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The bounded arithmetic theories Ri
2, Si

2, and T i
2 are closely connected with

complexity theory. This paper is motivated by the questions: what are the
Σb

i+1-definable multifunctions of Ri
2? and when is one theory conservative

over another? To answer these questions we consider theories R̂i
2, Ŝi

2, and
T̂ i

2 where induction is restricted to prenex formulas. We also define T̂ i,τ
2

which has induction up to the 0 or 1-ary L2-terms in the set τ . We show
Ŝi

2 = Si
2 and T̂ i

2 = T i
2 and for i > 1, R̂i

2 ¹B(Σ̂b
i )

Ri
2. We show that the

Σ̂b
i+1-multifunctions of T̂ i,τ

2 are FPΣp
i (wit, |τ |) and that those of R̂i

2 are
FPΣp

i (wit, log log). For Σ̂b
i+k+2-definability we get FPΣp

i+k+1(wit, 1) for
all these theories. Write 2τ̇ for the set of terms 2min(`(x),|t(x)|) where ` is a
finite product of terms in τ and t ∈ L2. We prove T̂ i,2τ̇

2 ¹B(Σ̂b
i+1)

T̂ i+1,τ
2

and we show T̂ i,τ
2 ` ∆̂b

i+1-INDτ provided τ ⊆ O2(|id|). This gives a
proof theoretic proof that Si

2 ` ∆b
i+1-LIND and R̂i

2 ` ∆̂b
i+1-LLIND

solving an open problem. For τ ⊆ O2(|id|), we define Ĉi,τ
2 using weak

replacement axioms and show T̂ i,τ
2 ¹B(Σ̂b

i+1)
Ĉi,τ

2 . We show if T i
2 = T̂ i+1,τ ′

2

or if T i
2 = Ĉi+1,τ ′

2 or if Ĉi,τ
2 = T̂ i+1,τ ′

2 where τ ′ has an unbounded term
then PH = B(Σp

i+2). We separate PΣp
i (A)({||`||}) from PΣp

i (A)({||`||2}) for
behaved ` and deduce theory separations. We lastly introduce a notion of
a model separating two theories and derive some consequences.

Key words: bounded arithmetic, complexity theory, multivalued functions,
conservation results, oracle separations
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1 Introduction

Three families of bounded arithmetic theories, Ri
2 , Si

2, and T i
2, were devel-

oped in Buss [7], Allen [1],Clote-Takeuti [11], and Takeuti [28]. These theories
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have been studied because of their close connection to computational com-
plexity. It is known that the Σb

i -definable functions of Si
2 are FPΣp

i−1 , those
functions computable in polynomial time with access to a Σp

i−1-oracle [7].
The Σb

1-definable functions of R1
2 are the circuit class FNC. It is also known

for i > 1 that Si
2 is Σb

i -conservative over T i−1
2 . Kraj́ıček [17] shows that the

Σb
i -definable multifunctions of Si−1

2 are FPΣp
i−1(wit, log), those multifunctions

computed by Turing machines running in polynomial time with only logarith-
mically many queries to a Σp

i−1-oracle such that if the oracle answers ‘1’ to a
query it also supplies a poly-size witness string.

These results reveal a trend that was the original motivation for this pa-
per. T i−1

2 , Si−1
2 and Ri−1

2 are axiomatized with respectively the usual, log
length, and log log length induction for Σb

i−1-formulas and, in going from
Σb

i -definability in T i−1
2 versus Si−1

2 we go from poly to log many queries
to a Σp

i−1-oracle. One would guess that the Σb
i -definable multifunctions of

Ri−1
2 are FPΣp

i−1(wit, log log). However, the usual witnessing argument fails
for the (∀ : right) case. Nevertheless, if one restricts the inductions in the
definition of Ri

2 to prenex formulas then the Σb
i -definable multifunctions are

FPΣp
i−1(wit, log log). So the natural question becomes is prenex Ri

2, which we
call R̂i

2, equal to Ri
2? As R1

2 is related to FNC this question seems very rele-
vant. Although one can show that the prenex versions of T i

2 and Si
2 are equal

to their non-prenex counterparts it seems difficult to establish this for Ri
2.

This is because the normal recursive doubling trick used to show that Ri
2 can

prove quantifier replacement axioms cannot easily be done in R̂i
2. We show in

this paper, however, that Ri
2 is B(Σ̂b

i)-conservative over R̂i
2 where B stands

for Boolean combinations and Σ̂b
i stands for prenex Σb

i .

Another motivating question was whether Ri
2 is Σb

i -conservative over Si−1
2 .

This is a reasonable conjecture since Si
2 is Σb

i -conservative over T i−1
2 from

Buss [8]. Buss, Kraj́ıček, and Takeuti [10] were not able to solve this problem
but did show that if the theories had a slightly faster growth rate function #3

in the language then the result held. This paper takes up this question in the
prenex setting and gives a general condition for one bounded arithmetic theory
to be conservative over another. We consider theories T̂ i,τ

2 where τ is a set of
1-ary terms up to which T̂ i,τ

2 has Σ̂b
i induction. Let 2τ̇ denote the set of terms

2min(`(x),|x|) where ` is a finite product of terms in τ . We prove T̂ i+1,τ
2 is B(Σ̂b

i)-

conservative over T̂ i−1,2τ̇

2 provided τ ⊆ O2(|id|). Roughly, O2(|id|) is the set of
0 and 1-ary terms ` such that for any x our base theory can prove `(x) ≤ |t(x)|
where t ∈ L2. Since the prenex versions of T i

2 and Si
2 are the same as the non-

prenex versions this result can be used to show Si
2 is B(Σ̂b

i)-conservative over
T i−1

2 a slight strengthening of Buss [8]. For Ri
2 using a modification of this

result we get Ri
2 is B(Σ̂b

i)-conservative over R̂i
2. Then using the τ = {||id||}

case of our result we get R̂i
2 is B(Σ̂b

i)-conservative over T̂
i−1,{2p(||id||)}
2 . Here

id(a) = a is the identity function and {2p(||id||)} stands for terms of the form

2



2p(||id||) where p is some polynomial. Let |id|0 := id and |id|m := ||id|m−1|. In
general, our conservation result can be used to determine the Σ̂b

i−j-definable

multifunctions of T̂
i,{|id|m}
2 provided m ≥ i > j ≥ 0. As an example one can

use our conservation result to show T̂
i,{|||id|||}
2 ºB(Σ̂b

i )
T̂

i−1,{2p(|||id|||)}
2 ºB(Σ̂b

i−1)

T̂
i−2,{22p(|||id|||)}
2 and then by a general argument we can characterise the latter’s

Σ̂b
i−1-definable multifunctions.

One reason to study bounded arithmetic as opposed to just structural com-
plexity theory is to try to show independence of questions like P = NP?
from some sizeable portion of mathematics. It is known that if the bounded
arithmetic hierarchy S2 = ∪iS

i
2 collapses, then so does the polynomial hier-

archy [19,9]. However, it is unknown what does the failure of the bounded
arithmetic hierarchy to collapse imply about the polynomial hierarchy. At
our present state of knowledge, the noncollapse of the bounded arithmetic
hierarchy could imply the collapse of the polynomial hierarchy question is
independent of S2. The theory S2 can formulate facts about the density of
primes, variants of Ramsey’s theorem, and can formalise many arguments
used to show circuit lower bounds [25,22,24]. So this would be a non-trivial
independence result. Nevertheless, it should be easier to separate bounded
arithmetic theories than to separate the polynomial hierarchy. This is because
bounded arithmetic theories have a good deal more structure than mere com-
plexity classes. For a bounded arithmetic theory T not only can one examine
its Σb

i -definability functions, or ∆b
i -predicates for various i but also examine

definability of subclasses which restrict how these functions are defined or
how these proofs of ∆b

iness are carried out. In fact, we give an example in
Remark 78 of two bounded arithmetic theories with the same Σ̂b

j-definable
multifunctions for all j yet are not known to be equal. This is because the
same multifunctions can be defined in each theory using different formulas
and at least one of the two theories cannot prove these formulas are equiva-
lent. Thus, it is interesting to study more restrictive classes of definability in
that it might inspire separation techniques.

Since a distinction apparently arises at the prenex versus non-prenex level,
this seems like a natural setting for such an investigation. We show in this
paper that every Σ̂b

i -definable multifunction of T̂ i,τ
2 is provably equivalent to

a multifunction of a particular syntactic form. Similarly, every ∆̂b
i -predicate

in T̂ i,τ
2 is provably equivalent to a formula of a particular syntactic form. As

an application of this we give a proof theoretic proof that Si
2 admits ∆b

i+1-
induction. This solves open question (10) of Clote and Kraj́ıček [12]. Further
restricting this syntactic characterisation might be helpful in the development
of separation results. The last section of this paper gives some oracle separa-
tions based on our syntactic characterisations. We show that the complexity
characterisation of the ∆̂b

i+2-predicates of T i
2 and T̂ i+1,τ

2 where τ has at least
one unbounded term will not yield separation results for these theories unless
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the polynomial hierarchy is infinite. It should be mentioned that showing the
noncollapse of the bounded arithmetic hierarchy is by no means the only way
to obtain independence results in bounded arithmetic. Some independence re-
sults have already been obtained using interpolation methods. Perhaps the
most cleanly stated of these is Widgersen’s corollary to Razborov [26]: S2

2(α)
does not prove the existence of pseudo-random number generators.

Although it is probably difficult to separate the bounded arithmetic hierarchy,
one might ask whether there is a relativised world where S2 ) Si

2 for all i yet
the polynomial hierarchy collapses? We say a model M separates the theories
A and B with respect to ∆̂b

i(α)-predicates if: (a) M models A and B; (b) the
∆̂b

i(α)-predicates of A are ΨA and those of B are ΨB; (c) M |= ΨA 6= ΨB. We
conjecture there is a single model M separating Si

2(α) for all i with respect
to ∆̂b

2(α)-consequences yet M |= PH(α) = Σp
2(α). Kraj́ıček [17]’s oracle X

shows (N, X) where X interprets α separates Si
2(α) from T i

2(α) for all i and
(N, X) |= PH(α) ↑. Improved lower bound results for constant-depth Frege
systems might establish our conjecture. At the end of this paper, we exhibit
an oracle X such that for all i there is a term ` for which (N, X) separates

T̂
i,{`}
2 (α) from T̂

i,{|`|}
2 (α) for ∆̂b

2(α)-predicates yet (N, X) |= PH(α) = ∆p
2(α).

We now outline the format of this paper. In Section 2, we introduce various
arithmetic theories. Our base theory is EBASIC which extends BASIC from
Buss [7] with axioms for MSP and .− as well as three open axioms that allow
a form of pairing. We define T̂ i,τ

2 and also the classical bounded arithmetic
theories Ri

2, Si
2, T i

2. We discuss some useful properties a set τ of 1-ary terms
can have, then try to justify the three open axioms we selected for EBASIC
by showing R0

2 can prove them. Next we give results about the quantifier re-
placement axioms are available in our theories. In Section 3, we show that
for i ≥ 1 the Σ̂b

i+1-definable multifunctions of T̂ i,τ
2 are FPΣp

i (wit, |τ |). We

show that T̂ i,2τ̇

2 ¹Σ̂b
i+1

T̂ i+1,τ
2 provided τ ⊆ O2(|id|). We then give applications

of these results to EBASIC and R̂i
2. In Section 5 we characterise the Σ̂b

i+k-

definable multifunctions of T̂ i,τ
2 for k > 1 as FPΣp

i+k−1(wit, 1). We show that

T̂ i,2τ̇

k ¹B(Σ̂b
i+1)

T̂ i+1,τ
k provided τ ⊆ O2(|id|). This implies T i

2 ¹B(Σ̂b
i+1)

Si+1
2 . We

then show that T̂ i,τ
2 proves ∆̂b

i+1-INDτ and that T̂ i,2τ̇

2 proves ∆̂b
i+1-IND2τ̇

pro-

vided τ ⊆ O2(|id|). In Section 6 we develop Ĉi,τ
2 defined as EBASIC+open-

INDτ+Σ̂b
i -REPLτ . We show that T̂ i,τ

2 ¹B(Σ̂b
i+1)

Ĉi,τ
2 provided τ ⊆ O2(|id|).

We also show for i ≥ 1 that R̂i+1
2 ¹B(Σ̂b

i+1)
Ri+1

2 . In general, we show for i ≥ 1

that T̂
i+1,||τ ||
2 ¹B(Σ̂b

i+1)
T̂

i+1,||τ ||
2 + Π̂b

i -REPL|τ |. At the end of Section 6 we give

some tables summarising the results proven to this point. The last section
shows some collapse and oracle separations for the theories T̂ i,τ

2 and Ĉi,τ
2 . We

first show if T i
2 = T̂ i+1,τ

2 or if T i
2 = Ĉi+1,τ

2 or if Ĉi,τ ′
2 = T̂ i+1,τ

2 where τ con-
tains an unbounded iterm then PH = B(Σp

i+2). These results can be viewed
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as showing that the property of being ∆̂b
i+2 is not a powerful enough notion

to separate theories with even very weak Σ̂b
i+1 induction from T i

2. We then

construct an oracle X which separates PΣp
i (X)({||`||}) from PΣp

i (X)({||`||2})
where ` is a nondecreasing, unbounded iterm. Separations for theories with
an undefined predicate symbol are then derived. Lastly, the notion of models
separating theories is discussed.

2 Preliminaries

The language of bounded arithmetic, L2, contains the non-logical symbols: 0,
S, +, ·, ≤, .−, b1

2
xc, |x|, MSP (x, i) and #. The symbols 0, S(x) = x + 1, +,

·, and ≤ have the usual meaning. The intended meaning of x .− y is x minus y
if this is greater than zero and zero otherwise, b1

2
xc is x divided by 2 rounded

down, and |x| is dlog2(x + 1)e, that is, the length of x in binary notation.
MSP (x, i) stands for ‘most significant part’ and is intended to mean bx/2ic.
Finally, x#y reads ‘x smash y’ and is intended to mean 2|x||y|. The operation #
is also written #2. In general, x#ky = 2|x|#k−1|y|. The numeral 2 in Si

2 denotes
the presence of #2 in the language; a 3 would indicate the presence of #2

and #3, etc. Lk is the language including #j for 2 ≤ j ≤ k. The exponential
function is not provably total in bounded arithmetic so we need the function
# to do sequence coding.

