b. F) in
b

the class £2., M 112, can be put into the form

(@iz1 < p(J6(r)]) -+ (QmTn < Pmll€a(ra)]))B(Ar- - .. 1)

where each 4;isa $b-formula and B(4;.... .. 4,) denotes a Boolean combination of
A,..... A, the ¢s in the above are supposed to be terms in 7. the p;’s polynomial.
and the r;'s are Lo-terms. Without loss of generality we can assume that each term
r; contains only ¥ as variables.

By an easy modification of Corollary VIL.C.4, T.zi"ﬂ can prove there exist

wy. ... .ws such that
vz, < (e (D) - - (VZa < Pallta(ra) ))[Bit((E), ws) & A;(F. )]

Here (£) denotes ordered n-tuple (zy.... ,zp). Thus, given wy.... .w, A is ac-
tually equivalent to a A%-formula. So the theorem follows as T,"™ will be able to

prove I ND!I' axioms. C
The above two theorems allow us to prove that Rj can prove A, -
LLIND axioms and 73" can prove A%, ,-INDI™ axioms.

Corollary VII.C.6 (i > 1) The theory R} proves Ab.|-LLIND. The theories

74 can prove Al -INDI™ azioms.

Proof:  The proof is almost the same as in Theorem VIL.C.1. Given a Ab_ -
predicate B in Té'm, we will have a P=(|7]) predicate f(z) =1 of the form

(Fv < p(|(s(2)))[Fw < )(Out(w) = 1A Az, w.v))

AT’ < p(Je(s(@)D)EFw' L (' > v A Alr, v’ 2))].
where A is a IT?_,-formula which is provably equivalent to B. Thisisa £t NIl -

formula so by Theorem VIL.C.5, T3'™ can prove I ND';;'I)ﬂ. So we have INDy; .
Hence. T3'™ proves A% ,-IND'!. o

Another corollary of the proof of Theorem VII.C.5 is the following:
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Corollary VIL.C.7 (i > 1) The 28 Ny M, ,-formulas are Al with respect to

T.j'iﬂ. The ©¢,, O{jridiny [, ,-formulas are Ab, | with respect to Ri.

Proof:  After substituting the w; for the A; in the proof of Theorem VIL.C.5
the formula is a Ab-formula in T3 So it is equivalent in T to a Tl-formula
or a [T8-formula. Resubstituting 4;’s means T;"T' can prove the original formula

equivalent to a ©¢_,-formula or a ITZ, ,-formula. c

Corollary VIL.C.8 (i > 1) The theory Ty'" proves the ! | N [, -formulas

can be written in the form
@ < p(1€(s(2))))[ Az, v) A~B(z.v +1)].

where A and B are ‘2',—’-formulas and € is in 7 and s is in Ly and p is a polynomial.

Proof:  This follows from Theorem VL.E.6 and Corollary VIL.C.7. ]

It is unknown to the author whether for arbitrary 7. the theory Ty proves
_\.fT -INDT. However. the next theorem gives another wide range of 7's for which

it is provable.

Theorem VILC.9 (i > 1) To* + Ab, -IND™.

-~ . - # ~
Proof: Let A beAb | with respect to T,™ .. Let Az bea v, -formula provably
. o i# 2 . .
equivalent to A in 7, and let A bea I1%, ,-formula provably equivalent to 4 in

. : : :
TH™ . Let ¢ be an iterm in 7. Then the /N D} axiom can be expressed as

An(0) A (Vz < €(b))(Ax D An) D Ax(€(b))

i-+1,|T|

which is a £%, -formula. Since T. roves the A? -IND™ axioms by The-
i+1 2 p i+l
. . 21 REa . . .
orem IL.G.8 it is a consequence T.7"'™. But then by Theorem VILB.L. it is a
q 2

-~ #
consequence of T, . C



Chapter VIII

Prenex replacement theories

In this chapter we investigate the prenex replacement theories of arith-

T}

metic, Co'"\. which we defined in Chapter IL. We will show Cy™ - T, and that

Cy™ is B(X!. ,)-conservative over 471 This same method can be used to show
for i > 1 that oL . REPLI" is B(X?,,)-conservative over 7,75 I par-
ticular, this will show for i > 1 that R5™' is B(X!,,)-conservative over R;'. We
have delayed this chapter until now because our witness predicate will be slightly

different from earlier chapters and we did not want to cause undue confusion by

switching between the types of witness predicate.

VIII.A Preliminaries
To begin we prove the following theorem.
Theorem VIILA.1 (i >0) Ci™ + 731"

Proof: The proof is by induction on i. Since the base case and the induc-
tion step arc similar we will prove both cases simultaneously and indicate any

differences. Let A(z) := (3y < t)B(z,y) be a St formula. We want to show

CH™E A(0) A (Vz)(A(z) D A(Sz)) D (Vr)A(€(x)])



for each term € in 7. Let u be a new variable. By Remark II.C.7.
Ci™ - (V) (A(z) D A(Sz))
> (Vz < |6(u)])(3y < t(Sz))(Vz < t(x))(B(x, =) D B(Sz.y))-
C’;’M can convert the formula inside the scope of the (Jy < ¢(Sz)) into a [1-formula
using Remark II.C.7 and Lemma II.C.6 since B is a I1t_ -formula. So by -
REPLI,
Cill - (Vz)(A(z) D A(Sz)) D
(Fw < 2- (t"#€(u)) (Vz < [€(u)])
(Vz < t(z))(B(z. 2) D B(Sz. 3(x.|t"|. t. w))).
Let f(a.w.b) := cond(a.b, 3(a.|t*|.t,w)). Thus,
CE™ = B(0,b) A (Vz)(A(z) D A(Sz)) D
(Fw < 2- ("#L(w))) (Vz < [€(u)])
(B(z, f(z,w,b)) D B(Sz. 3(x. [t*]. t. w))).
So,
CiM - 4(0) A (V) (A(z) D A(Sz)) D
(Fw < 2 (£"#(u)))[B(0, 5(0, [£°], ¢, w) A (Vz < [€(u)])(3y < #(Sr))
(B(z, B(z, |t*], t,w)) D B(Sz, 3(z + 1, [t*|.t,w)))].
Since B € I1*_, (in the i = 0 case B is open), we can use [12_,-IND'™ (in the base
case we use Open-IND'!), to get
Gl 4(0) A (V2)(A(z) D A(Sz)) D
(Jw < 2- " #€(w) B(€(w)]. 3(|ul, [£7]. £, ).
In the base case we have Open-INDV! axioms in our theory so the above gocs

through. For i > 0 we are justified in using IT2_,-IND'™! by the induction hypoth-

esis and Theorem II.C.1. From this last equation we at last derive

CH™ - 4(0) A (V2)(A(z) D A(ST)) D (Va) A(E(x)]).



The above proof was a modification of the proof in Buss [13] that Sj is
contained in S1+5?, ,-REPL. To show Cy Hrl is B(Et, | )-conservative over T3 we

4™ To do this we need to show the

first show Cy'™ is £8, -conservative over T
class F P (wit,|7]) is closed under a certain kind of parallel computation. This

result is a modification of a result in Buss. Krajicek, and Takeuti [16].

Theorem VIIL.A.2 (i > 1) Suppose f(j, £) € FP™ (wit.||r|]) is bounded by an
Ly-term t*(Z) for each j < p(|¢|) where p is a polynomial and € € 7. Then:

(@) Fpen(E) = 2D £(5,8) - 274 s in F PR (wit. || 7))

(b) Te™ proves B(j.|t°). foqen(@)) = £ 5).

‘_‘ -
5 (wit) machine

Proof: For (a) we can assume that f is computed by an F{||7{];"
M} with runtime bounded by ¢ - [|s(z)||. Such a machine runs oblivious to the
witness strings provided with the ‘Yes’ answers. So the jth query of a run of My
will only depend on the inputs and the previous queries. For the moment fix j
and . For each string of c - ||s(Z)|| possible oracle responses to queries posed by
M;(j. L) there is a different valid precomputation of Mf(j.Z). Thus. there are
potentially 2615l — 1 many different queries that could be posed in any valid
precomputation of M;(i, Z). Thus, for all the j’s less than p({(a)|) — 1 there are
potentially p(|€(a)|) - (2¢5@N — 1) different queries that could be made. One can
put all such potentially different queries into a table indexed by pairs (j. k) where
j < p(|€(a)]) and 0 < k < 2¢1Is@I Let I = |k| -1 and define g;« to be the ({+1)st
query in a precomputation of M/ (j, Z) if, for all < [, the (r + 1)st query in the
precomputation was answered ‘Yes' if and only if Bit(r, k) = 1. So ¢j is the next
query of M;(j.Z) will ask, if the previous queries were answered as specified hy
the bits in the binary representation of k.

We now described an FP¥ (wit, ||7||) machine. .\[}mw. that compurtes

foen- First, M}W“ computes all entries in the above table. Let Q(q) be M}'s
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YP-oracle. It then binary searches for the number m of "Yes™ answers that Q(q)
would provide for this table. A witness for the query: “Do there exist m entries of
our table answered ‘Yes’ by (g)?” provides all the ‘Yes' answers in the table. The
machine My, . (a,Z) then computes M (7, ) for each j < p(|¢(a)|) using the table
rather than the oracle. As M runs this computation it makes a list of the final
queries of each machine. Since this list of final queries is (l%l)-sharply bounded.
M; can query an appropriate f-modification of Q(g) to get witnesses for these
queries concatenated together in the form that fye) is supposed to output. The
binary search takes

O(|(p(€(a)]) - (2 ~ 1))

many queries. This is O(||¢(a)]]) +¢-|[s(Z)||) many queries so the machine .\[}W,|
in FPE (wit. ||7]]).
For (b). one first represents A/} e, 1D Ty L7l by the F[HTH]

w [']

(wit) machine
Mjy ., from Theorem VI.A.3 which simulates it. One then needs to argue that
T“ﬂ can prove simple facts about the witnesses returned by the oracle for My . .
The machine Afy . can be defined in Tz ST with a S8 Ny 1%, -formula by The-
orem VL.B.1. Using 58, , Mz 1, ,-INDU™, T3 can prove the witness returned
by the oracle for My, must be a valid computation of M }W“ using oracle Q(q)

and has the desired properties. G
Essentially the same proof can be used to show:

Theorem VIII.A.3 (i > 1) Suppose f(j.T) € FP= (wit, ||T{#|) is bounded by an
Ly-term t*(E) for each j < p(|¢|) where p is a polynomial and ¢ € 7#. Then:

(a) fouen(T Zp('e” ! .5 s in FPE (wit, ||7]#}).

() fj"" can prove 3(j. |t'|, foqep(E)) = F(. ).

We also need the Q(7)-definable multifunctions of T,"'™ are closed under

(I7])-bounded p-operator.
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Theorem VIII.A.4 (i > 1) Let f be a Q"’”’;”-deﬁnable multifunctions of T, .
Then the function
(1j < |lx))[f(.z) = 0]

is Q™) _definable in T3'™.
Proof: Consider the multifunction
g(j. z) := cond((¥n < |€(z)|)(n < j A f(n,z) >0).1.0).

Define (pii < [€(x)|)[f(i.z) = 0] to be

i#(z)=1]

> gliz)-2.
j=0

Then (pj < [€(x))[f(j. x) = 0] is [€(z)| = h(z).

1

VIII.B Witnessing arguments for replacement theories

We now use a witnessing argurment to show that CH™ g vt _conservative
2 +1
over T31™.
4 ol ., ! =
By Corollary IV.B.4, a free-cut free C; ™_proof of an EX?_ -formula can

contain formulas in
X b b
LEY; U LiAlinEi, U LE|A|IT;.

where |4|;;; means a quantifier of the form (Vr < |€(¢)]) where £ is in |7| and t is
in L,. So we have to modify our witness predicate of Chapter III slightly to carry
out the witnessing argument. For this section, we define our witness predicate as

follows:

If 4(@) € L|A|jI1 then

Wit w,d) = A(@)



If A(@) is of the form (37 < £(@))B where A € £2_, U E|4j.~I1 then
Wit (w,@) = b<t@) A B(b.@)

If 4(a) is of the form (Vz < [¢(s)|)(Zy < t)B where A € |.-l[5,.l§',-’,l. then

we define
Wit (w,d) = w<2- ([ #s) A (Vz < |€(s)) B(3(x. [t} 1. w). &)
If A(@) is of the form (3z; < #)(Fz2 < ta) B where A € Ef’;l then

Wit7w,@) = ispair(w) AB(Lw) <t A 32.w) <t A

B(3(1,2). 3(2. w),a).

From the above definitions, it is easy to see we have the following analog

of Lemma V.A.1.
Lemma VIIL.B.1 (i > 1) Let A be any formula in
LES!, | U L{Al £, U LE|A| 1T
with free variables @. Then:
EBASIC F Wit (w.d@) D A(a). (VIIL.1)
There is a term t such that
Ch™l b 4(@) & (3w < ta(@)With (w. ). (VIIL.2)

For this term t4 we also have

EBASIC - Wit (w,d) D w < ta. (VIIL3)

Remark VIII.B.2If 4 € LEﬁﬁ{,_1 then (VIII.2) requires only EBASIC to prove.
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We extend the definition of witness for a formula to a definition for witness
for a cedent in the same way as in the section on the !-definable functions of f2.

A lemma similar to the above will also hold for cedents.

Theorem VIIL.B.3 (i > 1) Suppose Co' = T — A where I' and A are cedents
of formulas in

LEE! U L|A|rEh, U LE|A| L.

Let @ be the free variables in this sequent. Then there is a F P (wit. ||T]]) multi-

function f which is Q) _defined in To'™ such that:

P i (w, @) D Wit (f(w. @). @).

Proof:  This is proved by induction on the number of sequents in an C".;"” proof

of [ — A. By cut elimination. we can assume all the sequents in the proof are in
LEE!,, U ||l U LE| 4| [T

Almost all of the cases can be handled as in the witnessing argument for the ©0_ -
definable functions of T{"'—'. However, the V : cases change. and we also have the

additional case for RE PL'"!-inferences.

(V:left case) Suppose we have the inference:

A@#).T—=A
t<s,(Vz <s)A(z),[—=A

By the induction hypothesis there is a Qi)_definable g such that
Ty F Wit (w, @) D Wity3 (9(w, @). 8).
The definition of Wit**! implies

| + , pod
T -1y lt;<s/\(VI<i) war(w, @) Dt < s AT v:<s)4(z)/\r( 3(2. w). @).
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By cut-elimination. (Vr < s)4(z) must be in L{A|;- I or in 4]~ 8_,. In the first

case. we define f to be
flw.@) = g({0,3(2.3(2,w))).a)
This function is Q*I™) definable in T3"™ and it is not hard to see that
T3 - Wit aemagar (w: @) D Witdy (f(w.d).@).

In the second case, (Vr < s)A(z) is [.—llmiﬁ-’H. So s is of the form }¢(s')| where ¢

isin 7. Let
h(w,@) = (B(s(@).1t"],t. 8(1, 8(2.w))), B(2. (2. w)))-
By the definition of witness, we have

i regitl —
L W Lt:<s/\(\7’:r<s) \(z)/\r(w @) D

Wit (z)/\r(h .@),a)

So define f(w.@) to be g(h(w.d),&). It is easy to see f has the desired properties.

(V:right case) Suppose we have the inference:

b<t.T—A(b), A
F— (Ve < t)A4A(x), A

By the induction hypothesis there is a Q™) _definable g in FP= (wit.||r]]) such
that
Ty F Witithp(w.@,6) D With)\ (g(w.@.0).4.b).

By cut-elimination, (Vz < t)A(z) is either in LI Al or is in [4}j=2,. In
the first case, (3z < t)-A(z) is a TP-predicate. So we ask an oracle for this
predicate for a value b < ¢ such that —A(b) holds. If such a value exists we

set f(w,@) = ¢({0.w),@b). If no such value exists we let f(w.ad) = (0.0) since
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(Ve < t)A(x) would in that case be a valid L|.-l|l,gﬁ?-formula. In the second case.

(Vx < t)A(z) is really of the form
(Vz < [€(s))(3y < t)B(z.y)

where B is a [I’-formula. Since Wit'{' is provably equivalent to [12-formula in
EBASIC, its characteristic function X1 is Q(™)_definable in T,"". Let k be

the multifunction
k(w.d) = (1 < 1665))[Xawg (B(L, g(w- & ). €.J) = 0]

Clearly. k can be Q"™)_defined as a composition of F P=! (wit, ||7]|) multifunctions.

Now define f(w,a@) from k as follows:

flw.a@) =
lé(s)—-1| _
cond(K=(k.|6(s)]), Y B(1,g(w.d@.j)- 934 3(2. g(w. @ k))
j=0

It is not hard to see using Theorem VIIL.A.2 that

Ty - Witk (w, @) D Wit Gecipoyava (f (w, @) @)

(IT* — REPL/":case) Suppose we have the inference:

I—(Vz < 14(s))(3y < 1) A(z.y). A
T—(Fw < 2- (t°#6(5))) (Vz < [e(s))) Az, B(z. [t"]. 1. w))). A

where ¢isin 7 and s in Ly. By the induction hypothesis there is a Q“(")-definable

g in FP= (wit,|(|7])]) such that
=i, T - regitl J
T b Wit (w, @,b) D Withi e anay<n ava (9w, @), @)
For this case. it suffices to notice that the predicates

sapitl
Wit G cienaysna
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and
- it
Wit 3y o s (vz<in A
are the same. Hence, if we let f = g then

il vsgitl = maitl = =
T, Witg  (w.d,0) D W Lt;3w52-(t'#E(s)))(VrS!l(s)]).-\vA(f(w'a)'a)'

This completes all possible cases and the proof. o

Theorem VIIL.B.4 (i > 1) Suppose
T+l [ REPLIT T — A
where T and A\ are cedents of formulas in
LES!, | U LA U LE|4| L.

Let @ be the free variables in this sequent.
Then there is a F PE (wit. ||71#]) multifunction f which is Q-m* defined

in TQL'ETI# such that:

~iT#
2

F Wit (w,d@) D Withhy (f(w, @). @).

Proof:  This is proved by induction on the number of sequents in an
Tattirl e REP LI

proof of ' — A. By cut elimination, we can assume all the sequents in the proof
are in

LES!,, UL|A|inEl, U LE| 4| 1L,
We handle all cases of this witnessing argument as in Theorem VIIL.B.3 above

except for the (X2, ,-INDIIml) case which we handle as in Theorem VI.D.2. T
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Corollary VIIL.B.5 (i > 1)

(a) The theory C;"" lis L8, | -conservative over T;'ITI

(b) The theory Ti*"™'+[1e-REPLI"! is £, -conservative over TH" and also

over T' +LlIH

(c) The theory Ry™" is £%. | -conservative over Ry

Proof: (a) Suppose C il F (3r < t)A(z.d@) where A is H‘l’ Then by Theo-
rem VIII.B.3.
T - Wit (f(z,@), @)

By Lemma VIIL.B.1.

T - itdicya(w.@) O (Fr < t)A(2.a).

So
o™ - (3z < t)A(z, @).

(b) Follows from Theorem VIIL.B.4 by the same argument as in (a). Re-
call by Theorem IL.G.8, T._;"Tl# - T._;*l'“T”.
(¢) Follows from the 7 = {id} case of (b) and Theorem ILE.1.

1

Corollary VIIL.B.6 (i > 1)

17|

(a) The theory Cy'" is B(XL. ,)-conservative over Ty

(b) The theory Tit""I4e-REPLIT is B(X!,)-conservative over Tor ™* and

1
also over T'+ Al

(¢c) The theory Ri™" is B(EL,,)-conservative over R5™.
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Proof: By Remark VIIL.B.2. we can use the method of Theorem VILB.1 to

[

prove the above result.

Note the above corollary does not imply To'™ = C3'™ since Ty can-
not necessarily prove any fIﬁ-’-REPL”‘ axiom is equivalent to a B(_‘;.? . )-formula.
Similarly. the above result does not necessarily imply R} equals Rlz

We now briefly consider the ¢ . «~definable functions of C .:;'l"i for k greater
than 1. Since C‘;’M contains EBASIC, it can certainly define the functions in

FP=(wit.1). For the converse, consider any proof of a sequent of formulas in

LES!, U L|A|1S8,, U LE|A|j1T.

i+l

For all formulas not in LEX? +k\f[? k1~ We can let the witness predicate just be the
formula itself. Otherwise. we define the witness predicate as 11 it"** where either
the definition of TV iti** is from earlier in this section or from the T!-definability

section (they will both be equivalent for the remaining cases).

Theorem VIIL.B.7 (i > 1,k > 2) Suppose C:»';"TI T — A where the formulas in

T and A\ are cedents of formulas in
LES!, , U L|A]inEh, U LE| 4|4 1L

Let @ be the free variables in this sequent. Then there is a Q! -definable in C'i"

F Psfﬂ-—l(wit, 1) multifunction f such that:
CH™l b Wititk (w, @) D WithE(f(w. @), ).
When i =0 there is a FPzz—l(wit, 1) multifunction f such that
N & Witk (w,d@) D With \(f(w.@). @).

Proof:  All the cases can be handled in essentially the same way as in the T}_ -
witnessing argument. The only case where there is a slight difference is (I —

REPL'™case). In this case vou actually need 12 ~ REPL™ to arguc in Cy™ that
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a witness multifunction for the top sequent in such an inference will be a witness

1

multifunction for the lower sequent.

From the above theorem the next theorem and its two corollaries follow

by the same type of proofs as in Chapter VI.

Theorem VIIL.B.8 (i > 0,k > 2) The §f+k-deﬁnable multifunctions of Cy" are
precisely the class FPE-i(wit, 1).

Corollary VIIL.B.9 (i > 0.k > 2) The ./:\£?+k-predicate.s of Ty™ are precisely the

predicates in P=le-1(1).

Corollary VIIL.B.10 (i > 1,k > 2) The theory CiT proves its ;Sf,k-predicates

can be written in the form
Vi_o[A(z.v) A =~B(z,v + 1)].
where A and B are X%, | -formulas and p is a polynomial.

One last interesting question about prenex replacement theorics is the
g4 P b

I3 y . A .0 ‘ 3 T 1 T M } M

following: Does Ti contain Cj™" for any 77 Obviously. since T = T, T

contains the theories 7,™ for all 7. Yet, even though C;'" is B(X!,)-conservative

AT . -y ; . it
over T,"™, it seems difficult to prove T; contains Cy™ for any .



Chapter IX

Single-valuedness in fZA"Qi’lTl and

Al ||
Cy

In this chapter we investigate the functions (as opposed to multifunctions)
definable in the theories Tgi'm and Tz" We begin by investigating the relationship
between bounded comprehension axioms and bounded replacement axioms. Then
we define a notion of a T-bounded function. We show T,_f‘”i and T37 can prove
the multifunctions defined using A% ,-COMP!™ axioms are single-valued. As a
converse we show for j < i + 1 every T-bounded ifﬂ-deﬁnable function in 737
and Tzi‘:rl can be defined using a A?-COM P!l axiom. This enables us to give
a characterization for j < ¢+ 1 the ig-definable 7-bounded functions of T.l"*"!
and 73" in terms of parallel computations of ig’--predicates. We suggest some
characterizations of these classes. In particular, we show the Tb-definable functions
of sz are precisely the function in F NCT. Our results are mainly for the case
where i > 0. In the last two sections we investigate a weaker notion than Th.
definability. i’{m-deﬁnability, and show some results about the i’{‘:‘_i—deﬁnablo

Nt

functions of Co'™, a subtheory of C,

136
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IX.A Replacement and comprehension axioms

In this section. we investigate the relationship between comprehension
axioms and replacement axioms. We will use the results of this section in the
next section where we address the issue of single-valuedness in bounded arithmetic
theories and we will also use them in the last section of this chapter where we

0,]7i

characterize the i’{w-deﬁnable functions of C,

We begin with a lemma which shows EBASIC+open-RE PL™ can take

the transpose of a (€| x 2) matrix where £ € 7.

Lemma IX.A.1 Letr, s andt be Lo-terms and ¢ a term in 7.

Define m := max(r*.t*) and m' := 2-m#(s) and let M(i.z.w.w') be the formula
3G, ml.t. B3z, 2 - jml, 221 w)) = B(x. |t7]. ¢, BG. [m| £ #L(s). w').
The theory EBASIC+open-REPL'™ proves

(V) (Fw' < 2211 (Vz < |6(s))(M (L, 2, w. w') A M (2.2, w. w')).

Proof: It trivial that EBASIC proves

(vVz)(3y < 6))(3(1, Iml.t. 3(z.2 - Im|, 221™, w)) = ).
and also
(Vz)(3z < ) (B2, Iml. t. 3(z, 2 - |m], 221™, w)) = 2).
The result then follows from open-REPL!™ and pairing. a

Theorem IX.A.2 (i > 0) The theory T := EBASIC+II:-REPL™ proves the

3¢ -REPL!" azioms. Hence, Cil™l proves the £¢, -REPL'™ azioms.
Proof:  The second sentence follows since C’é‘ifl contains 7. So we prove the
first statement. Let A(z,y):= (3z < t')B(z,y,z) be a §?+l-for111111a. The formula

(Vz < {€(s)]) 3y < ) A(r. y)



is thus the formula
(Vz < |e(s))(By < )3z < r)B(z.y.2).

Here ¢ is suppose to be a term in 7. Let m be maxr*.¢*. Using pairing this formula
is provably equivalent in T to
(Vz < [€(s))) 3y < 22V™)B(z. B(L.|m|. t.4). 3(2. Im|- 5.4)-

By I[1-REPL'™ this formula is equivalent to

(Fu' < 2- (2%™#L(s))(Vz < [€(s)])

B(z. 3(1.|ml,t. 3(z.2 - [m]. 22V w"), 3(2. Iml, v, B(z. 2 - |m]. 22" ")),
Let m' equal 2-m#€(s). Using Lemma IX.A.1, the theory T can prove this implies

(Fu' < 22 (vx < e(s)])
B(z. 3z, |°]. £, B(1, |m'], t#€(s), w), Blz. |r*[, 1. 3(2, [m']. 2" #((5))- «))).-

Undoing the pairing, T can show this implies
(Fw < 20t #6(s)) (v < 2(r*#€(s))(Vz < [€(s))) B(z. 3. [t°].t. ). 3 |relore)).
Finally, using [12-REPL!™! the theory T proves this implies

(Jw < 2- (t"#6(s))(Vx < [€(s)]) B(z. y. B(z. |t"]. . w)).