BASIC consists of all substitution instances of a finite set of quantifier free ax-
ioms for the non-logical symbols of L2. These axioms are listed in Buss [7] with
the exception of the axioms for MSP and .− which are listed in Takeuti [28].
For k ≥ 2, BASICk is BASIC plus the additional axioms |x#jy| = |x|#j−1|y|
where 2 < j ≤ k.

We enlarge the syntax of first-order logic to include bounded quantifiers. These
are quantifiers of the form (∀x ≤ t) or (∃x ≤ t) where t is a term not con-
taining x. The intended meaning of (∀x ≤ t) is (∀x)(x ≤ t ⊃ · · ·) and that
of (∃x ≤ t) is (∃x)(x ≤ t ∧ · · ·). A formula is bounded if all its quantifiers are
bounded. A quantifier of the form (∀x ≤ |t|) or of the form (∃x ≤ |t|) is called
sharply bounded. A formula is sharply bounded if all its quantifiers are sharply
bounded. As usual, a formula is open if it contains no quantifiers.

We define the bounded arithmetic hierarchy as follows: Σb
0 = Πb

0 is the class
of all sharply bounded formulas. Σb

i is the least class containing Πb
i−1, closed

under conjunction, disjunction, sharply bounded universal quantifiers, and
bounded existential quantifiers. Similarly, Πb

i is the least class containing Σb
i−1,

closed under conjunction, disjunction, sharply bounded existential quantifiers,
and bounded universal quantifiers. This hierarchy corresponds in a natural way
to the polynomial time hierarchy. In the standard model Σb

i -formulas describe

5



exactly predicates in Σp
i . Similarly, Πb

i -formulas correspond to Πp
i -predicates.

This correspondence is proven in Buss [7].

We define the prenex bounded arithmetic hierarchy as follows: Σ̂b
0 are those

formulas of the form (∃x ≤ |s|)φ and Π̂b
0 are those formulas of the form (∀x ≤

|s|)φ where φ is an open formula. Σ̂b
i are those formulas of the form (∃x ≤ t)φ

where φ ∈ Π̂b
i−1-formula. Π̂b

i are those formulas of the form (∀x ≤ t)φ where

φ ∈ Σ̂b
i−1. For i ≥ 1, the sets described by Σ̂b

i -formulas and Σb
i -formulas are

equivalent. In Section 2, we show various bounded arithmetic theories prove
this equivalence. Similarly, sets described by Π̂b

i -formulas and Πb
i -formulas are

equivalent. We call any formula in
⋃

i Σ̂
b
i ∪ Π̂b

i a prenex formula.

The classes of Lk-formulas Σb
i,k , Πb

i,k , Σ̂b
i,k , and Π̂b

i,k mutatis mutandis.

2.1 Defining functions and frequently used L2-terms

Let Ψ be a set of formulas. A theory T can Ψ-define a multifunction f(x), if
there is a Ψ-formula Af (x, y) such that T ` ∀x∃yAf (x, y) and N |= Af (x, y) ⇔
f(x) = y. If T proves y is unique then we say T Ψ-defines the function f . We
will be interested in Σb

i and Σ̂b
i -definability. Our notion of Σb

i -definable multi-
function was called strongly Σb

i -definable in Buss, Kraj́ıček, and Takeuti [10].
A predicate is ∆b

i with respect to T if it is provably equivalent in T to both
a Σb

i -formula and a Πb
i -formula. A predicate is ∆̂b

i with respect to T if it
is provably equivalent to both a Σ̂b

i -formula and a Π̂b
i -formula. By adding

a trivial universal quantifier to the outside of a Σ̂b
i -formula one can show

that a given Σ̂b
i -formula is logically equivalent to a Π̂b

i+1-formula, and by

adding a trivial sharply bounded formula in front of the matrix of a Σ̂b
i -

formula one shows the same Σ̂b
i -formula is equivalent to a Σ̂b

i+1-formula. i.e.,

the Σ̂b
0-formula (∃x ≤ |y|)(x = z ∨ ¬(x = z)) is equivalent to the Σ̂b

1-formula
(∃x ≤ |y|)(∀w ≤ |y|)(x = z ∨ ¬(x = z)). Hence, any Σ̂b

i -formula is ∆̂b
i+1 with

respect to any theory. Also, any Π̂b
i -formula is ∆̂b

i+1 with respect to any theory.
Below are some functions BASIC can open-define:

2|y| = 2|y|
1

:= 1#y K=(x, y) := K∧(K≤(x, y), K≤(y, x))

2|y|
n

= 21·|y|n := 2|y|
n−1

#y cond(x, y, z) := K¬(x) · y + K¬(K¬(x)) · z
2k·|y|n := 2|y|

n · 2(k−1)·|y|n 2min(|y|,x) := MSP (2|y|, |y| .− x)

mod2(a) := a .− 2 · b1
2
ac LSP (x, i) := x .−MSP (x, i) · 2min(|x|,i)

K¬(x) := 1 .− x. β̂(x, |t|, w) := MSP (LSP (w, Sx · |t|), x|t|)
K≤(x, y) := K¬(y .− x) Bit(i, x) := β̂(i, 1, x)

K∧(x, y) := x · y β̇(x, |t|, s, w) := min(β̂(x, |t|, w), s).

6



max(x, y) := cond(K≤(x, y), y, x)

min(x, y) := cond(K≤(x, y), x, y)

Notice all of the above definitions are actually L2-terms. The k and the n in
2k·|y|n are fixed integers. Taking products of terms 2k·|s|n we can construct terms
representing 2p(|s|) where p is any polynomial. We use the predicate x < y as
an abbreviation for Sx ≤ y. The above definitions are all L2-terms so can
be used freely in an L2-formula without increasing its quantifier complexity.
It is a theorem of Buss [7] that once we can Σb

1-define a function f in a
bounded arithmetic theory we can add the function symbol to the theory
without changing the Σb

i or Πb
i -consequences of the theory i ≥ 1. A similar

result holds for adding ∆b
1-predicate symbols [7]. We will not need this more

general result, however.

β̂ and β̇ allow some sequence manipulation in our theories. Roughly, β̂(x, |t|, w)
projects out the xth block (starting with a 0th block) of |t| bits from w.
β̇(x, |t|, s, w) returns the minimum of β̂(x, |t|, w) and s. The term cond(x, y, z)
returns z if x is non-zero and y otherwise.

Remark 1 For this paper, A ⊃ B is as an abbreviation for ¬A ∨ B. In
transforming formulas into prenex ones we use the fact that ¬∀x¬ and ∃x are
logically equivalent. This allows us to push negations inward into a formula.

2.2 Bounded arithmetic theories

This section introduces a variety of bounded arithmetic theories. First, we
need some definitions.

Definition 2 Given t ∈ Lk we define a monotonic term t∗ called the domi-
nator for t by induction on the complexity of t. t = t∗ if t is constant or a
variable. If t is S(f) then t∗ is S(f ∗). If t is f ◦ g for ◦ a binary operation
other than .− or MSP then t∗ is f ∗ ◦ g∗. Lastly, if t is f .− g or MSP (f, g)
then t∗ is f ∗.

Definition 3 A set τ of 0- and 1-ary terms in Lk is called a set of k-iterms (k-
induction terms). We call 2-iterms just iterms. If `1 and `2 are k-iterms then
`2 k-surpasses `1, if BASICk ` (∀x)(`1(x) < `2(t(x))) where t ∈ Lk. When
k is understood we just write surpass for k-surpass. We use the suggestive
notation Ok(`) to denote the class of all k-iterms surpassed by `.

Let τ be a set of iterms. The Ψ-INDτ axioms are the axioms IND`
α:

α(0) ∧ (∀x)(α(x) ⊃ α(Sx)) ⊃ (∀x)α(`(x))

7



where α ∈ Ψ and ` ∈ τ . We write INDτ
α for the set of axioms IND`

α for
` ∈ τ .

Ψ-REPLτ where τ ⊆ O2(|id|) are the axioms REPL`
α,s,t:

(∀x ≤ `(s))(∃y ≤ t(x, a))α(x, y, a) ⇔
(∃w ≤ 2 · (t∗(`(s), a)#(2`(s))))(∀x ≤ `(s))α(x, β̇(x, |t∗(`(s), a)|, t, w))

where α ∈ Ψ, ` ∈ τ , and s, t ∈ Lk. We write REPLτ
α for the set of axioms

REPL`
α,s,t for ` ∈ τ .

As an example, let id(a) = a. Then {id} is a set of iterms and Ψ-IND{id} is
the usual induction for Ψ-formulas. Other common sets of iterms are {|id|},
{||id||} or {|id|m} where |id|0 = id and |id|m = ||id|m−1|. We often write IND,
LIND and LLIND instead of IND{id}, IND{|id|}, and IND{||id||}. The set
{|id|m} for fixed m is just a singleton set; however, we will consider sets of

iterms such as {2p(||id||)} or {22p(|||id|||)} where p is any polynomial. Ψ-REPL{|id|}

will be denoted Ψ-REPL. Σ̂b
i -REPL is useful for converting Σb

i -formulas into
Σ̂b

i -formulas. Notice we write |τ | to denote terms of the form |`| for ` ∈ τ .
Let clk denote the closed iterms in Lk. We write cl for cl2. So the Σ̂b

i -INDcl

axioms are provable in BASIC. As another example of choices of τ consider
τ defined as {1#(MSP (x, b1

2
|x|c)}. This grows approximately as 2|

√
x| which

is a potentially interesting growth rate between id and |id|. Iterms need not
be monotonic. Below we show this does not have pathological consequences.

Theorem 4 Let Ψ be closed under term substitution. Let ¬Ψ denote negations
of formulas in Ψ. Then BASIC+Ψ-INDτ proves ¬Ψ-INDτ .

PROOF. Both directions are the same. Let A ∈ ¬Ψ. Then ¬A(y .−x) is equiv-
alent to a Ψ-formula and using Ψ-INDτ on this formula gives us INDτ

A. 2

Definition 5 (i ≥ 0) T i
2, Si

2 and Ri
2 are respectively the theories BASIC+Σb

i-
IND, BASIC+Σb

i-LIND, and BASIC+Σb
i-LLIND.

T̂ i
2, Ŝi

2, and R̂i
2 are defined similarly except with Σ̂b

i induction axioms. We
define LIOpen to be BASIC+open-LIND.

Theorem 6 (i ≥ 0) Ri
2 ⊆ Si

2 ⊆ T i
2 and R̂i

2 ⊆ Ŝi
2 ⊆ T̂ i

2.

PROOF. Both statements are proved similarly. Let A(x) be a Σ̂b
i -formula.

Then INDA implies LINDA and LINDA implies LLINDA, since (∀x)A(x)
implies (∀x)A(|x|) implies (∀x)A(||x||). 2
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In addition to the above theories, we consider the following theories in later
sections:

Definition 7 EBASIC = EBASIC2 is the theory obtained from BASIC by
adding the following three axioms:

(1) b < 2min(k·|d|,|d|2) ⊃ MSP (a · 2min(k·|d|,|d|2) + b, min(k · |d|, |d|2)) = a.

(2) (b < 2|d| ∧ a < 2|d|) ⊃ (β̂(0, |d|, a · 2|d| + b) = b ∧ β̂(1, |d|, a · 2|d| + b) = a).

(3) Si · |a| ≤ k ⊃ β̂(i, |a|, w) = β̂(i, |a|, LSP (w, k))

EBASICk is the theory obtained by adding the above three axioms to BASICk.

Definition 8 (i ≥ 0) Let τ be a set of k-iterms. We define T̂ i,τ
k to be

EBASICk+Σ̂b
i,k-INDτ

and Ĉi,τ
k to be EBASICk+open-INDτ+Π̂b

i,k-REPLτ .

The C in Ĉi,τ
k is for collection axiom, another name used for the replacement

axioms in bounded arithmetic. Ĉi,τ
2 appears in Section 4 and is discussed

in detail in Section 6. The additional axioms in EBASIC allow a form of
pairing in theories where it would be difficult to define. It is not obvious that
R0

2 proves the EBASIC axioms and we devote some time to proving this in
a later subsection. Next, however, we discuss some properties of iterms.

2.3 Properties of iterms

In this subsection we introduce some properties of iterms. We first give two
definitions which will allow us to present our conservation result.

Definition 9 Let τ be a set of iterms. Then the closure of τ under products,
denoted τ̇ , is ∪iσi where σ0 = τ ∪ cl and

σi+1 = σi ∪ {`1(s(x)) · `2(t(x)) | `1, `2 ∈ σi, s, t ∈ L2}.

We write ˙(|τ |) for the product closure of |τ |.

Definition 10 Let τ be a set of iterms. We write 2τ to denote the set of
iterms 2min(`(x),|t(x)|) where ` ∈ τ , t(x) ∈ L2. We define 2 ↑ 0(τ) to be τ and
for i > 0, 2 ↑ i(τ) is 22↑i−1(τ).

We now present a couple results which will be useful in comparing the relative
strength of two theories T̂ i,τ

2 and T̂ i,τ ′
2 in terms of their iterms.

9



Theorem 11 Let Ψ be closed under (∀x ≤ t). If `1 and `2 are iterms and `2

k-surpasses `1, then

EBASICk+Ψ-IND{`1} ⊆ EBASICk+ Ψ-IND{`2}.

PROOF. Let A(a) ∈ Ψ. Then B(b) := (∀x ≤ b)A(x) ∈ Ψ. EBASIC proves
A(0) implies B(0) and (∀x)(A(x) ⊃ A(Sx)) implies (∀x)(B(x) ⊃ B(Sx)).
The surpass condition together with (∀x)B(`2(x)) imply (∀x)A(`1(x)). So,

EBASIC+IND
{`2}
B implies IND

{`1}
A . 2

Corollary 12 (i ≥ 0) Let τ and τ ′ be sets of k-iterms such that every ` ∈ τ

is surpassed by some `′ ∈ τ ′ then T̂ i,τ
k ⊆ T̂ i,τ ′

k .

PROOF. We argue in the next subsection that the three axioms added to
EBASIC over BASIC allow a form of pairing. Given this, the formulas prov-
ably equivalent to Π̂b

i,k-formulas in T̂ i,τ ′
k satisfy the conditions of Theorem 11.

As every ` ∈ τ is surpassed by some `′ ∈ τ ′, T̂ i,τ ′
k proves Π̂b

i,k-INDτ and, thus,

by Theorem 4 it also proves Σ̂b
i,k-INDτ . 2

Corollary 12 shows the power of T̂
i,{`}
2 where ` might not be monotonic since

T̂
i,{`}
2 is contained in any T̂ i,τ

2 which has terms which surpass ` (for instance,

T i
2) and it contains any T̂

i,{`′}
2 involving a monotonic `′ which ` surpasses.

2.4 Pairing in LIOpen

In this subsection, we show LIOpen := BASIC+open-LIND has a form of
pairing. This allows us to increase the class of formulas we know R̂i

2, Ŝi
2, and

T̂ i
2 prove equivalent to Σ̂b

i -formulas. This is useful as these theories prove their
induction schemes for any formula provably equivalent to a Σ̂b

i -formula. We
also begin our justification of our choice of EBASIC axioms. For results about
LIOpen to be useful for all of R̂i

2, Ŝi
2, and T̂ i

2 we show that R̂0
2 ⊇ LIOpen.

Theorem 13 LIOpen ⊆ R̂0
2.

PROOF. Let A(x) ∈ open, B(b) := (∀x ≤ |c|)(A(x) ⊃ A(min(x + 2b, |c|))).
For simplicity we write 2b for 2min(||c||,b). As B ∈ Π̂b

0, by Theorem 4, R̂0
2 proves

LLINDB. R̂0
2 also proves (∀x)(A(x) ⊃ A(Sx)) implies B(0). Further, R̂0

2

proves B(b) ⊃ B(Sb) and B(||c||) ⊃ (A(0) ⊃ A(|c|)). So R̂0
2 ` (∀x)(A(x) ⊃

A(Sx)) ⊃ (A(0) ⊃ A(|c|)). 2
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We now proceed to show LIOpen has a pairing operation.

Lemma 14 LIOpen proves b < 2|d| ⊃ MSP (a · 2|d| + b, |d|) = a.

PROOF. Recall the axioms for MSP in BASIC are MSP (a, 0) = a and
MSP (a, i + 1) = b1

2
MSP (a, i)c. It suffices to prove the following in LIOpen

a ≤ b ⊃ MSP (a, |d|) ≤ MSP (b, |d|) (1)

MSP (a · 2|d| + 2|d| .− 1, |d|) = a (2)

MSP (a · 2|d|, |d|) = a. (3)

To prove (1) consider A(j) := a ≤ b ⊃ MSP (a, j) ≤ MSP (b, j). The first
axiom for MSP implies A(0). Then A(j) ⊃ A(j + 1) follows from the second
axiom. So LIOpen proves A(|d|) := a ≤ b ⊃ MSP (a, |d|) ≤ MSP (b, |d|). For
(2), let B(j) be the formula

MSP (a · 2|d| + 2|d| .− 1, j) = a · 2|d| .−j + 2|d|
.−j .− 1.

Now B(0) follows from the first axiom for MSP and B(j) ⊃ B(Sj) follows
from the second axiom for MSP as well as the axiom for b1

2
xc. Hence, by

LINDB, LIOpen proves B(|d|) which implies MSP (a · 2|d|+2|d| .− 1, |d|) = a.

Finally for (3), let C(j) be the formula MSP (a · 2|d|, j) = a · 2|d| .−j. As with
B(j), the theory LIOpen proves C(|d|) and in turn MSP (a · 2|d|, |d|) = a.
Combining the facts (1), (2), (3) proves the lemma, since a · 2|d| ≤ a · 2|d| + b
and since a · 2|d| + b ≤ a · 2|d| + 2|d| .− 1 provided b < 2|d|. 2

One can generalise the above argument to show:

Corollary 15

LIOpen ` b < 2min(k·|d|,|d|2) ⊃ MSP (a · 2min(k·|d|,|d|2) + b, min(k · |d|, |d|2)) = a.

This was the first of the three axioms we added to BASIC. The next theorem
shows LIOpen has a form of pairing. It also shows LIOpen proves the second
new axiom of EBASIC.

Theorem 16 The theory LIOpen proves

(b < 2|d| ∧ a < 2|d|) ⊃ (β̂(0, |d|, a · 2|d| + b) = b ∧ β̂(1, |d|, a · 2|d| + b) = a).

PROOF. Recall β̂(x, |d|, w) is MSP (LSP (w, Sx · |d|), x · |d|). If a = 0 the
theorem is trivial, so assume a > 0. From the axioms for MSP one sees that

11



LIOpen proves β̂(0, |d|, a · 2|d| + b) is LSP (a · 2|d| + b, |d|). The definition of
LSP implies LSP (a · 2|d| + b, |d|) is

a · 2|d| + b .−MSP (a · 2|d| + b, |d|) · 2min(|a·2|d|+b|,|d|)

As a > 0, LIOpen proves this is a · 2|d| + b .− MSP (a · 2|d| + b, |d|) · 2|d|.
If b < 2|d| then by Lemma 14 LIOpen proves this is just b. Now consider
β̂(1, |d|, a · 2|d| + b) by definition this function is

MSP (LSP (a · 2|d| + b, 2 · |d|), |d|). (4)

Now LSP (a · 2|d| + b, 2 · |d|) is

a · 2|d| + b .−MSP (a · 2|d| + b, 2 · |d|) · 2min(|a·2|d|+b|,2·|d|). (5)

As a < 2|d| and b < 2|d|, we have a · 2|d|+ b ≤ (2|d| .− 1)2|d|+2|d| .− 1 ≤ 22·|d| .− 1.
By an induction as in Lemma 14, LIOpen proves MSP (22·|d| .− 1, 2 · |d|) = 0.
Hence, LIOpen proves MSP (a ·2|d|+b, 2 · |d|) = 0. Thus, equation (5) is equal
to a · 2|d|+ b. So β̂(1, |d|, a · 2|d|+ b) which by definition is equation (4) is equal
to a by Lemma 14. 2

Lemma 17 Let m = max(s(a), t(a, s)) and let t+ := t(a, β̇(0, |m|, s(a), w))
where s(a), t(a, b) ∈ L2. Then LIOpen and EBASIC prove:

(a) (∃w ≤ 22·|m|)A(β̇(0, |m|, s, w), β̇(1, |m|, t+, w))
⇔ (∃x ≤ s)(∃y ≤ t)A(x, y)

(b) (∀w ≤ 22·|m|)A(β̇(0, |m|, s, w), β̇(1, |m|, t+, w))
⇔ (∀x ≤ s)(∀y ≤ t)A(x, y).

PROOF. Both statements are proven in the same way so we only prove the
first. We use equality axioms and logical rules to prove

(β̇(0, |m|, s, b · 2|m| + a) = a ∧ β̇(1, |m|, t+, b · 2|m| + a) = b) ⊃
(A(β̇(0, |m|, s, b · 2|m| + a), β̇(1, |m|, t+, b · 2|m| + a)) ⇔ A(a, b)).

Using Theorem 16, LIOpen proves

(a ≤ s ∧ b ≤ t ∧ A(a, b)) ⊃ b · 2|m| + a ≤ 22·|m| ∧
A(β̇(0, |m|, s, b · 22·|m| + a), β̇(1, |m|, t+, b · 2|m| + a)).
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Existentially quantifying b · 22·|m| + a then universally quantifying a and b,
LIOpen proves

(∃x ≤ s)(∃y ≤ t)A(x, y) ⊃ (∃w ≤ 22·|m|)A(β̇(0, |m|, s, w), β̇(1, |m|, t+, w))

For the other direction LIOpen can derive

c ≤ 22·|m| ∧ A(β̇(0, |m|, s, c), β̇(1, |m|, t+, c)) ⊃
β̇(0, |m|, s, c) ≤ s ∧ β̇(1, |m|, t+, c) ≤ t ∧ A(β̇(0, |m|, s, c), β̇(1, |m|, t+, c)).

Existentially quantifying the terms β̇(1, |m|, t+, c) and β̇(0, |m|, s, c) then uni-
versally quantifying c, we get

(∃w ≤ 22·|m|)A(β̇(0, |m|, s, w), β̇(1, |m|, t+, w))

⊃ (∃x ≤ s)(∃y ≤ t)A(x, y).

2

Lemma 17 enables EBASIC to show a bounded formula is equivalent to a
formula where blocks of like bounded quantifiers have been collapsed into
single bounded quantifiers. The next remark shows how bounded Lk-formulas
can be prenexified.

Remark 18 Let A(a) and B(y) be Lk-formulas such that y does not appear
in A. We recall some useful tautologies

(i) (∀y ≤ t)(A(a) ∧B(y)) ⇔ A(a) ∧ (∀y ≤ t)B(y)
(ii) (∃y ≤ t)(A(a) ∧B(y)) ⇔ A(a) ∧ (∃y ≤ t)B(y)
(iii) (∀y ≤ t)(A(a) ∨B(y)) ⇔ A(a) ∨ (∀y ≤ t)B(y)
(iv) (∃y ≤ t)(A(a) ∨B(y)) ⇔ A(a) ∨ (∃y ≤ t)B(y).

We therefore have induction in R̂i
2, Ŝi

2 and T̂ i
2 for any formula equivalent to a

Σ̂b
i -formula using Lemma 17 and Remark 18.

2.5 Replacement axioms available in prenex theories

In this subsection we show the class of provably Σ̂b
i -formulas in T̂ i,τ

2 is closed
under a form of sharply bounded quantification. We first need a next technical
lemma which shows LIOpen proves the third axiom of EBASIC.

Lemma 19 LIOpen proves Si · |a| ≤ k ⊃ β̂(i, |a|, w) = β̂(i, |a|, LSP (w, k)).

13



PROOF. This proof is somewhat painful so we omit most of the details.
Assume Si · |a| ≤ k and argue informally in LIOpen. We want to show that
β̂(i, |a|, w) = β̂(i, |a|, LSP (w, k)). By definition this is

MSP (LSP (w, Si · |a|), i · |a|) = MSP (LSP (LSP (w, k), Si · |a|), i · |a|).

So it suffices to show LSP (w, Si · |a|) = LSP (LSP (w, k), Si · |a|). Using the
definition of LSP it is not hard to show

LSP (LSP (w, Si · |a|), Si · |a|) ≤ LSP (LSP (w, k), Si · |a|) ≤ LSP (w, Si · |a|).

One argues LSP (LSP (w, Si · |a|), Si · |a|) = LSP (w, Si · |a|) since

LSP (LSP (w, Si·|a|), Si·|a|) = LSP (w, Si·|a|) .−MSP (LSP (w, Si·|a|), Si·|a|)

and one can show MSP (LSP (w, Si · |a|), Si · |a|) = 0. 2

Theorem 20 (i ≥ 1) Ŝi
2 proves Π̂b

i−1-REPL, R̂i
2 proves Π̂b

i−1-REPL{||id||},
and EBASIC proves Π̂b

i−1-REPL{cl}. In general, T̂ i,τ
2 proves Π̂b

i−1-REPL{τ}

provided τ ⊆ O2(|id|).

PROOF. This proof is essentially the same as the proof that was used in
Buss [7] to show the theory Si

2 has Σb
i -REPL. 2

Remark 21 Having replacement for Π̂b
i−1-formulas implies replacement for

both Π̂b
i−2 and Σ̂b

i−2-formulas, since adding dummy quantifiers to formulas in

the latter two classes makes them into Π̂b
i−1-formulas. This quantifier padding

also shows if a theory Σ̂b
i-defines a function it also Σ̂b

i+k-defines that function.

One can improve Theorem 20 for R̂i
2 in the following way.

Theorem 22 (i ≥ 0) Let τ be a set of iterms.

(i) T̂ i,τ
2 = T̂ i,τ̇

2

(ii) T̂ i,τ
2 ` Π̂b

i−1-REPLτ̇ provided τ ⊆ O2(|id|).
(iii) R̂i

2 ` Π̂b
i−1-REPL

˙{||id||}.

PROOF. The proofs of (i) and (ii) are made by similar speed-up arguments
so we will only show (ii) below. (iii) follows from (ii). We now prove (ii). The
set τ̇ is defined inductively. Since σ0 = τ ∪ cl, by Theorem 20,

T̂ i,τ
2 proves the Π̂b

i−1−REPLσ0 axioms. Assume T̂ i,τ
2 proves the Π̂b

i−1−REPLσi

axioms and consider the axiom

14



(∀x ≤ `1(v(a)) · `2(t(a)))(∃y ≤ s(x, a))A(x, y, a) ⇔
(∃w ≤ 2 · (m#2`1(v)·`2(t)))(∀x ≤ `1(v) · `2(t)))A(x, β̇(x, |m|, s, w), a))

where `1, `2 ∈ σi and t, v ∈ L2 and where m is short for s∗(`1(v(a))·`2(t(a)), a).
Let

X = (∀x ≤ `1(v(a)) · `2(t(a)))(∃y ≤ s)A(x, y)

Y (u) = (∃w ≤ 2 · (m#2`1(v(a))·`2(t(a))))(∀x ≤ u · `2(t))A(x, β̇(x, |m|, s, w))

We want to show T̂ i,τ
2 ` X ⇔ Y (`1(v(a))). That T̂ i,τ

2 ` Y (`1(v(a))) ⊃ X is
obvious. The formula Y (u) is equivalent to a Σ̂b

i -formula. Hence, T̂ i,τ
2 proves

IND`1
Y . We also have T̂ i,τ

2 ` X ⊃ Y (0), and by REPL`2
A(x,y),s,t, we have T̂ i,τ

2 `
X ⊃ Y (1). We use REPL`2

A(x+u·`2(t(a)),y),s,t to show X ⊃ (u < `1(v(a))∧Y (u) ⊃
Y (Su)). Thus, T̂ i,τ

2 prove X ⊃ Y (`1(v(a))). 2

2.6 Equivalence results

Another application of Theorem 20 is the following theorem.

Theorem 23 (i ≥ 1) Si
2 = Ŝi

2, T i
2 = T̂ i

2, and Ri
2 = R̂i

2 + Π̂b
i−1-REPL.

PROOF. We can convert any Σb
i -formula to a Σ̂b

i -formula using Lemma 17,
Remark 1, Remark 18, Remark 21, and Π̂b

i−1-REPL. Hence, the above prenex
theories can prove their induction schemes for any Σb

i -formula. 2

It is conjectured that R̂i
2 and Ri

2 are not equivalent since it seems hard to show
R̂i

2 proves Π̂b
i−1-REPL. However, the next result shows R̂i

2 proves Π̂b
i−2-REPL.