Corollary IX.A.3 (i > 1) The theory T := Sj+Ti,,-REPLY is B(Ll,)-

conservative over Sj.

Proof:  First note using £2, ,-REPL{!*} and pairing one can prove every < -
formula is provably equivalent to a % -formula. So EBASI C+St_-REPLY)
proves £t -REPLt} By Theorem IN.A.2. CEY can prove £ -REPLY!
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and since Co1*) is B(TY, | -conservative over S} by Corollary VIILB.6 and Theo-

rem [L.E.1 this gives the result. g

We use Theorem IX.A.2 to prove the next theorem about comprehension

axioms.
Theorem IX.A.4 (i > 0) Ci' proves any Al -COMP'™ aziom.

Proof: Let A(j, z) be A%, with respect to Gy, It is easy to sce that Cy™

proves
(Vr)(Vj < [€6s)) By < D((AG.x) Ay = 1)V (=46, 2) Ay = 0)

where ¢ is an iterm in 7. The formula inside the scope of the leftmost universals
is provably equivalent to a ¥ -formula since A is a Al -predicate. By Theo-

rem IN.A.2. the theory C3'™' proves

(Fy < 2- (1#6(s)))(V] < [0(s)DI(AG. 2) A B L 1.y)) = 1)
V(=A®, 2) A 30, 11 1. y) = 0))]

The theory EBASIC can prove 30,111, y) = 3(j.|1]. y) which is the definition

of Bit(j.y). Hence, the theorem follows. O

We will use the next corollary when we discuss the single-valued functions

of T._:"TI.
Corollary IX.A.5 (i > 1) The theory Ty'™ proves the Al -COMP'™ azioms.

Proof: By Theorem INX.A.4, the theory C";‘lﬂ proves any .lf’ 1-COM Pi*l axiom.
Any Al -COMP!™ axiom of T is provably equivalent to a vt -formula in

Tzi,lrl. Hence, by Corollary VIII.B.6 the theory T;"" proves this axiom. O

This corollary has the following interesting converse.



10

Theorem IX.A.6 (i > 1) The theory Tzi'm is the same theory as

T := EBASIC+open-IND™+X8-COMP'™

Proof: That T is contained in T;‘IT{ follows from Corollary IX.A.5. Let A(r)
be a ﬁf-formula and consider the IND 4y axiom. The IND 4 q axiom is implied
by
A(0) A (Vz < |€(2)])(A(z) D A(S=z)) D (V2 < [€(r)])Alx) (IN.1)
where ¢ is in 7. Now T proves
(Fy)(Vz < (=) (A=) & Bit(z, y))
and by open-INDI"™

Bit(0.y) A (V= < |€(z)|)(Bit(z.y) D Bit(Sz.y)) D (Vz < |f(2)]) Bit(z. y)-

Together these imply (IX.1) and the theorem. C

IX.B Comprehension and single-valuedness

The general question of what are ¥?-definable functions in T,7 or T,7
seemns hard. Nevertheless, the next definition allows us to answer an interesting

portion of this problem.

Definition IX.B.1 A function f(z) is T-bounded if f(z) < €(t(z)) for some L,-

term t and some T-iterm £.

Lemma IX.B.2 The theory T20 ! proves the following bit-ertensionality aziomns
(BITEX,):

(Vi < [6(a)])(Bit(a, i) = Bit(b.i)) D LSP(a.|(a)]) = LSP(b.[¢(b)])

where 0 is in 7. We call the collection of these azioms for any ( € 7 the 7-BITEX

arioms.
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Proof:  This is easilv proved by I.VDY ou the following formula A(c) which is
provably equivalent to a l:Ig-formuIa in Tf’lf!:

(Vi < |€(a)])(i < ¢ A Bit(a, i) = Bit(b.i)) D
LSP(a.|¢(a)]) = LSP(b. (b))

c

We now give a class of 7-bounded functions definable in T and 7,7

Theorem IX.B.3 (i > 1)
Let B(i, ) be a Al -predicate in 15" and let € € 7. Then

T - (Vo) (@l)ly < €(v) A (Vi < [€0))(B(i.2) = Bit(i. )],
Let B(i.r) be a A%, -predicate in T3'™ and let € € 7. Then

T - (vVz) (Ay)y < 6v) A (i < [€(2)])(B(. ) = Bit(i. y))]-

Proof:  Existence of a y follows from Corollary IX.A.5. Uniqueness follows from

Lemma IX.B.2. 0

Given this theorem the next obvious question is: Can every 7-bounded
function in 737 or To™ be written in this way? The answer is yes. We first show
for j < i that every 7-bounded L!-definable function of TH™ and 737 can be

defined in this way. Then we show the ¥?_ -case.

Theorem IX.B.4 (i >j>1)

(1) Every T-bounded i‘}-deﬁnable function of T2” is definable as
(V) (3ly)ly < €(v) A (Y < [€()[)(B(n, z) = Bit(n.y))]

for some B which is A} in T;" and for some € in 7.



(2) Every T-bounded f".’}-deﬁnable function of Tiniltaui is definable as

(vz)(3y)ly < €(v) A (vn < [€(v)])(B(n. x) = Bit(n. y))].

for some B which is A in TQ"”l and for some € in T.

Proof:  Since the same proof works in both cases we only show the T.j"‘"i case.
That we can use any .&g-predicate to define a 7-bounded function in Té"ﬂ in this
manner is a consequence of Theorem IX.B.3. On the other hand, let 4 be a fj’-
formula. Suppose ’.f'.zi’m defines a function f by proving (Vr)(3z)A(x, z) and also
A(z.y) A A(z.z) D z = y. Then for y < k we can define the predicate Ag(x.n)

which computes the nth bit of y satisfying 4 as either
AT(z,n) :=n < k| A (3y < k)(A(z.y) A Bit(n.y) =1)

or

Az, n) :=n < [k| A (Vy < E)(Alz,y) D Bit(n.y) =1).

The theory EBASIC proves AL is a equivalent to a i’.g-formula and Al is equiva-
lent to a fl'}-formula. For ¢(v) in 7, the theory T3 proves Afiyy(£-1) D Al (eon)
and proves Ay, (r.n) D AR, (z,n). This can be done using the existence and
uniqueness condition of f which are provable in T:f’m. So the predicate Ay, is _\.j’

with respect to 73", Now by S&-INDI, the theory T proves
y < 0(v) A (Vn < [e(0))(dew)(z.n) = Bit(i,y)) D (y < €(v) A A y))-
Likewise. using ﬁ’;-l ND'" and Theorem II.G.11, the theory T3 proves
y < Eu) A Az, y) D [y <€) A (Y1 < [€)) (Haw (2, n) = Bif(n. y))].
Thus, (V2)(3'y)(y < €(v) A A(z,y)) is provably equivalent in ’ﬁ_f'iﬂ to
(vVz) () (y <€) A (Yn < [€@)])(Agw (. n) = Bit(n.y))).

So we have established the theorem. !
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Theorem IX.B.5 (i > 1) Every T-bounded $b_ -definable functions of TH™ (resp.
TH™) is definable as

(v2)(3ty)[y < &) A (Vn < [€(v)])(B(n. ) = Bit(n.y))!.
for some B which is AL, with respect to Ty™ (resp. Té'm ) and for some € in T.

Proof:  Since the same proof works in both cases we show only the To™ case.
That we can use any Al -predicate to define a 7-bounded function in T3 in
this manner is a consequence of Theorem IX.B.3. On the other hand. let 4 be
a Lb_ -formula. Suppose Ti™ defines a function g by proving (Vz)(3z)4(r.2)
and also A(z.y) A A(z.z) D 2z = y. By Theorem VL.D.2 there is a Q"'“';”-deﬁned
multifunction f such that ‘;'iﬂ proves Wit (f(x). z). By our definition of witness
this implies T3 proves A(z,3(1. f(z)). Since TH™ proves A(z.y) A A(e.z) D
= = y. it can prove 3(1, f(z)) is single-valued and so 3(1. f(z)) = g. From the
Q7)_definition of f the theory TH™ can prove the following formula instead of

(Vr)(3z)A(z, 2) to define g

(Vz)(Jy < t)(3vp < &r(sp(2))))
(Fwy < tg)(B(L, Outy(wy)) = y A Ag(z. wy, vp))

A-(Fr) < Ci(sp(x)))) Bl < tp) (v > vp A Ap(x, whoep)))-
where Ay is a v_formula. Consider the two formulas A¥(n.x)

(Fvp < €4 (s5(x))N(Bwy L tr)(Bit(n, 5(1, Outs(wy))) = 1A Ap(x.wy.vy))

A-(3v) < by(s(2)))) Gy < t)(0f > op A (e )]

and A%(n, )
~(Fvy < £5(sp(x)))[(Buwy < tp)(Bit(n. 3(L, Outs(wy))) = 0 A As(x. wy. vy))
A=(3v) < (57 () Euy < )W) > vy Adp(e w)o )]

The theory T/ proves AT is equivalent to a £-formula and A is equivalent to

. . S . . = lr! R
a [I*-formula. Further since T, ™l broves g is single-valued 7' proves A* & A
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So the predicate A*(n.r) that the nth bit of g(z) is 1 is '_‘\.{-’,l with respect to T_f"" i
Now if g is 7-bounded it can be bounded by some term £(¢(r)) for ¢ in 7. By

Theorem IX.B.3. the theory T3'™' proves
(Vr)@ly)ly < €1) A (¥n < [€(t)])(A(n.2) = Bit(n. y))].

That the function defined by the above is the same as g follows from -BITEX.

a

Definition IX.B.6 Let C be a class of predicates. A function f(x) is in 7-PFC
(r-parallel function C) iff its output is bounded ¢(x) € T and its ith bit is computed
by B(i.x) € C.

Corollary IX.B.7

(i > 1) The class of T-bounded Sf . -definable functions of T_ﬁT is precisely the class
r-PFPZ (|1]).

(i > 1) The class of T-bounded %t -definable functions of both T and Co™ s

precisely the class r-PFPE(||7]]).

Proof:  This follows from Theorem IX.B.3 since by Corollary VLE.5 the _S’,?*l-

predicates of 737 and T3'™ are respectively P=(I7|) and PEI(||7|])- O

Definition IX.B.8 For a class of multifunctions ¥, we write S¥ for is the re-

striction to 0 — 1 functions.

Corollary IX.B.9

(i > 1) The class of T-bounded $_definable functions of T3 is precisely the class
T-PFPE (|T#]).

(i > 1) The class of T-bounded if-deﬁnable functions of T_,'T
r-PF((SBJ3) =0).

is precisely the class
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(i > 1) The class of T-bounded if-deﬁnable functions of Tz" is precisely the class
r-PF((S=LSF*) =0).

T+

Proof:  These statements all follow from Theorem IX.B.4. The Ab_predicates
of T3'™ for ¢ > 1 are precisely PE(|7#|) by Corollary VL.E.1 and Corollary VLE.5.
That the Al-predicates of T3 and T3 for i > 1 will be respectively (SB}) =0
and (Sﬂ'LSf “2) = can be easily proven from our characterization of the multi-

functions for these classes. 0

Corollary IX.B.10

(i > 1) The class of T-bounded §?+l-deﬁnable functions of T.;‘["; is precisely the

Clah'b' T'PF(é?_wrl n[-rl H?—i—l)'

(i > 1) The class of T-bounded $b_definable functions of both To™ and C':," is
precisely the class T-PF(if Mr# Hf)

Proof:  These statements follows from Theorem IX.B.4. Theorem IX.B.5. and

Corollary VIL.C.7. G

IX.C Single-valuedness in Si and Ry

In this section, we use the results of the last section to show the i?-j—l'
definable functions of S and R5*! are the circuit classes (FNC W= and (FNC)¥
respectively. We begin with some definition needed to define these classes. Our

basis for the circuit classes we consider will always be 0, 1, A, V. —.

Definition IX.C.1 An oracle circuit C, on the n-variables, ry, ... .tp is a di-
rected acyclic graph whose sources are labelled with either 0. 1, or x; for some
1 < i < n, whose internal nodes are labelled with A, V, =, or O, and whose sinks

are labelled with distinct natural numbers. We require also the A and Vv labelled
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nodes have fan-in 2, the — labelled nodes have fan-in I, and all the oracle nodes
O have the same fan-in f(n) > n. Inputs lines to an oracle gates are labelled
0,...f(n) — 1. Further we require that if a sink is labelled | then for each j < i
there is a sink labelled j. We call source nodes of a circuit inputs. internal nodes

of a circuit gates, and the sink nodes of a circuit outputs.

Definition IX.C.2 The size of an oracle circuit is the number of its nodes. We
assign a depth to the nodes of an oracle circuit as follows: inputs. A. V. and -
gates all have depth 1, oracle gates with fan-in f(n) have depth |f(n)| The depth

of an oracle circuit is mazimal sum of the depths along any of its directed paths.

Definition IX.C.3 Let 4 be an oracle set. A family of oracle circuits {C.} com-
putes a function f: N+~ N as follows: An input z is evaluated on the circuit C ..
starting at the inputs according to the usual rules of propositional logic. An oracle
gate on inputs ag. ... A outputs 1 iff a = S IM~1q;-2" isin A. The output node

labelled j corresponds to the jth bit of the output of f onz.

Since the circuit classes we are dealing with are all bigger than FP we
will only require the following weak form of uniformity. By a logspace function we
mean a function computed on a machine with three tapes a read-onlv input tape.
a write-only output tape and whose use is restricted to be the log of the input

length.