Theorem 24 (i ≥ 2) R̂i
2 proves the Π̂b

i−2-REPL axioms and T̂
i,||τ ||
2 proves

the Π̂b
i−2-REPL|τ | axioms.

PROOF. This proof was used by Allen [1] to show Ri
2 proves Σb

i -replacement.
Let A ∈ Π̂b

i−2. Let X := (∀x ≤ |t|)(∃y ≤ s(x, a))A(x, y) and let Y := (∃w ≤
2 · (t#m))(∀x ≤ |t|)(A(x, β̇(x, |m|, s(x, a), w))) where m = s∗(|t|, a). We want
to show R̂i

2 ` Y ⇔ X. That R̂i
2 ` Y ⊃ X is obvious. Let Z(j) be

(∀u ≤ |t|)(∃w ≤ 2(t#m))(∀x ≤ |t|)
[(x ≤ 2min(j,||t||) .− 1 ∧ u + x ≤ |t|) ⊃ A(u + x, β̇(x, |m|, s(x, a), w))].
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R̂i
2 can prove this is equivalent to a Π̂b

i -formula. (Note we are counting sharply
bounded quantifiers in the number of quantifier alternations.) So by Lemma 4,
R̂i

2 proves LLINDZ . It is trivial that R̂i
2 proves X ⊃ Z(0). Also R̂i

2 proves
X ∧ Z(j) ⊃ Z(Sj). Together with LLINDZ this implies X ⊃ Z(||t||). As R̂i

2

proves Z(||t||) ⊃ Y , this completes the proof. The general case is similar. 2

Definition 25 Let τ ⊆ O2(|id|). We write Σb
0,τ (Ψ) or Πb

0,τ (Ψ) to denote the
smallest class containing Ψ and closed under Boolean operations and (∃y ≤
`(t)) where ` ∈ τ̇ and t ∈ L2. For i > 0, we write Σb

i,τ (Ψ) for the smallest
class containing Πb

i−1,τ (Ψ) where, and quantifications of the form (∃x ≤ t) and
(Qx ≤ `(t)) where ` ∈ τ̇ and t ∈ L2. Πb

i,τ (Ψ) is defined mutatis mutandis. We
write Σb

i(Ψ) for Σb
i,{|id|}(Ψ).

Theorem 26 (i ≥ 1) Let τ ⊆ O2(|id|). T̂ i,τ
2 proves any φ ∈ Σb

1,τ (Σ̂
b
i−1) equiv-

alent to some formula in Σ̂b
i . So T̂ i

2 proves INDτ
φ. In particular, R̂i

2 proves

any φ ∈ Σb
1,{||id||}(Σ̂

b
i−1) equivalent to some formula in Σ̂b

i . Further for i ≥ 2,

we can replace Σb
1,{||id||}(Σ̂

b
i−1) in the above with Σb

1,{||id||}(Σ
b
i−1).

PROOF. The T̂ i,τ
2 result follows from Lemma 17 and Theorem 22. We then

use Theorem 24 and the proof of Theorem 23 to show for i ≥ 2 that R̂i
2 proves

every Σb
i−1-formula is equivalent to a Σ̂b

i−1-formula. 2

Theorem 26 has content even for EBASIC since EBASIC is equal to T̂ i,cl
2 .

Theorem 27 (i ≥ 1) R̂i
2 proves the ∆̂b

i-IND2
˙{||id||}

axioms and hence, the
∆̂b

i-LIND axioms. In general, T̂ i,τ
2 proves the ∆̂b

i-IND2τ̇
axioms.

PROOF. Let A(x) be ∆̂b
i in T̂ i,τ

2 . Let AΣ(x) ∈ Σ̂b
i and AΠ(x) ∈ Π̂b

i be
equivalent to A(x). T̂ i,τ

2 proves (∀x ≤ 2min(`(c),|c|))(AΣ(x) ⊃ AΠ(min(x +
2b, 2min(`(c),|c|)))) is equivalent to a Π̂b

i -formula where ` ∈ τ̇ . Call this formula
B(b) and perform the same proof as in Theorem 13. 2

Note if τ 6⊆ O2(|id|), then the min’s which occur in terms in 2τ̇ will kick-in
and we will not get a full exponential speed-up.

Corollary 28 (i ≥ 1) Ŝi−1
2 ⊆ R̂i

2. In general, T̂ i−1,2τ̇

2 ⊆ T̂ i,τ
2 . If i ≥ 2, Si−1

2 ⊆
R̂i

2.

PROOF. The corollary follows from Theorem 23 and Theorem 27. 2
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2.7 Another pairing function

We define another pairing function that we use in our witnessing arguments.

Let B = 2|max(x,y)|+1. So B will be longer than either x or y. Hence, we can code
pairs as 〈x, y〉 := (2|max(x,y)|+y)·B+(2|max(x,y)|+x). To project out the coordi-
nates from an ordered pairs we use β(1, w) := β̂(0, b1

2
|w|c .− 1, β̂(0, b1

2
|w|c, w))

and β(2, w) := β̂(0, b1
2
|w|c .−1, β̂(1, b1

2
|w|c, w)) which returns the left and right

coordinate of the pair w. (The real Gödel beta function projects out β(i, w),
the ith element of a sequence w. However, as we never use this function we
allow the suggestive notation.) To check if w is a pair we use ispair(w) :=

Bit(w, b1
2
|w|c .− 1) = 1 ∧ 2 · |max(β(1, w), β(2, w))|+ 2 = |w|.

The above pairing can also be done in EBASIC. For integers x and y one
can show there is a unique pair w = 〈x, y〉 satisfying ispair(w) and such that
β(1, w) = x and β(2, w) = y.

3 Machine classes and definability in prenex theories

We now give characterisations of the Σ̂b
i+1-definable multifunctions of T̂ i,τ

2

analogous to Kraj́ıček [17]’s characterization of the Σb
i+1-multifunctions of Si

2

as FPΣp
i (wit, log). We show T̂ i,2τ̇

2 ¹Σ̂b
i+1

T̂ i+1,τ
2 provided τ ⊆ O2(|id|). Lastly,

we give a syntactic characterisation of the ∆̂b
i+1-predicates of T̂ i,τ

2 .

3.1 Technical tools

Definition 29 A multifunction is a set f ⊆ N × N such that for all x ∈ N
there exists 〈x, y〉 ∈ f . We express 〈x, y〉 ∈ f as f(x) = y. We write f ◦ g
for the composition of f and g and define (f ◦ g)(x) = z if there is a y ∈ N
such that f(x) = y and g(y) = z. If f is a multifunction and r is a function,
we write f(x) > r(x) if there exists y > r(x) such that f(x) = y. We define
f(x) < r(x) if there exists y < r(x) such that f(x) = y.

Definition 30 If f(x) = y is a multifunction defined in T by a predicate
Af (x, y) where y is provably bounded by t, then by the expression T ` B(f(x))
for some formula B we mean T ` (∃y ≤ t(x))(Af (x, y) ∧B(y)).

Definition 31
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A multifunction f is defined by τ -bounded primitive recursion (BPRτ
k) from

g and h, t, r ∈ Lk, and ` ∈ τ if

F (0,x) = g(x)

F (n + 1,x) = min(h(n,x, F (n,x)), r(n,x))

f(n,x) = F (`(t(n,x)),x).

We write BPRτ for BPRτ
2.

Before we define the class FPΣp
i (wit, |τ |), we need to discuss the witness oracle

machine model we will use. One natural choice would be to have a determin-
istic, three tape machine with a work tape, an oracle tape, and an oracle
response tape. Queries would be written on the oracle tape and whenever a
query state was entered, the answer ‘1’ or ‘0’ would appear in one step on
the oracle response tape and the oracle response tape head would be on this
symbol. In the case of a ‘1’ answer, a dollar sign would be placed after the
‘1’ followed by a witness to the correctness of the oracle response. An initial
configuration of such a machine would have the input x on the work tape and
the other tapes blank. The output of such a machine would be the content of
its work tape when a halt state is entered. Let us call these kinds of machines
witness oracle Turing machines (WOTM). These machines, although natural,
are not completely adequate for our purposes. The problem is that a theory
T i,τ

2 can in general only effectively reason about sequences of lengths it has
induction up to. For τ with slow growing terms, this can easily be sublin-
ear, hence, the computations these theories can reason about will be sublinear
time. We, thus, want our machine model to be able to handle sublinear time
computations, yet have these computations still produce polynomial length
outputs. We do two things to get around this problem. First, we change the
initial configuration so that the run-time bound of the computation is initially
written on the work tape, the input x is written on the oracle tape followed
by a dollar sign, and the oracle response tape is blank except for a dollar sign
in the second square. The run-time bound on the work tape allows us to use
it as a clock for the computation. The x on the oracle tape allows us to have
queries about the whole input and not have to worry about the linear time it
would take to copy it from the work tape. The second modification we make
is we view the oracle response tape after the dollar sign as being partitioned
into blocks of squares of some size r(x) where x is the input and where r ∈ L2.
When a halt state is entered, we now define the output of the machine as be-
ing the contents of the first such block. Since witnesses to ‘1’ answers can be
polynomial in length, we have solved our problem. Call this kind of machine a
BWOTM for blocked-WOTM . We will discuss the relationship between these
two models after the next definitions.

Definition 32 (i ≥ 1) F [|τ |]Σ
p
i

2 (wit) is the class of multifunctions f computed
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by a BWOTM M which on input x runs in time |`M(h(x))| for some `M ∈ τ̇
and h ∈ L2 and which makes queries to an Σp

i -oracle.

Since cl ∈ τ̇ the machines in this class can always make at least O(1) many
queries. Depending on ` and h it is possible for two different inputs of the

same length to an F [|τ |]Σ
p
i

2 (wit) machine to have different run-time bounds.
We put |·| outside the `(h(x)) to keep our notation and some of our arguments

simpler. To avoid this issue one can consider the subclass of F [|τ |]Σ
p
i

2 (wit) of
machines with h is of the form g(2|x|).

Definition 33 FPΣp
i (wit, |τ |) is the class of multifunctions computable by

polynomial time WOTMs which use fewer than |`(h)| witness queries to a
Σp

i -oracle in for some ` ∈ τ̇ and h ∈ L2. PΣp
i (|τ |) is the class of predicates

in FPΣp
i (wit, |τ |) computable by WOTM ’s that do not look at the witnesses

returned by the oracle. FPΣp
i (wit, s) and PΣp

i (s) for some single function s
are the classes where the number of queries on inputs of length n is bounded
by O(s(n)).

In the first definition above |τ | is a set of terms and the bound on the number
of queries might be different for two inputs of the same length; whereas, in
the third definition there is a single bound on the number queries which is
a function of the length of the input. In the case where |τ | consists of only
one term |`| we write FPΣp

i (wit, {|`|}) rather than FPΣp
i (wit, |`|) to make this

distinction clear. Given our definitions above what we call FPΣp
i (wit, log) is

what Buss, Krajicek, and Takeuti [10] call strong-FPΣp
i (wit, log). Given the

restricted nature of the class F [|τ |]Σ
p
i

2 (wit), the next result, which is based on
a result in [10], is somewhat surprising.

Theorem 34 (i ≥ 1) F [|τ |]Σ
p
i

2 (wit) = FPΣp
i (wit, |τ |).

PROOF. Let M ∈ F [|τ |]Σ
p
i

2 (wit). We give a machine N ∈ FPΣp
i (wit, |τ |)

accepting the same language. On input x, N computes |`(h(x))|, where ` ∈
τ̇ and h ∈ L2, and then begins simulating M . After M halts, it writes as
its output the contents of the first block of M ’s oracle tape. Now suppose
M ∈ FPΣp

i (wit, |τ |) with number of queries bounded by |`(h)| for ` ∈ τ̇ and
h ∈ L2. We can assume the number of tape squares changed on any tape
during M ’s computation x is less than |x|r for some fixed r. Consider the

following procedure on an F [|τ |]Σ
p
i

2 (wit) machine N .

Input x$ /∗ The $ immediately follows x on the query tape.∗/
Forj = 1, . . . , |`(h(x))|

/∗ |`(h(x))| = max. # of queries in M . The counter is implemented on
the work tape. The instructions below are for the query tape.∗/
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If j 6= 1 then move right on oracle tape.
Write 1 on oracle tape.
Ask oracle:
“Is there a valid computation of M on the input x with the first
j queries answered by the string to the right of the dollar sign?”∗/
Enter query state.
If square under oracle response head = 0 Write 0 on oracle tape

End For

The run-time of N is bounded by some constant times |`(h)| so will be less than
some iterm in τ̇ . To see that the above oracle query is Σp

i let (∃z ≤ t)A(q, z) be
M ’s oracle. A Σp

i machine can guess a sequence of configurations of M on x and
verify that the first configuration is a valid initial configuration and subsequent
non-oracle configurations follow from their immediate predecessors. In the case
of an oracle query, the Σp

i machine checks that the query answer matched what
N said it was. In the case of a ‘1’ answer we check also that the witness z
returned satisfies A(q, z). This is a Πp

i−1 query so a Σp
i machine can do it.

Since N is choosing ‘1’ answers greedily we do not have to verify ‘0’ answers
are correct. The oracle’s encoding for each step of M ’s computation has length
3|x|r where the first |x|r blocks are used to encode the contents of M ’s work
tape, the second |x|r squares are used to encode the state of M ’s oracle tape,
and the last |x|r square used to encode the contents of M ’s oracle response
tape. We require that the encoding of steps of M is right to left so that the
last step of M ’s computation appears to the right of the dollar sign of the
oracle response tape. We use |x|r as our block size for N ’s oracle tape. The
output of the above N will thus be the final contents of the work tape of a
valid computation of M on input x. i.e., the output of the machine M . 2

3.2 Defining machine classes in prenex theories

We now use Theorem 34 to show T̂ i,τ
2 can Σ̂b

i+1-define FPΣp
i (wit, |τ |). Notice

this will show EBASIC can Σ̂b
i+1-define FPΣp

i (wit, 1) since T̂ i,cl
2 = EBASIC.