Definition IX.C.4 A family of oracle circuits {Cy} is logspace uniform is there

is a logspace function which on input n outputs Ch.

It should be obvious that any logspace uniform circuit is polynomial size.
Other stronger notions of uniformity such as Ug- are discussed in Ruzzo [44]. All
of these notions will be equivalent for the classes we will consider, essentially the
same proofs as we do go through; however, Ug- uniformity would require several

more definitions.
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Definition IX.C.5

(i > 1) The class (FNC 1E? s the class of functions computed by log depth logspuce
uniform families of circuits with an oracle for a set in 2

(i > 1) The class F NC=' is the class of functions computed by poly-log depth

. - S g
logspace uniform families of circuits with an oracle for a set in X.

(i > 1) The class (NC‘)S'; is the class of predicates computed by 0 — 1 valued
functions in (FNC N,

(i > 1) The class NC=? is the class of predicates computed by 0—1 valued functions

in FNC=.

We define the classes FNC. FNC!, NC. and NC tsimilarly to the above
except without access to oracles gates. We chose logspace uniformity partly be-
cause Allen [2] has shown that the ¥{-definable functions of R} are logspace uni-
form FNC. Thus. S} and R} can define the functions in the class logspace uniform
FNC' and FNC.

Bloch [8] shows the X2, ,-definable functions of Si are precisely the class
(FNCY)=. He calls this class Of,, however. Selman [45] is a good survey of what
is known about this class. He defines a class PFE? which is essentially equivalent

to (FNCYH and shows that if
(FNCY™ = FP¥ (logn)

then RP = NP. Here RP is random polynomial time. The oracles for functions
in the class FP%i(logn) do not return witnesses. It is unknown to the author if
(FNCYH)E = FP* implies the collapse of the polynomial hierarchy. Less is known
about the class FNCZ' although there is some discussion in Bloch [8]. The next

lemma is due to Bloch [8].

Lemma IX.C.6 A function f(z) is in (F NCYHYE (resp. FNC ) iff its bit-graph
Bit(j, f(z)) is in (NCYHYE (resp. NCE).
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Proof: To compute the jth bit of a function f in (F NCHE just compose
a multiplexer with the circuit for f. The resulting circuit will be in (NCH

Suppose for each j < |f(z)| the predicate Bit(j, f(z)) was in (NCYE then if we
just output these circuits in parallel we have a circuit in (F NCYE computing f.

a

Theorem IX.C.7
(i > 1) The 3t.,-definable functions of Sy are precisely the class (FNCHE

(i > 1) The _,lH-deﬁnable functions of R5T' are precisely the class (F NC

Proof: Our method of proof will be similar to that of Buss and Hay [10].
By Corollary IX.B.10, we know the {Ld} bounded %, -definable functions of S}
will be precisely the class {id}-PF(Z%, | Nyiay I1%,,) and the {i(l}-bouuded LI
definable functions of R =B, 1 will be the class {id}-PF(Z2., Nppuiint -y
[12,,). Since the {id}-bounded definable functions of these theories will just be the

definable functions of these theories, we need to show
{id}-PF(52,, Ngaay [ ) =(FNCH™
and
{‘id}-PF(i?_{,l m{zp(][idll)} I:I?H):F."VCS?

to show the theorem. In view of the definitions of PFP and Lemma IX.C.6. it

suffices to show

£, Ny I, = (NC! )=

and

. _— o
i Nygeaiiany iy = NC™:.

By Corollary VIL.C.7, the formulas £2_, Nyay 2, are Ab_, with respect to S}

and so can be written in the form

(3v < |s(x)])[d(z.v) A~B(x. v)]
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where A and b are ¥° and s is an Lo-term. Similarly. the A?_-predicates of

1

Ai+1l " .
Ry gz ) By ! can be written in the form

(Fv < QP(EIS(I)II))[C(I’ v) A ~D(z,v)]

where p is a polvnomial. s an Ly-term and C and D are St fomulas. In the S}
case. let F be some formula of the above type. Let 4 & B be the £}-oracle which
contains 22 2™+t 4 2241 if A(z, v) and contains 2™ +v2™*1 £ 21 if B(x. ).
Here m is the max of z and s(x). We can define an (NC 1E circuit family which
computes the value of F as follows. For each v < |s(z)| we have a gate A, which
is an 4 @ B oracle gate with the low order and high order line set to 1 and with
v hard-wired into the lines beginning with the 2/™/*! one. We define B, similarly
except the low order line is set to 0. In the rest of the circuit we AND the d,’s
with the B,’s and take the balanced OR over all these subcircuits. It is not hard
to see this family of circuits will compute F. These circuits are log-depth so will
be in (NCYE.

This shows $¢,, Ny 12, € (NCHE. A similar argument shows
if“ Myarciiain) I:I?+l C NC®'. We now show the opposite direction. To begin
for an oracle gate in a circuit we define its rank to be the maximum number of
oracle gates on a path to the gate in question. In the case of an (.NVC 1 family
of circuits {C,} the ranks of oracle gates can be bounded by a constant since each
has depth |f(n)] > |n|. Here n will always mean |z|. For a NC = family of circuits
the ranks of oracle gates can be bounded by c¢log® n+d from some fixed c.e.d. Let
{C,} be a family of circuits in NC ! of size bounded by p(n) a polynomial and of
rank bounded by a function k(n) of the form c|n|® +d. Suppose {C,} makes use of
the TF oracle A(a). This oracle is equivalent to some i‘?-formula (Juw < t)B(a. w)

where B is I1°. Consider sumns of integers of the form

k(lz))

p=Y gyt

=0
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We will write ¢ < ¢ for the X3-formula

(vm < j)(3(m. p(lz]), v) = B(m. p(|z]). ') A
B(m + 1.p(|z]),v) < 3(m + 1,p(|z]). v"))

Ifw= Zg:o w2770 where | < p(|z|) and p(jz]) > [t*]. we define Q(w.r) as
follows Q evaluates Cj; on input |z| as normal except rather than evaluating oracle
gates by making queries to A(a) it insteads checks if there is a w; in w such that
B(a.w;) holds. It is not hard to see Q(w, ) is equivalent to a [T’-formula in RS
since by Allen [2] NC-circuit evaluation is Ab with respect to R}. Define r(w.r)
so that 3(j.p(|z|).7) is equal to the number of rank j queries satisfied by w in the
evaluation of C|, according to Q.

Thus. r will be accepted by the circuit class {C,} iff

(3v < p(lz)#k(|2])[(Fw)(Qw. x) Av = r(w..r))
A=(F' < p(lzl)#k(|z]) Gu) QW' z) Av < r(v'. 2))]

Both w and w' in the above can be bounded by p(jz|)#t*(x) so the above is a

predicate in i?-{-[ Naptindiny ﬁfH. This completes our proof that
3 o P
S?«:—l OV aetitedtiny ., = NC*E.

The argument that =%, Nyiay I, 2 (NC 1YEY is similar and works because & in

this case will be a constant. C

Note the second half of the above proof can be used to show Ry™' can
actually iﬁ-’—deﬁne the circuits in FNCF as opposed to some function class which

turns out to be equivalent to FNC=.

IX.D The Si-functions of CoI™

The results of this section were developed in a series of e-mail exchauges

between myself and Jan Johannsen. We give a slight refinement of his paper [28]
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where he develops a bounded arithmetic theory RS whose T4-definable functions
are functions computable by uniform constant depth threshold circuits. the class
FTC®. We show the St-consequences of COUH are also the class FTC? and. in
general, the S’{l ~definable functions of o o 17 are the class F TC° which we define.
In the next section. we show F TC,Tl C FTC? (id}" We will show in Chapter X that

o [T| = R) implies the collapse of the polynomial hierarchy. In particular. this

O.{ladi} _ = R} then the polynomial hierarchy collapses. This gives some

lmphes if Cy'
evidence, albeit circuitous, that TC? # NC.

We begin by defining what we mean by & and C, Qi

Definition IX.D.1

We define Sz| i to be the subset of & _,, . containing formulas whose innermost

sharply bounded quantifier is bounded by a term in |7|. We write "‘f i for & 11__ 5

We define H il to be the subset of II? ? containing formulas whose innermaost

sharply bounded quantifier is bounded by a term in |t|. We write Hl .y for Hl i

So the &?,,-formulas are the usual St-formulas. At the other extreme
i‘l’ld'-formulas are of the form (3z < t)open. These formulas are usually called E,
(see Wilmers [31]). It is unknown whether ¥2-formulas are as expressive a class
of formulas as E;-formulas. The question of whether St = E| can be thought
of as the question of whether or not a bounded version of the Matijasevi¢ Davis
Robinson Putnam Theorem holds. Recall the MRDP Theorem says &, = 3, and
implied that there was no recursive procedure to solve Diophantine equations.
Here 3, means the set of formulas in the language of arithmetic with a block
of existential quantifiers followed by an open formula. Some work on the model
theoretic implications of the MRDP Theorem to bounded arithmetic can be found
in Kaye [32]. Adleman and Manders (1] have studied bounded version of the MRDP
Theorem. They show a bounded form of MRDP Theorem which says a set A is in

£, for n > 3 of the Grzegorczyk Hierarchy iff it is of the form:

A= {z}(37 < f(x))p(z.§) =0}
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where p is a polynomial and f is in &, (see Borger [9] for a proof and relevant
definitions). However, since £; contains all elementary functions: in particular. it
contains f(z) =21z = a stack of 2's z high, this is not quite as bounded as our
situation. They leave the P = F,? question open. They show (3z)(3y) (ar’® +
by + ¢) is NP-complete: however. to show %t =F, we would need to be able
to represent the reduction of NP-problems to this one also as an open formula.
Gaifman and Dimitracopoulos have have shown the MRDP Theorem is provable
in ISg+exp. It can also be shown that if the MRDP theorem is provable in S

then NP = co-NP [24].
Definition IX.D.2

The theory Ty'™ is the theory EBASIC+E?, -IND'.

The theory Co'™' is the theory
EBASIC-+open-INDVI+11¢,_-REPL'.

From the definitions we have S; = T.;’“id” = T_,i'{lidl} and C".;'{ii'i‘} =
C—T'.;’“id”. The same proofs as used earlier in this thesis imply the next lemma.
Lemma IX.D.3 (i > 0)
Ciir - T
Gl = @i
T,™ proves the &2 -REPL'™ azioms.
pidr _ iir)
T = 730,

T;‘IT: proves the flﬁ."lﬂ-IND{Ti arioms.

The third statement has essentially the same proof as Theorem IN.A.2.

We now work towards defining the classes FTC?.
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Definition IX.D.4 Suppose ho(n. ), hi(n.E) < 1. A function f is defined by

concatenation recursion on notation (CRN) from g. hg. and Iy if

f(0.5) = g¢(z)
f(2n.£) = 2-F(n,Z)+ ho(n.T), provided n # 0

fen+1,%) = 2-F(n.Z)+ h(n.7)

Let € be a term in T and suppose g(n, T) < t(T) and s are functions. Then

[€(a)|

> g(n.) - 27

n=0

is called a |7|-sum.

We will show later that {|id|}-sums are roughly equivalent in strength
to CRN: however. weaker versions of CRN do not seem as strong as their corre-

sponding |T|-sums versions.

Definition IX.D.5 The function class FTC® is the class of function consisting
of 0. i(ry....T,) = Tk, Solr) = 21, 51(x) =2z +1, -, #. |r|. Bit and which is
closed under composition and CRN .

The function class FTC? is the class of function consisting of the func-

tions of L, and which is closed under composition and |r|-sums.

That FTCO as defined above is the class of functions computable by
uniform constant depth threshold circuits is shown in Clote and Takeuti [20]. The
class TCP of predicates in FTC? is considered interesting since it is one of the
weakest reasonable class of predicates which might equal to NP. As far as the
relation between FTC® and FTC?, we will show FTC® = FTC},;,. To show this.

however. we first prove some lemmas.

Lemma IX.D.6



1. If f(i.x) is in FTC? so is the characteristic function of

(Vi < [€(a))(f(i.2) = 0)

forall € in 7.
2. The characteristic function of every |r|-sharply bounded Ly-formula is in F TCO.

3. The characteristic function of every sharply bounded L,-formula is in FTCC.

Proof: The second statement follows from the first and the fact FTC? con-
tains A=. R<. A'a. and K. The third statement’s proof is similar to the second
statement and can be found in Clote [18]. To see the first statement let g(r) be

{€(a)] -1

3 K-(f(i.x),0)- 2"

=0

Then X(vi<it(a))){f(i.z)=0) can be defined as

Kn(K=(g(z), 24N = 1), K= (f([€(a)l. £), 0)).

-

Lemma IX.D.7 Let f be a function in FTC? and € € 7. Then the function
(wi < |€(2)D[f(i.z) = 0]

is also in FTC?.

Proof:  The proof is the same as Theorem VIILA.4. m]

Lemma IX.D.8 Let ¢ be a term in 7. Then ||al/|b|] is contained in FTC® and
L16(a)l/|€(b)|] is contained in FTCY.

Proof: By Lemma IX.D.7 and Lemma IX.D.6 we can define

L1(@)|/16@)]] == (un < [€(@)D]IE(a)] < (n+ D)IED)]]



and

Llal/16l] := (#n < aD)lla] < (n + 1){]]-

We are now ready to show FTC® = FTC};.

Theorem IX.D.9 The classes FTC® and FTC,, are the same class of func-

tions.