In particular, this shows EBASIC can Σ̂b
2-define FPNP (wit, 1) which contains

FP . This is not as surprising as it may at first seem. Since all the theories we
are considering are classical they can prove excluded middle for any formula.
Hence,for any Σ̂b

1-formula A(x, y), EBASIC can prove

(∃y ≤ t + 1)[(∃z ≤ t)(A(x, z) ∧ y = z)∨
(∀z ≤ t)(¬A(x, z) ∧ y = t + 1)].

which is equivalent in EBASIC to a Σ̂b
2-formula and is one witness query to

an NP oracle. With a single such query one can guess a polynomial time com-
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putation, so already one has FP . EBASIC can prove its Σ̂b
2-multifunctions

closed under composition and one can view the content of Theorem 34 in this
case as saying the class FPNP (wit, 1) reduces to a finite composition of NP
witness queries. This said, EBASIC’s ability to prove properties of it Σ̂b

2-
definable multifunctions is severely limited since it does not have induction.

Theorem 35 (i ≥ 1) T̂ i,τ
2 can Σ̂b

i+1-define the FPΣp
i (wit, |τ |) multifunctions.

PROOF. By Theorem 34, it suffices to show T̂ i,τ
2 can Σ̂b

i+1-define any M ∈
F [|τ |]Σ

p
i

2 (wit). Suppose M(x) ∈ F [|τ |]Σ
p
i

2 (wit) uses oracle Ω(q) and runs in
time |`(h)| for ` ∈ τ̇ and h ∈ L2. We write this Σp

i -oracle as (∃z ≤ t(q))B(z, q)
where B ∈ Π̂b

i−1 and t ∈ L2.

An instantaneous description (ID) of M is a 7-tuple (the notion of 7-tuple is
defined using composition of ordered pairs) of the form: 〈u, x, o, w, tqL, tWL , tWR 〉.
Here u represents the state of M , x represents the input, o represents the first
square of the oracle response tape, w represents any witness returned by the
oracle, tqL is a number which after deleting the most significant bit represents
the contents of the query tape to the left of the dollar sign, tWL is a number
which after deleting the most significant bit represents the visited squares to
the left of work tape head, and tWR is a number which after deleting the most
significant bit represents the visited squares to the right of the work tape head.
Notice in view of the proof of Theorem 34 we do not have to worry about the
head on the oracle tape moving left, also we can assume the oracle response
tape is read-only.

Following [10] we define a precomputation of M to be a sequence of ID’s of M ’s
execution with respect to an unspecified oracle. We can put an upper bound
on the size of an ID based on M ’s runtime and use this upper bound as a
block size in our encoding of this sequence. We access this sequence’s elements
with the β̇ function. A precomputation specifies that the first ID of M must
be of the form: 〈1, x, 0, 0, 1, 1, 1〉. It also specifies that each ID must follow
from the previous according to M ; however, when M enters a query state, the
next ID can have either 0 or 1 as the oracle response and if 1 is the response
it can have anything for the witness. Since M ’s runtime is less than |`(h(x))|
for some ` ∈ τ̇ , and h ∈ L2, we can write a formula checking if a number codes
a precomputation with a single quantifier of the form (∀j ≤ |`(h(x))|).

A Q-computation is a precomputation in which the ‘1’ answers are correct
for the oracle Ω but the ‘0’ answers are not required to be correct. We define
QCompM(w, x, v) to be the following formula:

QCompM(w, x, v) := w is a precomputation of M(x) and
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(∀j ≤ |`(h(x))|)(YAns(w, j) ⇔ Bit(|`(h(x))| .− j, v) = 1)

and (∀j ≤ |`(h(x))|)(Bit(|`(h(x))| .− j, v) = 1 ⊃
CorrectYes(w, j))

Here YAns(w, j) says the first oracle square of the jth ID in precomputation w
was ‘1’. It can be defined with an open formula using β̇ and using projections
of the pairing function. CorrectYes(w, j) is just the predicate QueryState(j) ⊃
B(z, q), where q is the contents of oracle tape at time j and z is the minimum
of t(q) and the witness on the oracle tape at time j. QueryState(j) is true iff
M was in a query state at time j − 1 (time j − 1 since the oracle responds in
the step after a query was entered), this can be checked with an open formula.
Both z and q can be defined as L2-terms so CorrectYes(w, j) is a Π̂b

i−1-formula.

Hence, QCompM is provably equivalent in T̂ i,τ
2 to a Π̂b

i−1-formula. Since the
number of distinct IDs in a computation of M on input x is bounded by
|`(h(x))|, v in QCompM can be bounded by `′(h) := 2|`(h(x))| ∈ 2τ̇ . This also
bounds the number of potential queries. An M -computation w can be bounded
by an L2-term t dependent on the length of M ’s IDs. Since these IDs contain
oracle witnesses t need not be sharply bounded. As QCompM is provably
equivalent to a Π̂b

i−1-formula, Ψ := (∃w ≤ t)QCompM(w, x, v) is provably

equivalent to a Σ̂b
i -formula. However, if v = 0 then QCompM is equivalent

to a Π̂b
0-formula in EBASIC using Lemma 17 and noticing the bound on

the pair can be bounded by a term of the form |q|. So T̂ 1,τ
2 proves there is

a precomputation of x with all the oracle answers 0 using INDτ
QCompM (w,x,0).

Thus, T̂ 1,τ
2 ` (∃w ≤ t)QCompM(w, x, 0). Let A(u) be

(∃v ≤ `′(h(x)))(∃w ≤ t)(QCompM(w, x, v) ∧ v ≥ u).

We just showed A(0). The formula A is provably equivalent to a Σ̂b
i -formula, so

using INDτ̇
A axioms which are provable in T̂ i,τ

2 by Theorem 22, we either have
A(`′(h(x))) or (∃u < `′(h(x)))(A(u) ∧ ¬A(u + 1)). Hence, there is a maximal
v ≤ `′(h(x)) for which (∃w ≤ t)QCompM(w, x, v) holds. All of the ‘1’ answers
in v must be correct since QCompM holds. We argue that T̂ i,τ

2 proves all the
0 answers must also be correct. Suppose the jth ‘0’ was incorrect. We could
change it to a ‘1’ and set the lower order bits to ‘0’, thus, making a number
v′ > v. Now from ∃wQCompM(w, x, v) we can show

T̂ 1,τ
2 ` (∃w′)QCompM(w′, x, v′)

by letting w′ be w up to the jth query, then coding a ‘1’ with a valid witness on
the response tape for the jth query and then coding M ’s computation where
all the answers to subsequent queries are ‘0’.

Therefore, T̂ i,τ
2 proves M(x) has a computation with correct oracle responses.

Define Out(w, x) using β and MSP to take a precomputation w and output
the contents of the first block of the witness string. For i ≥ 1, T̂ i,τ

2 proves:
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(∀x)(∃y)(∃v ≤ `′(h′(x)))[

(∃w ≤ t)(Out(w, x) = y ∧QCompM(w, x, v))

∧¬(∃v′ ≤ `′(h′(x)))(∃w′ ≤ t)(v′ > v ∧QCompM(w′, x, v′)]

and the formula inside the (∃y) is equivalent to a Σ̂b
i+1-formula using Theo-

rem 26, Remark 18, and Lemma 17. 2

3.3 Query definability

To prove the converse of the above theorem we need that T̂ i,τ
2 can Σ̂b

i+1-define

the composition of FPΣp
i (wit, |τ |) functions in a “nice” way. First, we make

precise our definition of “nice”.

Definition 36 A multifunction f(x) = y is Qi,τ -defined in T by a formula

B(x, y) := (∃v ≤ `(s(x)))[(∃w ≤ t)(Out(w, x) = y ∧ A(x, w, v))

∧¬(∃v′ ≤ `(s(x)))(∃w′ ≤ t)(v′ > v ∧ A(x,w′, v′))].

where A ∈ Π̂b
i−1, Out(w, x), s ∈ L2, and ` ∈ τ if N |= B(x, y) ⇔ f(x) = y

and T ` (∀x)(∃y ≤ t)B. In addition, A(x,w, 0) must be provable equivalent
to a Π̂b

0-formula in T and T must prove (∃w ≤ t)A(x,w, 0). The formula B
is called a Qi,τ -definition of f .

Buss [8] gives a variant of Qi,τ -definition. The formula B(x, y) in the above
definition is equivalent to a Σ̂b

i+1-formula in T̂ i,τ
2 so if f is Qi,τ̇ -defined in

T̂ i,τ
2 , it will also be Σ̂b

i+1-defined in T̂ i,τ
2 . The proof of Theorem 35 shows any

f ∈ FPΣp
i (wit, |τ |) is Qi,τ̇ -definable in T̂ i,τ

2 . However, it is unclear from this
whether given an f ∈ FPΣp

i (wit, |τ |) which is Σ̂b
i+1-definable in T̂ i,τ

2 by Af (x, y)

that T̂ i,τ
2 can prove Af (x, y) equivalent to a Qi,τ̇ -definition.

Lemma 37 If a multifunction f(x) = y has a Qi,τ̇ -definition, then f ∈
FPΣp

i (wit, |τ |). The predicate f(x) = 1 is computable in PΣp
i (|τ |).

PROOF. Let

B(x, y) := (∃v ≤ `(s(x)))[(∃w ≤ t)(Out(w, x) = y ∧ A(x, w, v))

∧¬(∃v′ ≤ `(s(x)))(∃w′ ≤ t)(v′ > v ∧ A(x,w′, v′))].

where A ∈ Π̂b
i−1, Out(w, x), s ∈ L2, and ` ∈ τ̇ be a Qi,τ̇ -definition of f .

Using the Σp
i -query [(∃w ≤ t)A(x,w, v)?], one can binary search for a maximal

v ≤ `(s(x)) such that (∃w ≤ t)A(x,w, v) holds, then compute and output
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Out(w, x) from the witness w returned by the query. This takes log(`(s(x))
queries which will be O(`′(h(x))) queries for some `′ ∈ |τ | and h ∈ L2. In
the f(x) = 1 case, one finds a maximal v in the same manner (this does
not require a witness oracle), and then for this v make the Σp

i -query does
[(∃w ≤ t)(A(x,w, v) ∧Out(w, x) = 1)?]. 2

Lemma 38 (i ≥ 1) The theory T̂ i,τ
2 proves its Qi,τ̇ -definable multifunctions

are closed under composition.

PROOF. Suppose f and g are Qi,τ̇ -definable in T̂ i,τ
2 where f is defined by

proving Bf :=

(∀x)(∃y ≤ tf )(∃vf ≤ `f (sf (x))))[

(∃wf ≤ tf )(Outf (wf , x) = y ∧ Af (x,wf , vf ))

∧¬(∃v′f ≤ `f (sf (x))))(∃w′
f ≤ tf )(v

′
f > vf ∧ Af (x,w′

f , v
′
f ))].

and g is defined by proving Bg similarly. To define h = g ◦ f , we define
Ch := (∀x)(∃y ≤ tg(tf (x))Dh where Dh is

(∃vf ≤ `f (sf (x))))(∃vg ≤ `g(sg(tf (x))))[(∃wf ≤ tf )(∃wg ≤ tg(tf (x)))

(Outg(wg, x) = y ∧ vg ≤ Out(wf , x) ∧ Af (x,wf , vf ) ∧
Ag(Out(wf , x), wg, vg))

∧¬(∃v′f ≤ `(sf (x)))(∃v′g ≤ `g(sg(tf (x)))))(∃w′
f ≤ tf )(∃w′

g ≤ tg(tf (x)))(

(v′f > vf ∨ (v′f = vf ∧ v′g > vg ∧ v′g ≤ Out(w′
f , x))) ∧ Af (x,w′

f , v
′
f ) ∧

Ag(Out(w′
f , x), w′

g, v
′
g))].

Since T̂ i,τ
2 proves Bg and Bf , it proves Ch. Now Ch can be converted into the

desired Bh using Theorem 26 and pairing. In the pairing we bound the size
of 〈vf , vg〉 by (`f (sf ) · `g(sg))

3 ∈ τ̇ then use cond to guarantee vf ≤ `f (sf )
and vg ≤ `g(sg). Using the fact that when vf and vg are 0, Af and Ag will

be equivalent to Π̂b
0-formulas, it is not hard to check when vh is 0, Ah will

be equivalent to a Π̂b
0-formula in T̂ i,τ

2 and T̂ i,τ
2 ` (∃wh ≤ th)Ah. Thus, h is

Qi,τ̇ -definable in T̂ i,τ
2 . 2

Lemma 39 (i ≥ 1) Let τ ⊆ O2(|id|). The theory T̂ i,2τ̇

2 proves its Qi,2τ̇
-

definable multifunctions are closed under BPRτ̇
2.

PROOF. Recall f is defined by BPRτ̇
2 from g, h, F , k, and r if

F (0,x) = g(x)
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F (n + 1,x) = min(h(n,x, F (n,x)), r(n,x))

f(n,x) = F (`(k(n,x)),x)

where r, k ∈ L2 and ` ∈ τ̇ . Suppose g, h are Qi,2τ̇
-definable in T̂ i,2τ̇

2 . Let
h′(n,x, z) be min(h(n,x, z), r(n,x)). This is Qi,2τ̇

-definable by Lemma 38. Let
g be defined by proving

(∀x)(∃y ≤ tg)(∃vg ≤ `g(sg))[

(∃wg ≤ tg)(Outg(wg,x) = y ∧ Ag(x, wg, vg))

∧¬(∃v′g ≤ `g(sg))(∃w′
g ≤ tg)(v

′
g > vg ∧ Ag(x, w′

g, v
′
g))].

where `g ∈ 2τ̇ and let h′ be defined by proving

(∀n,x, z)(∃y ≤ t′h)(∃vh′ ≤ `h′(sh′))[

(∃wh′ ≤ th′)(Outh′(wh′ , n,x) = y ∧ Ah′(n,x, z, wh′ , vh′)) ∧
¬(∃v′h′ ≤ `h′(sh′(n,x, z)))(∃w′

h′ ≤ th′)(v
′
h′ > vh′ ∧ Ah′(n,x, z, w′

h′ , v
′
h′))].

where `h′ is in 2τ̇ . Without loss of generality we can assume `g(sg(x)) ≤
`h′(sh′(0,x)) for all x. Define mt to be t∗h′(n,x, r(n,x)) and define ms to be
`h′(s

∗
h′(n,x, r(n,x),mt)). Let Af (n,x, w, v) be

Ag(x, β̂(0, |mt|, w), β̂(0, |ms|, v)) ∧ (∀j < |`(k(n,x))|)
Ah′(j,x, Outh′(β̂(j, |mt|, w), n,x), β̂(Sj, |mt|, w), β̇(Sj, |ms|, `h′(sh′), v))

As Ag, Ah′ ∈ Π̂b
i−1, T̂ i,2τ̇

2 proves Af is equivalent to a Π̂b
i−1-formula. Notice

when v is 0, Af will be equivalent to a Π̂b
0-formula using pairing and the fact

that Ag and Ah′ will be equivalent to Π̂b
0-formulas in this case by the definition

of Qi,2τ̇
-definability. So T̂ i,2τ̇

2 can prove (∃wf ≤ 2 ·2`(k)·|mt|)Af (n,x, wf , 0) from

the Qi,2τ̇
-properties of Ag and Ah′ . Using Σ̂b

i -IND2τ̇
on A(u) :=

(∃vf ≤ 2 · 2`(k)·|ms|)(∃wf ≤ 2 · 2`(k)·|mt|)(Af (n,x, wf , vf ) ∧ vf ≥ u)

as we did in Theorem 35, T̂ i,2τ̇

2 can define f by proving

(∀n,x)(∃y ≤ r)(∃vf ≤ 2 · 2`(k)·|ms|)[

(∃wf ≤ 2 · 2`(k)·|mt|)(Outf (wf , n,x) = y ∧ Af (n,x, wf , vf )) ∧
¬(∃v′f ≤ 2 · 2`(k)·|ms|)(∃w′

f ≤ 2 · 2`(k)·|mt|)(v′f > vf ∧ Af (n,x, w′
f , v

′
f ))].