Proof: It is not hard to see each of the base functions of FTC? can be defined
by some term in Ly. On the other hand, Clote [18] shows the Tt predicates are
computable in FTC? so the base functions of FTCY,, are in FTC?. So it suffices
to show FTCO is closed under {|id|}-sums and FTC{,,, is closed under CR..
Suppose we want to define f by CRN from g(z) and hi(n.z). ha(n. x) functions
in FTCY,4, using |7|-sums. To do this define ¢(a. ) to be

lal
Z cond(mod2(MSP(a, |al = n)). ho(n. x), by (n.x))2"

n=0
and let f(a.x) be g(z) +t(a.x)-2!9. On the other hand, suppose we want to define

the |7]-sum
i€(a)l

fla,z) =Y h(n,z)2"" )

n=0

using C RN where h(n,z) < s(z) are functions in FTC® . We use CR.N to compute

the bits of f from the most significant bit to the least significant bit. The function
t(i, a,x) = la| = [[|/|s" ()]

allows us to determine which term in f we are computing the bits from. The
function

pi.z) = |s"(z)] = (il = Lil/Is"(@)]Is™ (2)]) = 1
gives us the position within a term. Define the function f' by CRN in the following
way:

(2 + 1.2) = f'(26. 1) = 2f(i,z) + Bit(p(i, z). h(t(i. a. ). 7).
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—_

Then the desired f is f'(a#s™(z). ).

. =0, 3 . S
We need the next lemma to show T, "l can x4 --define the functions in

FTC®.

Lemma IX.D.10 The theory Tf 7! proves the following block-estensionality az-
ioms (BLKEX,):

(Vi < If(a)|)(!§(z’, ldl.a) = 3(i, |d|, b) D LSP(a.|{(a)||d]) = LSP(b. |€(b){]d])
where € is in 7. We call the collection of these azioms for any { € T the T-BLNEX
arioms.

Proof:  This is easily proved by IN D} on the following formula A(c) which is
provably equivalent to a I:Ig‘l,_l-formula in T2° 7!
(Vi < [l(a)])(i < cA 33, |d].a) = 3(i.|d|.b)) D
LSP(a.|¢(a)lld]) = LSP(b. |€(b)]]dl).

O

Notice when d = 1 then the BLKFE X, axiom is the BITEX; axiom. So
the -BLA EX axioms imply the 7-BITE X axioms. Our proof above is a variant
of a proof first given in Johannsen [27].

We are now ready to show the Y’-definable functions of C ;.!rl are the

functions in FTC?.
Theorem IX.D.11 The Cy'™ can £b-define the functions in FTC?.

Proof:  The L,-base functions are obviously i'{! (-definable in C*;’-"‘. So it
suffices to show the i‘;l -definable functions of C'o| b are closed under |7]-sums.
Suppose f(i,x)is ¥ _,1 \ deﬁned in 6'2 1™l by the formula Af(i, r,y) with y bounded

by s(i,z) and we want the sum @it g, z) - 2051 Now CI™ proves

(Vi < |€(a)])(Tly < s{i,z)+ D) Ap(i.,y) Ay < s
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Thus, since Ay Ay < s is provably equivalent to a i'{’lfl-formula by f’{”,,-RE PL™
using Lemma INX.D.3, the theory C'g‘lTl proves there is a w less than 2-((s"+1)#{y))

such that:
(Vi < |6))(As G BG, 5" + 1], 5+ Lw)) A B(i.[s" + 1|5 + Low) < 5).

The value w is the desired sum and it can be proven unique by 7-BLK E.\" axioms.

O

To prove the converse of Theorem IX.D.11, we work with sequent calculus
formulations of C3'™". So the II% ,-REPLI™ becomes the rule of inference:

T—(Vz < [¢(5)]) 3y < D) A(z.y), A
T— (3w < 2- (£ #4(s))) (V2 < () Az, B(w. |7, £ w))). A

for 4 in IT§ i and €in 7. We define the witness predicate in the same way as in

Chapter VIII and prove the following witnessing theorem.
Theorem IX.D.12 Suppose
CHMET = A
where T and A\ are cedents of formulas in
LES} 1 U LI A} S}y U LE| Al TG .

Let @ be the free variables in this sequent.
Then there is a FTC? function f which is X8, -defined in C™ such
that:
G - Witk (w, @) D With A(f(w. @), @).

Proof:  This is proved by induction on the number of sequents in an CS*” proof

of T = A. By cut elimination, we can assume all the sequents in the proof are in

LE\:“?.]T! U LI'-lllﬂf:l:.]Tt U LEI"‘!!T[ﬁg.]ri'
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\ost of the cases are similar to previous witnessing arguments we have done. So
we only show the (V : right) case. the open-IND'™ case and the [} -REPL™

case.

(V:right case) Suppose we have the inference:

b<t,T—ADB), A
T—(Vz < t)A(z), A

By the induction hypothesis there is a F TC? function g such that
COM - Withyar(w. &, b) D Withya(g(w.d.b).@.b).

By cut-elimination, (Vz < t)A(z) is either in L|-4|lrlﬁ’6,|r| or is in f-'”!ﬂi'f.;.-s- So
t = |¢(s)| for some term £ in 7. In the first case, let y be (ui < [e(s)])—A(l) and
define f to be g(w,@.y). This is in FTC? be Lemma IX.D.6 and Lemma IN.D.7.

It is not hard to see that
CO = Witk (w.@) D Witlypeioeyava (f(w. @). @),
In the second case, (Vr < t)A(z) is really of the form

(Vz < |€(s))(3y < ) B(x.y)

where B is a I’Ig ;Tg-formula. Since W it!, is provably equivalent to fIb_;l,‘-formula in

EBASIC. its characteristic function Xy, is in FTC?. Let k be the multifunction

Now define f(w,@) from k as follows:

flw.a@) =
[e(s) -1 '
cond(K=(k.|€(s)]), Y B(Lg(w,a j) 2" 3(2. glw.a k)
j=0

It is not hard to see that

=0.! X = " a).ad
Cs ey itr(w,@) D W 'tt(l\-/zgf(s);).ws(f('w-(l)-(l)-
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(open-INDU™) case) Suppose we have the inference

A(b),T—A(Sb), A
1(0), T—A(|e(s)]), A

where 4 is an open formula, ¢ is in 7, and s is in Ly. By the induction hypothesis

there is a FTC? function g such that
=0,{7 .. - - -
CO™ - Wit yyar(w, b, @) D Withy gy (9(w. b, @). . @).

From our definition of the Wit predicate in Chapter VIII and Lemma IN.D.6. we

know FTC? contains Xy, . the characteristic function of this formula. Define

Flaw.@) = g(w. (py < [6()]) (X, (B2 g(w.y.8)).y.@) = 0).2)

The idea is f(w.@) runs g on the least value y less than |¢(s)| that produces a
witness for A. If no such value exists then it must be the case that A(|(]) holds
and so as A is open the cedent is trivially witnessed. From this it is not hard to

show:

~0.|T .. — " a). a
C:Z'i ey zth(o),\l—(w.a) oW Zth(lg(r)|)vA(f(w~a)-(")-

(fIf’,‘l,,| — REPL!™:case) Suppose we have the inference:

F—(vz < [€(s))) By S t)A(z.9), A
T— (3w < 2- (t"#4(s)))(Vz < |€(s)))Alz. (x. |t].t.w))). A

where ¢ is in 7 and s in L,. By the induction hypothesis there is a F TC? function

g such that
GO - Witk (w, @ b) D Withseiosyy@y<nava (9(w, @). @).
For this case, it suffices to notice that the predicates
Witivegispiapgna

and

regl
Wit (3 <ol sy (ve<is)) A
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are the same. Hence. if we let f = g then

0.7t .. - r. —) =
2 T FU Lt[l*('w, a, b) ) A zt(lawS'z-(t'#l(s)))(VISB{).—\VA(f(l“v‘ (L). (l).

0

This completes the cases and the proof.

Corollary IX.D.13
The 38 ,-definable functions of CO'™ are the class FTC?.
The $°-definable functions of C‘g‘“id” are FTCC.

The i'{.ldl-deﬁnable functions of EBASIC are the class of La-terms.

Proof:  The first statement follows from Theorem IX.D.12 when one takes [ to
be the empty cedent and A to be the formula defining the function in question. The
second statement is a consequence of the first statement when 7 = {id} and the
fact FTC*=F TC?id}. The last statement is a consequence of the first statement

when ™ =c¢l. 0

Remark IX.D.14 In view of Corollary IX.D.13 for the i = 0 case of Theo-
rem VIII.B.8 one can actually prove if é{,’"""’ proves [ — A is a sequent of i’i.—
formula k > 1 then there is a Q"'-definable in C'g’lidl. F PZ-1 (wit, 1) multifunction
f such that:

Cildl - Witk (w, @) D Witk s (f(w. @), d).

Corollary IX.D.15 If EBASIC proves (3y)A(z.y) where A is a Ey = &4 -
formula then there is a term t(z) in Ly such that EBASIC proves A(x.t(r)).

In particular, if f is a term in Ly and EBASIC proves (3y)(f(x.y) = 0)
then there is a term t(z) such that EBASIC proves f(z.t(z)) = 0.
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Proof:  Since FTCY is just the functions in L this corollary is a consequence
of Corollary IX.D.13. One can also prove this corollary from Herbrand’s Theorem

and the fact L,-terms can express any open formula. C

Remark IX.D.16 This suggests a weaker program than trying to show i’{ 2
E,. Try to show 3¢ is different from E, for stronger and stronger theories. In
particular. the above corollary shows the E)-definable functions of EBASIC are
just L-terms. We know from Chapter V that the Tb_definable multifunctions of
EBASIC are the class By ;. Consider |_'—§-'J We can express [@J in B, with the

multifunction (IWy < |z|)(t4 = 0) where t4 is an La-term equal to zero iff
3y=|zjv3y+1=|z{V3y+2=|z]|

Using the axiom a +b < a + ¢ & b < ¢ and equality axioms E BASIC can prove
only one of 3y = r, 3y+1 =z, and 3y+2 = x can hold. Suppose y < =. EBASIC
can use the axiom

a>80>(a-b<a-ceb<c)

to argue that 3y + i = z and 3z + j = z cannot both hold where 7. j < 2. Thus.
EBASIC proves the value returned by (Wy < |r{)(ty = 0) is unique. It seems
likely that l_‘—ﬂj cannot be expressed by a Lo-term and so is not Ej-definable.

although at this point the author is unable to prove this.

0 0
IX.E FTCY G FTCY,

Irl =

In this section, we prove FTC), € FTCY,;,. Our method is based ou the

proof in Johannsen {26] that R does not £}-define | $].

Definition IX.E.1 The function #g(z) returns the number of alternations be-
tween 1 and 0 in reading the binary number z from left to right. We start the

counting of this number at 1 so #g(1) = 1.
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As an example, let r be the binary number 1110011 then #4(r) = 3.
Since the number of alternations in x’'s binary notation is always going to be less

than the length of r we have the following easy lemma.
Lemma IX.E.2 Ify < z then #5(y) < |z|.

Proof: This follows since #5(y) < ly| < |z|. a

To prove our results we study the way #p(f(xi.... .x0)) depends on

#p(x;) where f is in FTCI,rl

Lemma IX.E.3 Let g < t. The following inequalities hold:

(a) #a(lz]) < |l

(b) #s(l32]) < #5(2)

(c) #5(MSP(x.1)) < #5(z)

(d) #5(Sr) < #a(x) +1

(e) #plrtty) =2

() #a(c+y) <4 (#a(2) + #5())

(9) #5(z=y) <4- (#a(2) +#a@) + 1)+ 1 ST+ (#al) + #6(y)
(h) #p(z-y) < 14- 23#eE#800 . (dp(r) + #5(y))

(i) #5(X1 g(n. 7) - 271 < |e(a)] + Thy #5(9(n. )

(G) #a(Wi < [t(2)))(f(z.2) = 0)) < [|t(z)]]
Proof:
(a) This follows from Lemma IX.E.2

(b) Since |3z chops off the low order bit of x the number of alternations can at

most stay the same.

(¢) This follows by similar reasoning to (b).



(d)

(g)

(i)

()
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If the low order bits of r is 0 then adding 1 can increase the number of
alternations by at most one since only this bit will be flipped. Otherwise.
adding 1 will toggle the low order block of 1's in z and carry the 1 to the 0

to its left. Again, at most increasing the number of alternations bv 1.
The number r#y is a 1 followed by |z||y| zeros.

First. notice that adding 2¢ to or subtracting 2‘ from r can only increase
the number of blocks in z by at most 2. Since the blocks of 1's in y can
be represented as expressions of the from 27+ — 2. when we perform the
addition we get at most 4 blocks in the new number for every block of 1's in

y. So the new number has fewer than #g(z) + 4#5(y) blocks.

This follows from (f) since if x > y then
pey= (@ 1 (@~ 1 - 1) +y))
and 211+ — 1 — z has at most one more block then r and
(2B — 1 - (27 =1~ x) + )
has at most one more block then (21" —~1 — z) + y.

Consider multiplyving z by a block of 1's 2i+7—2¢. This gives £-2""/ —r2* which
is the substraction of two number each with at most one more alternation
than x. So we get less than 14 - (#g(z) + 1) by (g). There are fewer than
#p(y) blocks of 1's in y. To compute #g(z - y) we need to add together
fewer #5(y) numbers with fewer than 14 - (#g(x) + 1) blocks. If we do this
in a balanced fashion then by (f) we get fewer than 8#8W\(14. (#5(x) +1))

blocks from which the bound follows.

For each term in the sum we get #p(g(n.)) blocks with potentially a lead

block of zeros.

Follows from (a).
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Lemma IX.E.4 If f(£) € FTC?, and #5(z:) < ||zil| then #5(f(L)0 < e (|l i+

r!

coo 4 ||zal|)? for some fized integers ¢ and d.

Proof: This follows from Lemma IX.E.3. (Remember FTCY. has sums of
length at most ||¢(a)|| where £ isin 7.) C
Lemma IX.E.5 The function |£] is definable in FTCTy,.

Proof:  First we note that the binary representation of 1/3 is .10101---. So

[2—'—’,*”—2] can be computed as g(z) = 317,22, So | £] can be defined as

MSP(g(z)-z.2-|z| +2).

1

Theorem IX.E.6 The function |£] is not definable in FTCY,. Hence. FTC?. ¢
FTCYy-

Proof: That |%] isin FTC?M} is Lemma IX.E.5. To see |} is not definable

in FTCY, we use Lemma IX.E.4. Consider | Z25=L| which is a number of length

lz| — 1 of the form 1010---. Hence,

211"':’1 —1

=l -1

#s(|

1

Thus, f does not define |3].

~0,{id}
-_) -

Theorem IX.E.7 The following relation holds Cy'™ ¢ C3' = C

Proof: Using a combination of our results in Chapters IILIV.V" and our result

of this chapter, one can show the Y%-definable multifunctions of Cy'™ are the
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closure of B, under composition and ||7||-sums. By Lemma IX.E.3. in particular

statement (j). we have
#5(f(@)0 < e (leall + - + llzall)*

for anv f in this class. So the same proof as in Theorem IX.E.6 gives the result.

o

It would be nice to refine the #p concept to show t¢-definability is differ-
ent from E,-definability in EBASIC. Unfortunately, the author is not sure how
to do this. One would like try to show if #s(z:) < |lz:l]| and #s(jr:l) < [|fr]il

then

#5(t(2)) < c- (il + -+ + [llzal D

when t is an L,-term. However, #g(|z = y|) in general can be near ||r{].



Chapter X

Collapses and oracle separations

This chapter gives some evidence that certain relationships do not hold

between the various bounded arithmetic theories we have been considering. In the

AT

first section we use a result of Chang and Kadin [30, 17] to show if T} = T, or
T =G orif G = Ti4™1 where 7 contains at least one unbounded iterm
then £F,, = I12,;. It was already known from Kraji¢ek. Pudlak. and Takeuti [35]
that if ¢ = Si*! the polynomial hierarchy collapses to the (i+2)nd level. Buss [15]
and Zambella [52] showed that if 7% = S;*' then Tj proves the polynomial hierarchy
collapses to the (i + 3)rd level. Both of these results make use of Herbrand's
theorem and some combinatorics; whereas, our result is implied by our witnessing
argument characterizations of the A . o-predicates of these theories. It is not hard
to generalize Krajicek, Pudlak. and Takeuti [35] combinatorics to get the first two
statements to imply the hierarchy collapses; however, the third statement seems
harder to show. So we feel our method is of independent interest. After the section
on hierarchy collapses, the rest of the chapter is devoted to showing there is an
oracle X such that PEXO(({[|€]]})) is contained in but not equal to PV ({[¢})
where ¢ is a nondecreasing. unbounded iterm. This result implies many oracle
separations. Some of these separations were obtained independently by Arnold
Beckmann in his Ph.D. thesis [5] using “dynamic ordinal analysis”™ which is a

different technique than ours.

166
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X.A Hierarchy collapses

In this section, we will use brackets in expressions like P% (k] to denote
at most k queries to a $f-oracle and continue using parentheses such as P (k) to
mean O(k) queries. In the combination of the two papers. Chang and Kadin [30. 17]

it is shown that
PEk] = PE[k + 1]

implies T%,, = II?,,. Here k is a fixed number. Let ¢ be a nondecreasing. un-
bounded iterm. We will show that the class PT({|¢|}) has complete problems.
Thus. if

PE({j6}) = P (1)

then in fact

PE({l€]}) = P=[K]

for some fixed k and so

P¥[k] = P [k +1]

implying the hierarchy collapses to the (i + 3)rd level. Let 7 be a set of iterms
containing ¢. Then the A? ,-predicates of [N contain those predicates in
PE'({|¢]}). Similarly. the A?, ,-predicates of T§ contain those predicates in P=(1).
Soif T3 = :_f“"ﬂ the polynomial hierarchy collapses to the (i +3)rd-level. By the

same argument, we get Tj = h;“’h ! implies the hierarchy collapses to the (i+3)rd

-

level and likewise Co'™ = T.;H‘]T,' implies the hierarchy collapses to the (i + 3)rd

level. We now show that the P! ({|¢|}) has complete problems.

Theorem X.A.1 (i > 1) The class PE({|€]}) has problems which are complete

under polynomial-time many-one reductions.

Proof: A polynomial time many-one reduction is a polynomial time function f

from one set A to another set B such that r € A iff f(z) € B. Let 4 be any set



in P ({|¢]}). Consider the set K

{{e. z.y.1°)| The machine coded by e accepts z with fewer than

¢(y) queries to SAT; and in fewer than s steps.}

Here SAT; is the problem of determining whether a closed quantified boolean
formula of i alternations the outermost block being an exists block is valid. It
is known to be TP-complete (see Theorem 17.10 Papadimitriou [37]). We first
show that A is in P=({|€}}). To do this let Al be the machine which on input
(e.x.y.1°) simulates e on z for s steps. If e does not accept by s steps or if at
any time attempts more than |¢(y)| queries then M rejects. Otherwise M accepts.
Since ¢(y) < ¢({e.x,y,1°)) (where we are using our pairing function from before
to make this quadruple), this machine runs in polynomial time making fewer than
|€({e.r.y, 1°))| queries to a Xf oracle. So it is in PE({|€]}).

Now we reduce 4 € PE({|f|}) to K. Without loss of generality we
can assume membership in A4 can be computed by a machine M making fewer
than |£(h(x))| queries to SAT; and running in time p(|z|) where h is an L-term.

Consider the function

f(*L') = (Cm,l‘, h‘('l")~ 1p(|1‘!)).

Here e, is a coding for the machine A/ and is fixed for all z. Certainly, this
function is polynomial time and f(z) € K iff z € A so A is a complete problem

for P=V(|€(x))). C

Corollary X.A.2 (i > 0) The following statements imply £, = T17
(¢) Tj =T,
) 7= 57
(c) C3T =TT

where T and 7' are two sets of iterms such that 7' contains at least one nondecreas-

ing. unbounded iterm.
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Proof: Let ¢ be the unbounded iterm in 7. The above statements follow
from the discussion at the beginning of this section. the fact PEL({}€1}) has com-
plete problems, Corollary VII.A.3, Corollary VIIL.B.9. Corollary VLE.5. and Corol-
lary VIII.B.6. g

The i = 0 case of the last equality is interesting since the Yb_definable
functions of Co1 is the class FTCO. If CHiidlt — BRI or S} then the polynomial
hierarchy collapses. So this gives some indirect evidence that the classes TC? and

NC are not equal.

X.B Oracle results

For rest of this chapter. we will work towards showing there is an oracle
X for which PEII(({])4]1})) is contained in but not equal to PEX({J€]}) where
¢ is a nondecreasing. unbounded iterm. An easy modification to Corollary VLE.S
implies the A2, | (c)-predicates of ToUAY are PEY@(({]1€]]})) and those of T4 are
PE@)(({|€|})). Thus. our separation shows ThE ) ¢ TH%a) where o s a
new l-ary predicate symbol we add to the language of bounded arithmetic without
defining equations. This follows since there is a model of these theories where a
is interpreted as X. By Corollary II.G.14, this shows T;‘Tl(a) C T37(a) for any
7' whose iterms are surpassed by |¢| and for any 7 containing a term surpassing
¢. This result also shows these theories are separated by a il-’_:_l(a)—predicate. We
define W Cg V to mean WNK C VN KA. We define Cx in a similar manner.
With a slight change to Corollary VIIL.B.6 one can show C ;"(a) is B(i’{+l(a))-
conservative over T;’T(a). So our oracle separation will show

737 (@) € 657 (@) Gas, i T27(2) € G57().

As two particular cases of this result we get

@) € G @) Cae ) T @) € CM(0)
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and

Ry(@) C Ry(@) S, @) S2l@) Gt o T3(0)-

-_

The A?,  -predicates of T;~' for i > 1 are PEi(1) by Corollary VIL.A.3. Gener-
alizing this result to where we have « in the language. we can use our oracle to
give us T3 7' («v) 2 3b (a) Ti™ () for any T containing an unbounded, nondecreasing
iterm. On the other hand. consider the theory ‘;’{e}(a) versus TZ‘"._,’H'W”((Y). The
Ab, |-consequences of the former will be the class PE@({|£]}) and of the latter
PE@({J1E1}), so Ta* "1 () Ca_ () TH%(q). That is, the A%, -consequences

of f;“‘“'z”} (a) will be contained in but not equal to the Ab, -consequences of

Tz"’{l} (@) In particular, this shows
Ti(a) € B5"'(a)
and by Corollary VIIL.B.6 for i > 1.

Ti(a) £ R¥\(a).

X.C The oracle separation

Let ¢ be a nondecreasing, unbounded iterm. Our method of oracle con-
struction closely follows [33]. By Corollary VIL.E.6, every predicate in PE{))

can be written in the form
(e < €(s(x)))[A(x.v) A =B(z. v +1)]

where 4 and B are in £¥, and s is an Ly-term. (The converse of this statement
is also true. This is because with |[¢] many queries to a £ oracle one can binary
search for a value v such that 4 held and B did not.) It is not hard to generalize
this statement to show every PEI(N)({|¢|}) predicate, where .\ is an oracle set. can

be written in the form

(Fv < €(s(z)))[A(z. v, X) A=B(z.v + 1. X)]
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where 4 and B are in £?(X). and s is an Ly-term. So the problem of showing
PEMO({11811}) and PEIX)({]€]}) are not equal reduces to giving a problem which

can be solved by predicates of the form
(v < €(s(z)))[A(z. v, X) A=B(z, v + 1. X))

where 4 and B are £?(X') and s is an Ly, but which cannot be solved by predicares

of the form

(v < (214N C(x, v, X) A ~D(z. v + 1. X)]

on infinitely many inputs where C and D are X¥(X), d is a constant.

We now define such a problem. For the remainder of the chapter we
assume ¢ is of the form ¢(2) where ¢ is a nondecreasing. unbounded iterm.
Although the new predicate symbol « is 1-ary we will use pairing to feed it inputs

of higher arity.
Definition X.C.1
1. Fori > 1 we define the following £8(a)-formulas
(a) Vi(x.v.0) ==v =0V @By < (2B )a((z, e )
(b) Wi(r,v,0) =0 =0V (Fy1 < 1)(Vy < (zlog(z))/*)a({r. v 1. 42))
(c)
Viz.v,0) = v=0V Iy <z)(Vy < 2)- - (Qicryiz < 1)

i-z-log(r)

(Qiyi < (___9__)1/2)0((1.. UoYle - - Yi))

where Q;_, is a ¥V if i is odd and an 3 otherwise. Likewise. Q; is a 3 if

1 15 odd and an V¥ otherunse.
2. For i > 1 we define the predicate

Pi(z.a):=
(Fv < 0(x))[(¥i(z. v.) Av = 1mod2 A

i

—(F' < 6x))(' > e ATz a))]
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The  which appears in the inputs to a will be used later in our diagonal-
ization argument. The formulas P!(x. ) will be true if the maximal ¢ satisfving
Ué(z.v. @) is odd. Given the definition of P! and the remarks at beginning of this

section, it is not hard to see the next lemma is true.
Lemma X.C.2 (i > 1) The predicate P{(z, ) is in PS@)(|¢]) for all a C w.

To separate PE()({|]¢]|}) and PZ/(N)(]¢]) we will be working with propo-
sitional translations of the above problem. The virtue of propositional translations
is that they allow us to apply results from Boolean circuit complexity to help solve
our problem. For any fixed number k£ we will use the next definition to give a

propositional translation of the first order formula P{(k.q).

Definition X.C.3 Let n:= (i - klog(k)/2)'/%. We define the propositional trans-
lations U;(k.v) and Ff'k of the formulas ¥i(k,v.a) and Pf(k.X).

1. The variables in @f(k,v) are of the form

Pvyry2ee y-1oyi

for v < €(k) and, for every (i — 1)-tuple y1. Y2, ... .yi-1 < k and for each

y; < n.

2. We define the circuit @e(k v) to be

1

k k

\k/ /\ V ﬂ &pvvyxw-yi

11 =0 y2=0y3=0 yi-1=0y;=0

k k k k
where YW is A ifiis odd and an \/ otherwise. Likewise. Y is a
Yyi-1=0  yi—1=0 yi-1=0 v =0
k k
\ ifiis odd and an A\ otherwise.
y:=0 yi=0

. . stk
3. The circuit P;" 1is

\/ (E,-(k,u)/\ A ﬂﬁi(k,v')).

v<l(k). v odd vt <L(k)
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The essential idea of the above translation is that atomic formulas of the
form a((k.v.y1,42)) get translated as propositional variables py ..., then exis-
tential quantifiers are translated as OR’s and universal quantifiers are translated
as AND’s. Notice no atoms of the form pg,.... ,, appear in ?f’k. This makes sense
since if the maximal v satisfving W¢(k.v. ) is O then Pf(k.a) will be false. Under
the truth assignment given in the next easily verifiable lemma we would also get
that P." is false.