Here Outf (wf , n,x) is Outh′(β̂(`(k(n, x)), |mt|, wh′), n,x). Since ` ∈ τ̇ and
since ms is in 2τ̇ , the term 2 · 2`(k)·|ms| is boundable by a term in 2τ̇ . 2
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The next lemma shows closure under a slightly different recursion scheme.

Lemma 40 (i ≥ 1) Let τ ⊆ O2(|id|). The Qi,2τ̇
-definable multifunctions of

T̂ i,2τ̇

2 are closed under:

F (0,x) = g(x)

F (n + 1,x) = min(h(n,x, F (n,x)), r(n,x))

f(n,x) = F (min(n, `(t(n,x))),x)

where g, h are Qi,2τ̇
-definable , r, t ∈ L2 and ` ∈ τ̇ .

PROOF. To define f we first define f ′ with

F ′(0,x) = min(g(x), r(0,x))

F ′(n + 1,x) = min(F ′(n,x) + min(h(n,x, β̂(n, |m|, F ′(n,x))), r) · 2c·|m|

, 2(n+1)|m|)
f ′(n,x) = F ′(`(t(n,x)),x)

where m = r∗(`(t),x). From f ′ we define f as β̂(min(n, `(t)), |m|, f ′(n,x)). 2

4 The sequent calculus and cut-elimination

Until now we have not specified the deduction system in which we perform
T̂ i,τ

2 and Ĉi,τ
2 proofs. To show the converse of Theorem 35; however, we work

in the sequent calculus reformulating the induction and replacement axioms
as rules of inference. Buss [7] or Takeuti [27] describe the sequent calculus.

Definition 41

A Ψ-INDτ inference is an inference:

A(b), Γ → A(Sb), ∆

A(0), Γ → A(`(t(x))), ∆

where b is an eigenvariable and must not appear in the lower sequent, t ∈ Lk,
` ∈ τ , and A ∈ Ψ.

Let τ ⊆ O2(|id|). A Ψ-REPLτ inference is an inference of the form:

Γ → (∀x ≤ `(s(a)))(∃y ≤ t(x, a))A(x, y), ∆

Γ → (∃w ≤ 2 · (m#2min(`(s),|s|)))(∀x ≤ `(s))A(x, β̇(x, |m|, t(x, a), w)), ∆
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where A ∈ Ψ, ` ∈ τ , s, t ∈ Lk, and m := t∗(`(s), a).

Buss [7] has shown that one gets the same theory if one formulates Si
2 or T i

2

with induction axioms or induction rules. The same sorts of proof work in the
T̂ i,τ

2 and Ĉi,τ
2 case [23].

Given a set Ψ of prenex formulas let LΨ be the formulas which can be made
into Ψ-formulas by padding the left hand side with zero or more dummy
quantifiers. The next result is the primary reason why we use the sequent
calculus and why we formulate T̂ i,τ

2 and Ĉi,τ
2 with rules of inference. The proof

relies on cut-elimination and is the same as in the Si
2 and T i

2 case which are
in Buss [7]. We write Aτ to mean a quantifier (∀x ≤ `(t)) where ` ∈ τ and
t ∈ L2. Similarly, we write Eτ to mean a quantifier (∃x ≤ `(t)) where ` ∈ τ
and t ∈ L2. We write A and E for A{id} and E{id}. So an EA{|id}Σ̂b

1-formula

would look like (∃x ≤ t)(∀y ≤ |s|)A where A is a Σ̂b
1-formula.

Theorem 42 (i ≥ 0, k ≥ 1)

Let Ψ ⊇ LΣ̂b
i,k be closed under subformulas and under Lk-term substitutions.

Let Γ → ∆ be a sequent of Ψ-formulas provable in EBASICk or T̂ i,τ
k . Then

Γ → ∆ has a proof in which only Ψ-formulas occur.

Suppose τ ⊆ O2(|id|). Let Ψ containing LAτ Σ̂
b
i+1 ∪ LEAτ Π̂

b
i be closed under

subformulas and closed under Lk-term substitutions. Let Γ → ∆ be a sequent
of Ψ-formulas provable in Ĉi,τ

k . Then Γ → ∆ has a proof in which only Ψ-
formulas occur.

In particular, Theorem 42 says a sequent of LΣ̂b
i -formulas provable in T̂ i,τ

2 has
a T̂ i,τ

2 -proof in which only LΣ̂b
i -formulas occur.

4.1 The witness predicate

Let T be one of EBASIC2, T̂ i,τ
2 , or Ĉi,τ

2 . By Parikh’s Theorem [21], T can
Σ̂b

m-define a function f if and only if there is a Σ̂b
m-formula Af (x, y) and a term

t ∈ L2 such that T proves (∀x)(∃!y ≤ t)Af (x, y). For a multifunction one does

not have to show uniqueness. An EΣ̂b
m-formula is a formula (∃y ≤ t)A where

A ∈ Σ̂b
m. We define a witness predicate as follows.

If A(a) ∈ LΠ̂b
m−1 or A(a) ∈ LΣ̂b

m−1 then WitmA (w, a) := w = 0 ∧ A(a).

If A(a) is (∃x ≤ t(a))B and A ∈ Σ̂b
m then WitmA (w, a) := w ≤ t(a) ∧B(w, a).

If A(a) is (∃x1 ≤ t1)(∃x2 ≤ t2)B and A ∈ EΣ̂b
m then
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WitmA (w, a) := ispair(w) ∧ β(1, w) ≤ t1 ∧ β(2, w) ≤ t2 ∧
B(β(1, w), β(2, w), a).

Thus, WitmA is equivalent in EBASIC to a Π̂b
m−1-formula or a Σ̂b

m−1-formula.
The witness predicate above is simplified from Buss [7]. The simplification
arises because we are in the prenex setting. From the definition of witness the
next useful properties follow:

Lemma 43 (m ≥ 1) If A(a) ∈ LEΣ̂b
m, then: (a) EBASIC ` WitmA (w, a) ⊃

A(a). (b) There is a tA so that EBASIC ` A(a) ⇔ (∃w ≤ tA(a))WitmA (w, a).
(c) For tA, EBASIC ` WitmA (w, a) ⊃ w ≤ tA.

PROOF.

(a) This statement is immediate from the definition of WitmA .

(b) If A ∈ Σ̂b
m then tA is just the bounds on the outermost existential quanti-

fier. Otherwise, if the outermost two existential quantifiers are bounded by t1
and t2, their pair is bounded by 22·(|max(t1,t2)|+1).

(c) Follows from (b) and the definition of WitmA . In particular, the definition
of ispair forces any pair for a witness to be unique. 2

For a cedent Γ = {A1, . . . , An} we use ∨Γ (resp. ∧Γ) to denote the disjunction
(resp. conjunction) of its formulas. We write w = 〈〈w1, · · · , wn〉〉 to denote
pairings of the form 〈w1, 〈w2, · · · , 〈wn−1, wn〉 · · ·〉〉. We will use this convention
in defining witnesses for Witm∧Γ and Witm∨Γ.

We define Witm∧Γ(w, a) by induction. If Γ = ∅, define Witm∧Γ(w, a) to be w = 0.
If Γ = {A} then Witm∧Γ(w, a) is WitmA (w, a). If Γ = {A1, . . . , An}, let Γ′ be
{A2, . . . An} and set Witm∧Γ(w, a) to be WitmA1

(β(1, w), a)∧Witm∧Γ′(β(2, w), a).

We now define Witm∨Γ(w, a). If Γ = ∅, define Witm∨Γ(w, a) to be ¬(0 = 0). If Γ =
{A} then Witm∨Γ(w, a) is WitmA (w, a). If Γ = {A1, . . . An}, let Γ′ be {A2 . . . An}
and define Witm∨Γ(w, a) to be WitmA1

(β(1, w), a)∨Witm∨Γ′(β(2, w), a) where tAj

are from Lemma 43.

From the above definition EBASIC proves Witm∧Γ is equivalent to a formula
of the form A∧¬B and Witm∨Γ is equivalent to a formula of the form C ∨¬D
where A,B, C, D ∈ Σ̂b

m−1. From this it is not hard to show these predicates
are Qm−1,cl-definable in EBASIC.

Lemma 44 (m ≥ 1) Let Γ, ∆ be cedents of LEΣ̂b
m-formulas with free vari-

ables a. There is a term tΓ such that EBASIC ` Witm∧Γ(w, a) ⊃ w ≤ tΓ and
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EBASIC ` Witm∨Γ(w, a) ⊃ w ≤ tΓ.

There is also a term tΓ such that

EBASIC ` (∃w ≤ tΓ)Witm∧Γ(w, a) → (∃w ≤ t∆)Witm∨∆(w, a)

if and only if EBASIC ` Γ → ∆.

PROOF. This follows from the definition of witness for a cedent, the fact that
witnesses for a cedent are made up of pairs, and by the bounds for witnesses
for formulas given by Lemma 43. 2

The pairing function and β-functions of the last section are computable in
FPΣp

i (wit, |τ |) and are Qi,τ̇ -definable in T̂ i,τ
2 .

4.2 Some witnessing arguments

We use a witnessing argument to prove the converse of Theorem 35.

Theorem 45 (i ≥ 1) Suppose T̂ i,τ
2 ` Γ → ∆ where Γ and ∆ are cedents of

LEΣ̂b
i+1 ∪ LΣ̂b

i formulas with free variables among a. Then there is a Qi,τ̇ -

defined in T̂ i,τ
2 multifunction f ∈ FPΣp

i (wit, |τ |) such that:

T̂ i,τ
2 ` Witi+1

∧∧Γ (w, a) ⊃ Witi+1
∨∨∆ (f(w, a), a).

The meaning of Witi+1
∨∨∆ (f(w, a), a) is interpreted using Definition 30.

PROOF. This is proved by induction on the number of sequents in an T̂ i,τ
2

proof of Γ → ∆. By cut elimination, we assume all the sequents in the proof are
in LEΣ̂b

i+1 ∪ LΣ̂b
i . In the base case, the proof consists of an EBASIC axiom,

a logical axiom, or an equality axiom. In each case the witness predicate is the
original formula. So we choose f to be the constant zero function. To define f
for logical inferences, cut inferences, structural inferences, (∃:right) or (∀:left)
is relatively simple and can be found in similar arguments in Kraj́ıček [18].
We prove the remaining cases.

(∃:left case) Suppose we have the inference:

b ≤ t, A(b), Γ → ∆

(∃x ≤ t)A(x), Γ → ∆

29



By hypothesis there is a Qi,τ̇ -definable g ∈ FPΣp
i (wit, |τ |) such that

T̂ i,τ
2 ` Witi+1

b≤t∧A∧Γ(w, a, b) ⊃ Witi+1
∨∆ (g(w, a, b), a, b).

There are three subcases to consider. In each case, we need to determine a value
for b and then run g on that value. In the first case, (∃x ≤ t)A(x) ∈ EΣ̂b

i+1.
If w witnesses (∃x ≤ t)A(x) ∧ Γ, then β(1, β(1, w)) is a value for b such
that A(b) holds and β(2, β(1, w)) is a witness for A(b). So let f(w, a) :=
g(〈〈0, β(2, β(1, w)), β(2, w)〉〉, a, β(1, β(1, w))). Then

T̂ i,τ
2 ` Witi+1

(∃x≤t)A∧Γ(w, a) ⊃ Witi+1
∨∆ (f(w, a), a).

In the second case, (∃x ≤ t)A(x) ∈ Σ̂b
i+1. If w witnesses (∃x ≤ t)A(x) ∧ Γ,

then β(1, w) is a value for b such that A(b) holds. Let

f(w, a) := g(〈〈0, 0, β(2, w)〉〉, a, β(1, w)).

Then

T̂
i,|τ |
2 ` Witi+1

(∃x≤t)A∧Γ(w, a) ⊃ Witi+1
∨∨∆ (f(w, a), a).

The last subcase is when (∃x ≤ t)A(x) ∈ LΣ̂b
i or (∃x ≤ t)A(x) ∈ LΣ̂b

i−1.
Define f as above except rather than use β(1, β(1, w)) or β(1, w) for b use the
multifunction which queries a witness oracle about (∃x ≤ t)A(x). If the latter
is satisfiable then the oracle returns a value satisfying it. Notice β(1, β(1, w))
in f in this case is null.

(∀:right case) Suppose we have the inference:

b ≤ t, Γ → A(b), ∆

Γ → (∀x ≤ t)A(x), ∆

By hypothesis there is a Qi,τ̇ -definable g ∈ FPΣp
i (wit, |τ |) such that

T̂ i,τ
2 ` Witi+1

b≤t∧Γ(w, a, b) ⊃ Witi+1
A∨∆(g(w, a, b), a, b).