Lemma X.C.4 (i > 1.k >0)
1. Let £ € 7. The circuit Wf(k v) computes the truth value of We(k. v. ) under
the assignment

1 if{k.v,yy,... . 4i) Ea
pv,y;,... BN =

0 otherwise

. . stk :
2. under the same assignment the circuit P;" computes the value of the predicate

Pi(k,a).

The next definition introduces a technical concept needed to apply a
result of Hastad [25)].
Definition X.C.5 1. Let (Bj;); be a partition of the atoms ofﬁf'k into €(k)-k'~!

classes of the form

{Pu,yl ,...,y,_l,y.lyi < (Z_ﬂ;w) 1/2}

one for every choice of yy,...yi-1 <k, v < €(k).

2. Let 0 < g < 1 be a real number. A probability space R; of random restric-
tions is a space of restrictions p determined by the follownng process
(a) Let

*  with probability q
0 with probability 1 — q
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G

lid

(b) and for every atom p € B; let

s; with probability q

p(p) = , _
1 with probability 1 — q

A probability space Ry is defined in the same way as R; except the roles of

0 and 1 are interchanged.

For any p € RS, g(p) is a further restriction and renaming of the atoms

defined for each j as follows:
(a) for j such that s; = * let pj = Poy,.... g1y D€ the atom from B; given
value x by p for the least value of y;.

(b) g(p) gives value 1 to all p € B;, p # p; such that p(p) = *.
(c) g(p) renames p; to Py y,...y;;-

For p € R;. g(p) is is defined as in (4) except interchanging the roles of 0
and 1.

S L Stk
For G a circuit with atoms among those of the circuit P;”. let G* denote
the circuit obtained from G, by performing the restriction p followed by the
restriction g(p). Note that the atoms of G* will now be among the atoms of

=tk
P;".

The next lemma is one of two results we will use from Hastad {25].

Lemma X.C.6 Let q := (2ilog(k)/k)'/? and assume k is sufficiently large. Then

the following three conditions hold.

1.

Let G be a depth 2 subcircuit of -pf'k: That is, G is either an OR of AND's
of size < (i-klog(k)/2)/? or is an AND of OR's of size < (i-klog(k)/2)'/*.
Pick p at random from R7, if G is an OR of ANDs. and from R7 . if it is
an AND of ORs. With probability at least

1 ..
1 —_ _k—l-rl
3
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G? is an OR (resp. an AND) of at least ((i — 1) - klog(k)/2)'"* different
atoms.

2. (i > 3) Pick p at random from R for i even and from Ry for i odd. With
probability at least two-thirds the circuit (_Isf'k)" is ﬁf‘_kl after a suitable re-

naming of variables.

8. (i = 2) Pick p at random from R}. With probability at least two-thirds
the circuit (_P.g'k)” is Ff'n after a suitable renaming of variables, where n is

(klog(k)/2)'/.

Proof:  We sketch the parts of the proof following [34, 12].
(1) Consider G an OR of ANDs and let p € R (the case where G is an
AND of ORs is similar). An AND gate of G corresponds to a class B; of atoms

and after p takes the value s; with probability at least

1-(1- q)lle = 1- (1 _ (Qi lokg(k)) 1/2) (_ugk&_')”l

. 1.
> 1—e"‘°g">1—6k".

Thus, with probability at least 1 — fm™**! this is true of all m ANDs in
G. The expected number of ANDs assigned the values s; and then further assigned
+ rather than 0 by p is k - ¢ = (2ik log(k))'/2. In fact, with probability at least

1 .
1— 2k~
6

we get at least ((i — 1)klog(k))/2)'/? s;’s assigned. To see this let r, be the
probability that exactly u of the ANDs are assigned value * by p. Then r, is the

binomial coefficient

(t) g“(l—q)f ™ = (i) (?i 10:;(k))%“(1 % lokjg(k))k—u

For v < (ik log(k))% it holds that ry/ru_1 > V2 . Also for k sufficiently large.
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k>49ilogk. Asr , < 1. we get the following estimate

ik log{k}) 2
1; }
(2zklog(k))- 20
1
9~z
Y. o < r(%iklog(kn-’fz'
u=0 B u=0
< sk iogien’
S5\~ (1-271/2)(ik log(k))!/?
< 4(\/:) r(%iklog(k))'{'
—(1=2"1/2)(i(49i log(k)) log(k))!/?
< 4(V?2) "(Liklog(k))?
< 4(\/5)-(1—2-‘/2)(7:'log(k))
1 .
< -m™
- 6

So with probability at least

1 ..
1 _ _k—lTl
3

the circuit G? is an OR of at least ((i — 1)k log(k)/2)"/? different atoms.
(2) There are (k)k*~2 subcircuits of depth 2 is ij'k. By our assumption

¢(k) < k. and (1). with probability at least

1—-%€u0k“2

(VR

all of them are restricted by p as described in the conclusion of (1). Thus. after
renaming the atoms, (75,“)” becomes _}sffl.

(3) When i = 2, the circuit U;(k,v) is an AND of size (k log(k))!/? cor-
responding to the k classes B;. By (1) with probability at least (5/6) they are all
assigned the value the value s;. Further, s; is * with probability at least (5 /6) for

at least (klog(k))"/? of these ANDs. O

The next definition gives a notion a truth table reducibility which we will

use to represent propositional translations of predicates in PE@ {11
Definition X.C.7

1. A Boolean circuit s called T3 if

(a) it has depth i + 1 and its top gate is an OR.
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(b) OR’s and AND's gates alternate in levels.
(c) it has at most S gates at each level greater than 2.
(d) its bottom gates have arity at most t.

: . —fk
(e) the inputs to its bottom gates are the atoms or negated atoms of P; .

2. A ttl8 _reducibility of type (i, k.d) is a Boolean formula of the form

f('wl, - ,wm)

inmm < ek yarigbles together with Ef’kf—circuits E,.....E, where S =

ollog k) gnd t = log(S).

9. A tthll_reducibility D of type (i, k,d) computes a function of the atoms of

Stk . . .
P, in the following way: First evaluate w; := E; on the atoms and then

evaluate f(w;.... ,Wn).

Let S = 20g®* for some constant d. Suppose one has a T¢(«) formula
A(F). For a fixed input k one can translate .-1(1?) into propositional formula A(k)
as follows:

(1) If A(k) is of the form t(k) < s(k) or t(k) = s(k) then A(K) is either T or bot

according to the value of the atomic formula on input 4.
(2) If A(K) is of the form a((l?)) where y; are bounds variables then A(k) is D
(3) If .-l(l;) is of the form BoC where o is a binary connective then .-1(/:) is BoC'.
(4) If A(K) is of the form —B then A(k) is ~B.
(5) If A(k) is of the form (3y < t(l:))B(l-c. y) where d is a fixed integer then A(k)

is VIELB(E. ).

(6) If A(K) is of the form (Vy < t(E))B(E, y) where d is a fixed integer then A(k)

is AYS Bk, y)-
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Assume .\'((E)) is an oracle set which is false if k is not of the form (k.voyr. .. yn)-
It is not hard to modify the quantifier bounds of a T X)-formula A so that a
Siiog(s)-circuit can be used to compute the value of A(k) under this translation
and under the truth assignment p; = T iff (E) € X. Given this if A and B are in
8(X), then it follows there is a t#ll_reducibility of type (i.k.d) computing the

value of
(v < (k))[Alk, v. X)A -B(k.v+1,Y)].

We now prove some lemmas designed to show the limitations on ttlléi_reducibilities.

This will allow us to derive our separation results.

Lemma X.C.8 Let G be an AND of OR’s of size < t with atoms among those of
ﬁf‘k. Pick p randomly from R or from Ry .

Then with probability at least
1 - (6qt)°

the circuit GP can be written as an OR of ANDs of size < s.
The same is valid for the probability of the switching an OR of AND's
into an AND of OR'’s.

The proof of the above lemma can be found in Hastad [23].

Lemma X.C.9 Let g := (2ilog(k)/k)"/? and let D be a tt!-reducibility of type
(i.k.d). Pick p at random from Ry or from Ry .
Then with probability at least a -;—

D? .= (f,E},... .Ef)
is a ttlbl reducibility of type (i — 1,k,d).

Proof: Lett=s = (logk)? and apply Lemma X.C.8. The probability that a

depth 2 subcircuit of any Ej fails to be switched is at most

27 log(k)\1/2 (logkyd | .
(Gqt)' = (6(__z_okg(j) (logk)d) & < 92 (logk)!



for large enough k.
There are fewer than (loghk)? - 2°68) such depth 2 subcircuits. so with
probability at least
1 — (logk)? - 27(oeb* 5 1/2
all of them are switched. The switched subcircuits can be combined with the level

3 gates, reducing the depth of the Ej’s by 1. C

Lemma X.C.10 Let D be a ttl-reducibility of type (i.k.d) computing the pred-
icate Pf(k,X) for all X C w.

Then there is a tt -reducibility of type (1. k.d) computing the predicate
P{((klog(k)/2)'/2,Y") for every Y C w.

Proof: By Lemma X.C.4. the predicate P/(k.X) is computed by the circuit
_Pf'k. Lemma X.C.6 and Lemma X.C.9 imply that a random restriction p (drawn
from R7 if i is even and Ry if i odd) has greater than 1/6 chance of simulta-
neously converting _Isf'k into ﬁf’_kl and converting D into a ttlifl-reducibility of
tvpe (i — 1.k.d). Since this probability is nonzero, there is some p which does
this conversion. Applying this conversion (i — 1)-times (for the last iteration use

Lemma X.C.6 (3) ) proves the lemma. O

Lemma X.C.11 (i > 1) For fized d and sufficiently large k there is no ti
reducibility of type (i.k,d) correctly computing the predicate PYk.X) for all X €
w).

fl_reducibility of

Proof: In view of Lemma X.C.10, it suffices to show no ¢!
type (1, k,d) correctly computes P{((klog(k)/2)!/2,Y") for every }" € w.

To begin, let n := (klog(k)/2)"/?, t := log(k)?, and let

D={f:Ei... .En)

. 9{log k o ¢ v
be a ttflreducibility of type (1, k. d). So m < 2WE | Here E; are Sfikw lloghy!_

. . . . . . =y
circuits. For simplicity write P for P.



)

130

In our argument, we will be working with ordered triples (k.v.yp) where
the & is the fixed k in the statement of the lemma. For a finite set X' of ordered
triples (k.v.y,). we write max,(.\') for p = 1,2,3 to denote the largest value of
the pth coordinate appearing in any ordered triple in .X. We define min,(.Y')

similarly. We shall construct a sequence of sets of numbers X. X7. [, satisfying
1. X7 N X7 =0 and for any number (k,v.y) in X we have v < 2s.
2. |X7|<sand [XJUX]| < st
3. I, C{l.....m} and |[| = s.

4. for every Y C w such that
XJCYAX; NnY =0

we have

EY =1
for all j € I,. Here E} denotes the circuit E; evaluated according to Y
where evaluated according to ¥ means a propositional variable p,,, is true

iff (A v, y[> ey.

We begin with Xj” := X; := [y = 0. For stage s + 1. assume we have
X7, X[ . [ satisfying the conditions stated.
Set ¥ := X7. So by condition (4), E]’ =1 for all j € I,. Consider the

following three cases:

(a) DY =1 but maxy(}) is 0 mod2, or DY = 0 but max; (1) is 1 mod2. In this

case STOP.

(b) DY =1 and maxsy(}") is 1 mod2. Consider the set

V= {(ko,m) |

maxy(X7) < v < €2,y <24 v =0mod2. (k.v.y1) € X[}
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By condition (1). (2) and (3). the set 1" is nonempty since

25 < 2m < 2 - MR < BN g(g) < p(2008R)) = £(2")

for sufficiently large k. That 21€EN™" < ¢(k) for sufficiently large k follows

since ¢(k) is unbounded and nondecreasing. That €(k) < £(20080)") follows

since ¢ is nondecreasing. There are two subcases:

(b1)

It is possible to add some element (k.v.y;) € 1" to } to form
Y=Y U {{kov.n)}

such that DY = DY = 1.

In this subcase set X, := X7 U {(k,v.y)} and X, = X[ and
STOP.

There is no (k.v.y;) € V" with property (bl).

Take (k.v.y) in V" such that v = miny(17) and such that (k.c.y}) in
1" implies 4, < y|. Since (bl) does not apply the circuit D evaluated
according to Y U {(k, v.y,)} changes value. There are two subsubcases:
(1) some Ej, for jo & I, received new value 1. (2) some Ej, for jo &
I, received new value 0. In the first case. we set set .\, := \ U
{{k.v.y1)}. As the circuit Ej, is an Sff;f-cir(:uit. it is an OR of ANDs.
One of the ANDs of Ej, must have become true. Add the indices of all
negatively occurring atoms of Ej, to .\, to form X ;. This is correct
since if they were in X7 then the AND in Ej, could not have evaluated
to 1. Similarly, all the positive atoms necessary to make this AND true
must be in X7, ,. In the second case, we want to make sure E), stays
equal to 1 so we set X7, = X. The element (k.v.y)) must occur
negatively in one of Ej,'s ANDs, so we form X by adding to X7 the
element (k. v,y;) and the at most t negatively occuring elements in this
AND. Notice in both cases | X7 || < s+1land [X] UN || <st+t=

(s +1)t. Also notice min,(17) is at most max»(.\") +2. Since the total
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number of elements in X7 U X" is less than st there will always be y's
such that for each sized v > mar,(X]) there is a tuple (k.r.y;) in 1.
Let [,., := I, U {jo} and go to s + 2.