By cut-elimination, (∀x ≤ t)A(x) ∈ LΠ̂b
i . Thus, (∃x ≤ t)¬A(x) ∈ Σp

i . So we
can ask an oracle for a value b ≤ t such that ¬(A(b)) holds. If such a value
exists set f(w, a) = g(〈0, w〉, a, b). If no such value exists we let f(w, a) = 〈0, 0〉
since (∀x ≤ t)A(x) must be a valid LΠ̂b

i -formula.

(Σ̂b
i-INDτ case) Suppose for an ` ∈ τ and r ∈ L2 we have the inference

A(b), Γ → A(Sb), ∆

A(0), Γ → A(`(r(c, a))), ∆
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then by hypothesis there is a Qi,τ̇ -definable g ∈ FPΣp
i (wit, |τ |) such that

T̂ i,τ
2 ` Witi+1

A(b)∧Γ(w, b, a) ⊃ Witi+1
A(Sb)∨∆(g(w, b, a), b, a).

Let f ∈ FPΣp
i (wit, |τ |) do the following: First, f computes v = `(r(c, a)) and

queries [A(v)]? If the answer is ‘1’ then f outputs the witness. If A(v) is valid
any value will witness it and hence the succedent will be witnessed. If the
answer was ‘No’, f queries [A(0)?]. If it receives ‘No’ as a reply it outputs 0;
the antecedent will be false. If the reply was ‘1’, then f binary searches for a
d ≤ v such that A(d) but not A(Sd). This takes O(|v|) many queries to A(d).
T̂ i,τ

2 can prove by a Σ̂b
i -INDτ using (∃w ≤ t)QCompMf

(w, x, v) for the Mf

that does this computation that the value returned by f is such that A(d) but
not A(Sd). Using this value of d, f can run g(w, a, d) to get a witness for the
succedent. This step involves only a composition of Qi,τ̇ -definable functions in
FPΣp

i (wit, |τ |). Thus,

T̂ i,τ
2 ` Witi+1

A(0)∧Γ(w, a) ⊃ Witi+1
A(`(r))∨∆(f(w, a), a).

This completes the cases that remained to be shown and the proof. 2

Notice if we had tried to carry out the above argument in EBASIC+Σb
i -

INDτ , then in the (∀ : right) case A could be a Σb
i+1\Πb

i formula if t were of
the form |s|. So our argument above would not work. In fact, for τ containing
terms of slower growth rate than |id| it seems hard to come up with a witness
function for the lower sequent in this case.

Theorem 46 (i ≥ 1) Let τ ⊆ O2(|id|). Suppose T̂ i+1,τ
2 ` Γ → ∆ where Γ and

∆ are cedents of LEΣ̂b
i+1-formulas with free variables among a. Then there is

an f ∈ FPΣp
i (wit, τ̇) which is Qi,2τ̇

-defined in T̂ i,2τ̇

2 such that:

T̂ i,2τ̇

2 ` Witi+1
∧∧Γ (w, a) ⊃ Witi+1

∨∨∆ (f(w, a), a).

PROOF. This is proved by induction on the number of sequents in a T̂ i+1,τ
2

proof of Γ → ∆. By cut elimination, we assume all the sequents in the proof are
in LEΣ̂b

i+1. All cases except for the (Σ̂b
i+1-INDτ ) case are as in Theorem 45.

We now do this last case.

(Σ̂b
i+1-INDτ case) Suppose we have

A(b), Γ → A(Sb), ∆

A(0), Γ → A(`(s)), ∆

where ` ∈ τ and s ∈ L2. We assume a contains all free variables except
b in the upper and lower sequent. By hypothesis there is a Qi,2τ̇

-definable
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g ∈ FPΣp
i (wit, τ̇) such that

T̂ i,2τ̇

2 ` Witi+1
A(b)∧Γ(w, b, a) ⊃ Witi+1

A(Sb)∨∆(g(w, b, a), b, a).

Informally, the idea to witness the lower sequent is the following: run g on w a
witness for A(0), Γ. Either this witnesses A(Sb) or it witnesses ∆. In the latter
case, we are done. In the former case, we run g on the witness just produced
for A(S0) together with β(2, w) which is supposed to be a witness for ∧Γ. We
keep repeating this process until we get a witness for ∆ or we finally get a
witness for A(`(s)). More formally, using Lemma 40, we Qi,2τ̇

-define a function
f by BPRτ̇

2 in the following way. First, we let

k(v, w, a) = cond(Witi+1
∨∆ (β(2, v), a), w, v).

This is Qi,2τ̇
-definable in T̂ i,2τ̇

2 by the comments after the definition of the
witness predicate, Lemma 38 and since L2-terms are easily Qi,2τ̇

-definable in

T̂ i,2τ̇

2 . Then we define

F (0, w, a) = 〈β(1, w), 0〉
F (b + 1, w, a) = min(k(F (b, w, a), g(β(1, F (b, w, a)), β(2, w), a)),

tA(Sb)∨(∨∆)(b, a)

f(u,w, a) = F (min(u, `(s)), w, a).

Recall tA(Sb)∨(∨∆)(b, a) is the term bounding witness size for A(Sb)∨ (∨∆) by

Lemma 44. f will be in FPΣp
i (wit, τ̇) by Lemma 37. Now

T̂ i,2τ̇

2 ` Witi+1
A(0)∧Γ(w, a) ⊃ Witi+1

A(0)∨∆(f(0, w, a), a). (6)

Also, it is not hard to show

T̂ i,2τ̇

2 ` Witi+1
A(0)∧Γ(w, a) ∧ Sb ≤ `(s) ∧Witi+1

A(b)∨∆(f(b, w, a), b, a) ⊃ (7)

Witi+1
A(Sb)∨∆(f(Sb, w, a), Sb, a).

We show this implies

T̂ i,2τ̇

2 ` Witi+1
A(0)∧Γ(w, a) ⊃ Witi+1

A(`(s))∨∆(f(`(s), w, a), a).

First, we Qi,2τ̇
-define h by BPRτ̇

2 as:

H(0, w, a) = f(0, w, a)

H(b + 1, w, a) = f(b + 1, w, a) · 2(b+1)·|m| + H(b, w, a)

h(w, a) = H(`(s(a)), w, a)
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where min’s have been deleted for readability and where m = t∗
A(Sb)(`(s),a)∨

∨
∆
.

There are L2-terms bounding the above sum. Now let h be Qi,2τ̇
-defined by

Bh(w, a, w′). From (7) above

T̂ i,2τ̇

2 ` Bh(w, a, w′) ∧Witi+1
A(0)∧Γ(w, a) ∧ Sb ≤ `(s)

∧Witi+1
A(b)∨∆(β̂(b, |m|, w′), b, a) ⊃ Witi+1

A(Sb)∨∆(β̂(Sb, |m|, w′), Sb, a).

By Π̂b
i -IND2τ̇

on Witi+1
A(b)∨∆(β̂(b, |m|, w′), b, a) and by (6), this implies

T̂ i,2τ̇

2 ` Bh(w, a, w′) ∧Witi+1
A(0)∧Γ(w, a) ⊃

Witi+1
A(`(s))∨∆(β̇(`(s), |m|, w′), `(s), a).

Hence, from the definition of h, T̂ i,2τ̇

2 proves

T̂ i,2τ̇

2 ` Witi+1
A(0)∧Γ(w, a) ⊃ Witi+1

A(`(s))∨∆(f(`(s), w, a), a).

2

4.3 Implications of the witnessing argument

We end this section with some corollaries of the above theorems.

Corollary 47 (i > 1) Suppose τ ⊆ O2(|id|).

T̂ i−1,2τ̇

2 ¹Σ̂b
i
T̂ i,τ

2 = T̂ i,τ̇
2 .

We thus have: (1) T i−1
2 ¹Σ̂b

i
Si

2 and (2) T̂ i−1,2{p(||id||)}
2 ¹Σ̂b

i
R̂i

2.

PROOF. Suppose T̂ i,τ
2 = T̂ i,τ̇

2 proves A(a) ∈ Σ̂b
i . By Theorem 46, T̂ i−1,2τ̇

2

proves WitiA(f(w, a), a) where f ∈ FPΣp
i−1(wit, τ̇). So by Lemma 43, T̂ i−1,2τ̇

2 `
A. (1) follows if τ = {|id|}. T̂ i−1,2

˙({|id|})
2 has induction up to terms of the form

2p(|s|) which could also be the bound in the conclusion of a IND inference. (2)
follows if τ = {||id||}. 2

Corollary 48 (i ≥ 1) A multifunction f is Σ̂b
i+1-definable in T̂ i,τ

2 iff f ∈
FPΣp

i (wit, |τ |). So the Σ̂b
i+1-definable multifunctions of T i

2, Si
2, R̂i

2, EBASIC

are FPΣp
i (wit, poly), FPΣp

i (wit, log), FPΣp
i (wit, log log), and FPΣp

i (wit, 1).
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PROOF. For the ‘if’ direction use Theorem 35. Otherwise, by Theorem 45
when we take Γ empty and ∆ to be an EΣ̂b

i+1-formula (∃y ≤ t(x))A(x, y)

provable in T̂ i,τ
2 , there is a Qi,τ̇ -defined, FPΣp

i (wit, |τ |) multifunction f such
that T̂ i,τ

2 `→ Witi+1
(∃y≤t)A(x, f(x)). By the definition of witness we have T̂ i,τ

2 `→
A(x, β(1, f(x)). So β(1, f(x)) give at least one value such that A(x, y) holds.
Let M be the machine for β(1, f(x)). Using M we will construct a machine
M ′ in FPΣp

i (wit, |τ |) such that M ′(x) = y iff A(x, y) holds. Suppose A(x, y) is
of the form (∃z ≤ s)B(x, y, z) where B ∈ Π̂b

i . Then M ′ does the following: (1)
Run M on x and obtain its output y0. (2) Ask the queries (∃y ≤ t)(y = y) and
(∃z ≤ s)(z = z). Let y1 and z1 be the oracle responses. (3) Ask the Σ̂b

i -query
¬B(x, y1, z1). If the answer is ‘1’ output y0. Otherwise, output y1. M ′ will be in
FPΣp

i (wit, |τ |) since M is. The purpose of step (2) is to nondeterministically
get values for y1 and z1. If these values happen to witness (∃y ≤ t)A then y1

is output, otherwise y0 is output.

The other results follow from the T̂ i,τ
2 result and Definition 33. We are using

the fact that |||x||| is in Θ(log log(|x|)). 2

The T i
2 result was essentially known from Buss [8] and the Si

2 result follows
from Kraj́ıček [18] using the construction of M ′ from M which was in Buss,
Kraj́ıček, Takeuti [10].

Corollary 49 (i ≥ 1) The ∆̂b
i+1-predicates of T̂ i,τ

2 are PΣp
i (|τ |). So the ∆̂b

i+1-

predicates of T i
2, Si

2, R̂i
2, and EBASIC are PΣp

i , PΣp
i (log), PΣp

i (log log), and
PΣp

i (1) respectively.

PROOF. Suppose f ∈ PΣp
i (|τ |) ⊂ FPΣp

i (wit, |τ |). Now f can be computed

by some Mf ∈ F [|τ |]Σ
p
i

2 (wit) in the manner of the proof of Theorem 34. We
can change the definition of BWOTM slightly for predicates so that instead
of the output being the first block of the witness on the oracle response tape
it is instead just the response of the last query the machine makes. A machine
M ′ defined in this way could compute f(x) by operating like Mf on x until Mf

halts and then asking the one additional query: “Is there a valid computation
of Mf on the input x with the queries answered by the string to the right of
the dollar sign and where the first block of the witness on the oracle response
tape is ‘1’?” Essentially, the same proof as Theorem 35 shows T̂ i,τ

2 can define
M ′ as B(x, y) :=

(∃v ≤ `(h(x)))[(∃w ≤ t)(Out(v, x) = y ∧QCompM ′(w, x, v))

∧¬(∃v′ ≤ `(h(x)))(∃w′ ≤ t)(v′ > v ∧QCompM ′(w′, x, v′)]

where QCompM ′ is Π̂b
i−1, Out, h ∈ L2 and ` ∈ τ . Here Out is an L2-term

computing the bit value of the last oracle query from v. So B(x, y) is equivalent
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to a Σ̂b
i+1-formula in T̂ i,τ

2 . Also T̂ i,τ
2 proves (∃!y ≤ 1)B(x, y) since by the proof

of Theorem 35 it can show any v such that the above predicate holds must
be unique. So T̂ i,τ

2 ` B(x, 1) ⇔ ¬B(x, 0). Both B(x, 1) and ¬B(x, 0) are
equivalent to f(x) outputting ‘1’ and the former is equivalent to a Σ̂b

i+1-formula

and the latter is equivalent to a Π̂b
i+1-formula.

For the other direction, suppose A is ∆̂b
i+1 in T̂ i,τ

2 . Let AΣ ∈ Σ̂b
i+1 and AΠ ∈

Π̂b
i+1 be equivalent to A. Consider B(x, y) :=

(¬AΠ(x) ∧ y = 0) ∨ (AΣ(x) ∧ y = 1).

Certainly, T̂ i,τ
2 proves (∀x)(∃y ≤ 1)B(x, y). By Remark 1 and Theorem 26, T̂ i,τ

2

proves (∃y ≤ 1)B(x, y) is equivalent to a EΣ̂b
i+1-formula. So by Theorem 45

there is a g ∈ FPΣp
i (wit, |τ |) such that T̂ i,τ

2 ` WitiB(x, g(x)). The definition
witness predicate implies

T̂ i,τ
2 ` B(x, β(1, g(x)). (8)

Let f(x) = β(1, g(x)). As g is Qi,τ̇ -definable in T̂ i,τ
2 , this theory proves f can

be defined with

(∃v ≤ `(s(x)))[(∃w ≤ t)(β(1, Out(w, x)) = y ∧ C(x,w, v))

∧¬(∃v′ ≤ `(s(x)))(∃w′ ≤ t)(v′ > v ∧ C(x,w′, v′))]

where C ∈ Σ̂b
i , Out, s ∈ L2, (Out is supposed to return the output of g) and

` ∈ τ̇ . The definition of B implies f(x) = 1 ⇔ B(x, 1) ⇔ A(x) and the
predicate f(x) = 1 will be in PΣp

i (|τ |) by essentially the same argument used
in Lemma 37. 2

The T i
2 result above was known from Buss [8] and the Si

2 result is similar to a
result in Kraj́ıček [18].