It is easy to check that the new sets X, . \;.,. and [, fulfill condi-

tions (1)-(4).
(¢) DY =0 and max,(Y}’) is even. In this case, let

V= {(k.v.y0) |

max, (V) < v < (2. <28 v=1mod2.(k.v.y) € \[}
and proceed analogously to case (b).

If the construction has not terminated by stage s. then [, C [,.;. Thus.
by condition (3) the construction must halt eventually.

Let Y := X7 for the final s. If during the construction only step (b)
or (c) ever apply then D' does not agree with P because condition (4) would
imply the circuit was constant. yet for sufficiently large & that there are elements
(k,v.y1), (k.v'.y}) in ¥ such that v:=0 mod?2 and such that ¢’ := 1 mod2. If (a)

ever applies then we are also done. Thus. the lemma follows. C

Theorem X.C.12 (i > 1) There is a recursive oracle X' such that

PSf’(J\')({HéH}) C PZf’(,\')({lél})

=

Proof: Ve construct the oracle X' C w such that the predicate Pf(r.X) is not
in PEIY)({je(lid])[})-
By an easy cxtension to Corollary VLE.6, any PEX {1} predicate
can be written in the form
(Fv < 24 [C(z. v, X) A =D(z.v + 1. X)] (N.1)
where C' and D are ¥(X)-formulas and d is a constant. Let F ji”. j=0.1. ...
enumerate all such predicates in P=/(X1(]|€]|). We shall consider successive j's and

build X in stages to ensure that FJW” is not equivalent to the predicare P{(r. \).

[
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Let .\, be the approximation of .\’ constructed in the first 5 stages and
let s+ 1 be the index of the predicate F [ ! to be considered next. Choose k := k|
so large that all numbers considered in the first s stages are small with respect to
k. As we have mentioned earlier, for each fixed number k. formulas of the form
(X.1) can be computed by a tt!¢l-reducibility D in a straightforward way. Let
D'Jﬂ be the reducibility computing ﬁ‘[‘ In the ¥ “'Sl &5)_circuits of D! i evaluate
the atoms with indices corresponding to “n € &” according to A, and set to 0 all
atoms whose indices are not of the form (k.v.y;.... .¥:)-

This leaves us with a t#!'¥!-reducibility of type (i. k. d). which cannot com-
pute Pf(k,Y") correctly for all ¥ C w by Lemma X.C.11. Since a finite }” for which
the reducibility fails was constructed in Lemma X.C.11 whose elements were coding
of triples the first coordinate always fixed at the value k. we can take X, =N, uY
and the reducibility will fail for X;.;. Hence. formula F, ,‘ﬂl will not be equivalent
to Pf(r. X,-1). So Fﬁf will not be cquivalent to P{(r. \') where X =, .\,.

Proceed to s + 2.

This completes the proof. a

The next corollaries follow from the above theorem and the discussion at

the beginning of this section.

Corollary X.C.13 Suppose T surpasses € is a nondecreasing. unbounded iterm

and suppose 7' is surpassed by |¢|. Then:
1 T37 () € G5 (@) Gar, @ T27(@) S C37 ().
2. Ty () 2o, T37():

3. T @) Cao o T3 ).

Al {e)

From the above general result it follows:

Corollary X.C.14 (: > 1,m 2> 0)



. Rya) C Ry(@) Gao_ () S2l@) S

-

-1 Alm~1
2. T, (@) CCy" (@) Gae, o)

3. Ti(a) € RS (a).

. Tile) 2 1,7 (a).
. Ti(a) 2 RS ().

- ’;,m(a) g T2i+l"’l+2(a).

Ab
Al’l

ri.m
2

(@) Ti(a).

(a) C Cy™(a).
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Appendix

The intention of this appendix is to put some of the principle results of
this thesis into pictures or tables in one place in such a way as to be more easily
digestible.

The next corollary summarizes the consequences of our general results to

the well-studied theories Rj. S, and T3.

Corollary A.15

(a)
=i {aptitrih) i it :
Tzl{ } -—<-B(£:':+1)' lz 13 g S l C I‘;-{'-l
Ul Y1B(Zl.,
O S < T
YIB(Zt )F YIB(_,,[)‘
R C S c T

(c) Ria) G L' ()
(d) T3 ' = R} implies TF_; =T}

i+3°

A x " beside an inclusion indicates a new result. A ‘+ beside an inclusion indicates
Y. conservative was previously known. The "~ above the S and T means the theory
with S?H-REPL{““” added. The notation T\ Cy To means the ¥-consequences
of T are contained in Ty. The notation Ty <y T means the T\ C T, and the ¥

consequences of Ty and provable in T,.

Proof:  The above results follow as special cases of our general results listed
below and Theorem ILE.1 which shows 5 = Si and T = T§. We also use the fact
that S'f = C.i'{iid” bv Theorem IL.LE.1 and Theorem VIILA.1. Lastly. we use the

fact that Si*' proves T2, -REPLU}. so Tj Xps0 ) S5t implies Ty < ) T3

a

The diagram in the corollary below summarizes the principle structural

. . T AT . . . .
relationships between 7,7 and C’;‘IT‘ we have established in this thesis.
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Corollary A.16

(a) - | . "
QH-L“TL fB(il?“ Tf_f* A7l U C;-.r;
Mt
T;-‘rl.lrl jB(fj?.,,) C._;—.bl.{-r;
YIB(S?H)
j—i,r __ it C Ti,r#
2 T 42 = 2

=2, 1 ~1.{¢
(b) TEON ) Ci o T3%a)

141

(c) TiHe) 2as o T (@)

(d) T2i+l~{|f(lid!)|}(a) C.&?+L(o) T-,i‘{e}(a)

-

In the above, ¢ is a nondecreasing unbounded iterm.

Proof: (a) This follows from Theorem I1.G.7. Theorem II.G.8. Theorem IL.G.11.
Theorem VIL.B.1. and Corollary VIIL.B.6.
(b). (c), (d) follow from Corollary X.C.13. O

We also show in Corollary X.A.2 the following cqualities imply the col-
lapse of the polynomial hierarchy.
Corollary A.17 (i > 0) The following statements imply £, = TI}_;:
() T3=T,"""
(b) Ti=CyH
(c) C‘.i,lr] _ Ti+l.ir’i
2 =4y .
where T and 7' are two sets of iterms such that 7' contains at least one nondecreas-

ing. unbounded iterm.

Another result we prove in Corollary VI.E.6 and Corollary VIL.C.7 is the

following.

Corollary A.18 (i > 1) The theory T," proves its ;&Ll-[)'l'e(licates can be written



Is7

in the form
(Fv < {(s(z)))[A(z.v) A =B(r.v+1)].

where A and B are L8-formulas and € is a T-term and s is an Lo-term. Further-

more. every 8, My T2, -formula is A% | with respect to T3

The corollary below presents our results concerning multifunctions defin-

able in RS, S} and T.

Corollary A.19

s O Shlk > 2)
T} Lsﬁj} et | Ep=P it poly) | FPSree (wit. 1)
Sj I.Ls(ﬁ{;”' Hwith | ppEl(witlog) | FP st (wit. 1)
Ry | nLS[,, it | ppE! (wit, loglog) | FP -t (wit. 1)

/‘b Ab Y
A AL, Ak >2)

Ty | wLSGy U AL PEle-(1)
rel’'ns

Sy | wLSLh, T | PRl (log) | PR ()
rel'ns

R} ,.Ls{ﬁlf’d“”"‘""“ P (loglog) | PT+-1(1)
rel'ns

Proof: These results follow from Corollary VI.E.2. Corollary VILE.4. Corol-
lary VLE.5, Theorem VIL.A.2. and Corollary VIL.A.3. By relations we mean () —1

valued functions. =

The corollary below presents our results concerning multifunctions defin-

able in 75" and C3'™.

Corollary A.20

£ 5 SCEE]

= i1 ~i+k

Tir | gLgFP TNt | PPl (wit,|r]) | FPTk-(wit. 1)
G| wLsE Y | PP (it |irl) | FPRe- (wit 1)
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) ; b \b (k>
; kY R, AL (k22
[N = wit. r b4
CTaT | ALSEPTTE ) Pl | P (1)
l rel'ns

a st £P_ p

é,.f[ ﬂ’LSﬁlP Vwit.l) PS-(”T“) P:f‘*‘"“(l)

rel’ns

Proof:  As with the last corollary. these results follow from Corollary VLE.2.
Corollary VI.E.4. Corollary VL.E.5, Theorem VIL.A.2, and Corollary VIL.A.3. By

relations we mean 0 — 1 valued functions. c

We list below some of the single-valuedness results proven in this thesis.
Our results imply the Buss [14] result that the Z!-definable functions of T;~" and S}

are the class FPE. Tt should be noted that (d) was previously proven in Bloch {8;.

Corollary A.21

(a) (i > 1) The class of T-bounded i?+l-deﬁnable functions of T_j' is the cluss
r-PFP='(|7)).

(b) (i > 1) The class of T-bounded 2. -definable functions of both 757 and G5
is precisely the class of T-bounded functions in 7-PFPE(|i]]).

(¢c) (i > 1) The class of T-bounded £2-definable functions of both T and G5 s
precisely the class of T-bounded functions in T-PF (iﬂ-’ N4 I:If-).

(d) (i > 1) The X%, -definable functions of S are precisely the class (FNCYHY.

(e) (i > 1) The 2, ,-definable functions of R5™ are precisely the class (FNC)* .

(f) The ﬁ‘{.iﬂ-deﬁnable functions of Ca'™! are the class FTCY?.

Proof: These results follow from Corollary IN.B.7, Corollary IN.B.10. Theo-
rem IX.C.7, and Corollary IX.D.13. a

The next table lists the principle relationships between the various axioms

schemas introduced in this thesis.



159

Corollary A.22 (i > 0) The following ariom schema are equivalent in the pres-

ence of EBASIC:

(a) |
M, ,-REPL™ <« I ,-REPLV™ <« <! ,.REPL™
RS . _

S INDT = ©b, -COMP™(x) = II-REPLT
4

A INDT = SbyND™ > IP-IND™”
¢

TLINDT = ShIND? = M-IND?
$

b NDi

A '« indicates the additional presence of open-I NDi™.
(b)

$0 INDT > $0,-MINT < IB-MINT

t

S GMAXT = II-AANT

(¢c) Sb.,Ny T ,-IND™ = Al . IND™ & Tt -IND"™

Proof: (a) follows from Theorem II.G.8. Theorem II.G.11. Theorem [1.G.10.
Theorem I1.G.7. Theorem VII.C.9. Theorem VIIL.A.1. Theorem IN.A.2. and The-
orem IX.A.G.

(b) follows from Lemma III.C.4.

(c) follows from Corollary VIL.C.7 and Corollary VIL.C.6 c
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ancestor, 63
direct, 66

auxiliary formula. 62

bit-extensionality. 140
block-extensionality, 156
bounded

7. 140

circuit. 145

depth. 146

oracle. 145

size. 146

theshold. 153
circults

family, 146

logspace-uniform. 146
closure

naive product, 40

naive smash, 39

product. 40

smash, 40
comprehension axioms. 119
consistency. 11

cost, D4

190

cut-elimination, 66

descendant. 66
direct. 66
dominator

fort. 9

dynamic ordinal analysis. 166

eigenvariable. 62
endsequent. 60

equality axiom. 62

feasible
answer. 54
computation. 3
free, 66

free-cut. 66

gate. 146

Grzegorczyk Hierarchy. 151

hierarchy
arithmetic, 2
polynomial. 4

prenex. 8

induction terms

iterms. 37



inference
cut. 61
propositional. 60
quantifier, 61
structural. 60
inputs, 146

instantaneous description. 94

local scarch
problem. 53

logical axiom. 62

MRDP Theorem, 151
bounded form. 151

multifunction, 46
composition, 46

neighbourhood, 34
natural proof. 11

operator
117, 46
. 46
oracle separations. 170

outputs. 146

pairing function, 21, 57
parallel function

7. 144
Parikh's Theorem, 67
Peano Arithmetic, 3

prefix induction, 87

191

prenex
formula. 8
prenex theories, 13
principal formula. 62
product closed. 38

projection. 68

proof
LK By-. 62
propositional

proof system. 11

pseudo-random. 12

quantifier
bounded. 7
sharply bounded. 7

query definition. 97

recursion
7-prefix bounded. 88
bounded. 46
concatenation. 152
recursive. 2

recursively enumerable. 2

sequent, 39

lower, 62

upper, 62
sequent calculus. 59
side formula, 62
single-valuedness. 140

smash closed. 38
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Stanley Cup. 34
substitution instance
of a formula, 63
successor formula. 63
sum
7-. 132

surpasses. 43

terms

commonly used L,-. 20

witness predicate. ¥0. 127

witnessing argument, 73
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