Corollary 50 (i ≥ 1) T̂ i,τ
2 proves its ∆̂b

i+1-predicates can be written in the

form (∃v ≤ `(s(x)))[A(x, v) ∧ ¬B(x, v + 1)] where A,B ∈ Σ̂b
i , ` ∈ τ̇ and

s ∈ L2.

PROOF. From the proof of Corollary 49 every ∆̂b
i+1-predicate in T̂ i,τ

2 is equiv-
alent to a formula

(∃v ≤ `(s(x)))[(∃w ≤ t)(β(1, Out(w, x)) = 1 ∧ C(x,w, v))

∧¬(∃v′ ≤ `(s(x)))(∃w′ ≤ t)(v′ > v ∧ C(x,w′, v′))].
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where C ∈ Σ̂b
i . This formula in turn is provably equivalent to

(∃v ≤ `(s(x)))[(∃w ≤ t)(β(1, Out(w, x)) = 1 ∧ C(x,w, v))

∧¬(∃v′ ≤ `(s(x)))(∃w′ ≤ t)(v′ ≥ v + 1 ∧ C(x,w′, v′))].

Let A(x, v) be a Σ̂b
i -formula provably equivalent to

(∃w ≤ t)(β(1, Out(w, x)) = 1 ∧ C(x,w, v))

and let B(x, v + 1) be a Σ̂b
i -formula provably equivalent to

(∃v′ ≤ `(s(x)))(∃w′ ≤ t)(v′ ≥ v + 1 ∧ C(x,w′, v′)).

2

Corollary 50 is similar to a result of Buss-Hay [5] where they show predicates
in PΣp

i (log) can be written in the form (∃v ≤ |s(x)|)(A(x, v)∧¬B(x, v)) where
A and B are Σb

i . Our result shows the ∆̂b
i+1-predicates of Si

2 which are also

PΣp
i (log) can be written in this form provably in Si

2. In the T̂ i,cl
2 = EBASIC

case of Corollary 50, the outermost existential is bounded by a constant so
can be replaced by a disjunction.

Remark 51 The results above generalise to the theories T i,τ
k for k ≥ 2.

Remark 52 Given the last remark, by Corollary 47 for i ≥ 1 and k ≥ m ≥ 0,
T̂

i,{|id|m}
k+2 ¹Σ̂b

i,k+2
T̂

i+1,{|id|m+1}
k+2 . This is true by Corollary 12 since EBASICk+2

can prove any term in 2
˙{|id|m+1} is k + 2-surpassed by |id|m.

In [10] it was shown that Si
3 ¹Σb

i+1,3
Ri+1

3 , by the above we have Si
3 ¹Σ̂b

i+1,3
R̂i+1

3 ,

thus, R̂i+1
3 ¹Σ̂b

i+1,3
Ri+1

3 . In Section 6 we show for k ≥ 0, R̂i+1
k+2 ¹Σ̂b

i+1,k+2
Ri+1

k+2.

5 Applications of the witnessing argument

In this section we give some applications of the results of the last section.

5.1 The Σ̂b
i+k-definable multifunctions of prenex theories

We now discuss the Σ̂b
i+k-definable multifunctions of T̂ i,τ

2 where k ≥ 2. To make

sure the reader is not confused we stress we are talking about Σ̂b
i+k,2 not Σ̂b

i,k.
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A first observation on Σ̂b
i+k-definability in T̂ i,τ

2 is that since EBASIC ⊆ T̂ i,τ
2 ,

these theories can Σ̂b
i+k-define any f in FPΣp

i+k−1(wit, 1). A second observation

is that FPΣp
i (wit, |τ |) ⊆ FPΣp

i+k−1(wit, 1) for k ≥ 2 as with a single query to
a Σp

i+1 witness oracle one can ask for a witness of the sequence of steps in a
computation of any M ∈ FPΣp

i (wit, |τ |). Using this witness one can read off
the final output of M .

Consider what happens with the witnessing argument for a proof of a sequent
of LEΣ̂b

i+k ∪ LΣ̂b
i -formulas Γ → ∆ in T̂ i,τ

2 . All cases can be handled as in the

EBASIC = T̂ i+k,cl
2 version of Theorem 45 except we now also have a Σ̂b

i -
INDτ inference case (this is where the LΣ̂b

i -formulas may come from). Recall
how this case was handled in the T̂ i,τ

2 version of Theorem 45. Given

A(b), Γ → A(Sb), ∆

A(0), Γ → A(`(r)), ∆

where ` ∈ τ and r ∈ L2, one uses an FPΣp
i (wit, |τ |) machine to binary search

for a value c ≤ t(r) such that A(c) holds but A(Sc) does not. This machine
was composed with the machine that would provide a witness for the top
sequent. By hypothesis we assume the top sequent is witnessed with some
g ∈ FPΣp

i+k−1(wit, 1). Since FPΣp
i (wit, |τ |) is contained in FPΣp

i+k−1(wit, 1),

this whole case can be handled by a machine in FPΣp
i+k−1(wit, 1). Thus, the

following result holds.

Theorem 53 (i ≥ 1, k ≥ 2) Suppose T̂ i,τ
2 ` Γ → ∆ where Γ and ∆ are

cedents of LEΣ̂b
i+k ∪LΣ̂b

i-formulas with free variables among a. Then there is

a Qi+k−1,cl-definable in T̂ i,τ
2 , FPΣp

i+k−1(wit, 1) multifunction f such that:

T̂ i,τ
2 ` Witi+k

∧∧Γ (w, a) ⊃ Witi+k
∨∨∆ (f(w, a), a).

When i = 0 there is a f ∈ FPΣp
k−1(wit, 1) such that

N |= Witk∧∧Γ(w, a) ⊃ Witk∨∨∆(f(w, a), a).

For the i = 0 case we can perform the above witnessing with a multifunction
from FPΣp

k−1(wit, 1) (the induction case can be handled by a function in FP
since these will all be subtheories of S1

2); however, it seems difficult to prove in
T̂ 0,τ

2 . From the above the next theorem and its corollaries follow by the same
type of proofs as in Section 4.3 and Section 5.2.

Theorem 54 (i ≥ 0, k ≥ 2) A multifunction f is a Σ̂b
i+k-definable multifunc-

tion of T̂ i,τ
2 if and only if f ∈ FPΣp

i+k−1(wit, 1).

Corollary 55 (i ≥ 0, k ≥ 2) The ∆̂b
i+k-predicates of T̂ i,τ

2 are PΣp
i+k−1(1).
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Corollary 56 (i ≥ 1, k ≥ 2) The theory T̂ i,τ
2 proves its ∆̂b

i+k-predicates can
be written in the form

∨n
v=0[A(x, Sv(0)) ∧ ¬B(x, Sv+1(0))].

where A,B ∈ Σ̂b
i+k−1 and n is a fixed integer. Here S0(0) = 0 and Sv+1(0) =

S(Sv(0)).

It should be stressed that although EBASIC, T̂
i,|τ |
2 , and T̂ i,τ

2 all have the
same Σ̂b

i+k-definable multifunctions, it does not seem to be the case that either

EBASIC or T̂
i,|τ |
2 can carry out the witnessing argument needed to show they

have the same Σ̂b
i+k-definable functions as T̂ i,τ

2 . This is because neither of these

theories seems to be able to simulate the Σ̂b
i -INDτ case of the T̂ i,τ

2 witnessing
argument which required Σ̂b

i -INDτ to prove.

5.2 A strengthened conservation result

We begin with the following result.

Theorem 57 (i ≥ 1, k ≥ 0) Let τ ⊆ O2(|id|). The T̂ i+1,τ̇
k+2 is conservative

over T̂ i,2τ̇

k+2 with respect to Boolean combinations of Σ̂b
i+1,k+2-formulas. That is,

T̂ i,2τ̇

k+2 ¹B(Σ̂b
i+1,k+2

) T̂ i+1,τ̇
k+2 and, in particular, T i

2 ¹B(Σ̂b
i+1)

Si+1
2 and Si

3 ¹B(Σ̂b
i+1,3)

R̂i+1
3 .

PROOF. Suppose T̂ i+1,τ̇
k+2 ` A(a) ∈ B(Σ̂b

i+1,k+2). Then A is tautologically
equivalent to a formula of the form ∧n ∨j Anj where each Anj is either a

Σ̂b
i+1,k+2-formula or a Π̂b

i+1,k+2-formula. So T̂ i+1,τ̇
k+2 proves each disjunct ∨jAnj.

Consider one such disjunct ∨jAnj. Let ∆n be the cedent of Σ̂b
i+1,k+2-formulas

in this disjunct and let Γn be the Σ̂b
i+1,k+2-formulas that are equivalent to

the negations of Π̂b
i+1,k+2-formulas in this disjunct. Hence, T̂ i+1,τ̇

k+2 proves Γn →
∆n. Now this sequent can be proved with a proof such that all formulas are
LΣ̂b

i+1,k+2 ∪ LΣ̂b
i,k+2. By Lemma 43

T̂ i,2τ̇

k+2 ` ∧Γn ⊃ (∃w ≤ tΓn)Witi+1
∧Γn

(w, a)

and
T̂ i,2τ̇

k+2 ` (∃w ≤ t∆n)Witi+1
∨∆n

(w, a) ⊃ ∨∆n.

We then carry out the witnessing argument of Remark 52 to show

T̂ i,2τ̇

k+2 ` (∃w ≤ tΓn)Witi+1
∧Γn

(w, a) ⊃ (∃w ≤ t∆n)Witi+1
∨∆n

(w, a)
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Hence, T̂ i,2τ̇

k+2 ` Γn → ∆n. Thus, T̂ i,2τ̇

k+2 proves ∨jAnj. So T̂ i,2τ̇

k+2 proves A(a).

The remaining parts of the theorem are special cases of the first statement. 2

The proof of Theorem 57 was adapted from the proof in Buss [8] that

T i
2 + Σb

i -REPL ¹B(Σb
i+1)

Si+1
2 .

Below are two interesting corollary of the above theorem.

Corollary 58 (i ≥ 1,m ≥ n ≥ 0, k ≥ 2) Let τ ⊆ O2(|id|m). Then

T̂
i+n,2↑(m−n)(τ̇)
k ¹B(Σ̂b

i+n+1,k
) T̂ i+m,τ

k .

So by Corollary 49, the ∆̂b
i+n+1-predicates of T̂ i+m,τ

2 are PΣp
i+n(wit, |2 ↑ (m −

n)(τ̇)|), provided τ ⊆ O2(|id|m).

PROOF. This follows from Theorem 57 since

T̂
i+n,2↑(m−n)(τ̇)
k ¹B(Σ̂b

i+n+1,k
) T̂

i+n+1,2↑(m−n−1)(τ̇)
k ¹B(Σ̂b

i+n+2,k
)

· · · ¹B(Σ̂b
i+m−1,k) T̂ i+m−1,2τ̇

k ¹B(Σ̂b
i+m,k) T̂ i+m,m

k .

We are using here the easily observed result that every iterm in 2
˙(2τ̇ ) is sur-

passed by some iterm in 22τ̇
. 2

By the same reasoning as Remark 52, the above corollary yields:

Corollary 59 (i ≥ 1, k ≥ m ≥ n ≥ 0) Let T̂ i,m
k denote T̂

i,{|id|m}
k . Then

T̂ i+n,n
k+2 ¹B(Σ̂b

i+n+1,k+2
) T̂ i+m,m

k+2 . In particular, T̂ i
k+2 ¹B(Σ̂b

i+1,k+2
) T̂ i+m,m

k+2 .

5.3 ∆̂b
i+1-INDτ̇

We now give a proof theoretic proof that Si
2 proves ∆b

i+1-LIND. This was
previously shown in Buss, Kraj́ıček, and Takeuti [10] using a model theoretic
argument of Ressayre that Si

2 ¹Σb
i

Si
2+Σb

i+1-REPL{|id|}. We use two known

results: (1) the result of Buss [8] that Si
2 proves Σb

0(Σ
b
i)-LIND and (2) the

witnessing argument for Σb
i -formulas in Kraj́ıček [18]. Once we have shown

Si
2 proves ∆b

i+1-LIND, we show T̂ i,τ
2 proves Σb

0,τ (Σ̂
b
i)-INDτ̇ provided τ ⊆

O2(|id|). We use this together with Corollary 49 and our proof method for
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Si
2 to show that T̂ i,τ

2 proves ∆̂b
i+1-INDτ̇ . In particular, this shows Si

2 proves

∆̂b
i+1-LIND and R̂i

2 proves ∆̂b
i+1-LLIND. In Corollary 75, we give a proof

theoretic proof that Si
2 ¹B(Σ̂b

i+1)
Si

2+ Π̂b
i -REPL{|id|}. Together with the ∆̂b

i+1-

LIND result this suffices to show Si
2 proves ∆b

i+1-LIND without relying on

results not in this paper. The R̂i
2 result and the general result are new.

Theorem 60 (i ≥ 1) Si
2 proves the ∆b

i+1-LIND axioms.

PROOF. By Buss [8], Si
2 proves Σb

0(Σ
b
i)-LIND. Let A be ∆b

i+1 with respect
to Si

2. Let AΠ ∈ Πb
i+1 and let AΣ ∈ Σb

i+1 be equivalent to A in Si
2. Consider

B(x, y) :=

(¬AΠ(x) ∧ y = 0) ∨ (AΣ(x) ∧ y = 1).

Certainly, Si
2 proves (∀x)(∃y ≤ 1)B(x, y). Thus, by the witnessing theorem

in [17] (which is similar to the τ = {|id|} case of Theorem 45), there is
a g ∈ FPΣp

i (wit, log) such that Si
2 ` Witi+1

(∃y≤1)B(g(x),x). So by the def-

inition of the witness predicate, Si
2 ` Witi+1

B (β(2, g(x)),x, β(1, g(x))) and
also Si

2 ` Witi+1
B (w,x, y) ⊃ B(x, y). Thus, Si

2 proves B(x, β(1, g(x))). Let
f(x) = β(1, g(x)). Then Si

2 proves f(x) = 1 ⇔ A(x). This f can be defined in
Si

2 using almost the same notion of Qi,{|id|}-definition that we used in Section 3.
That is, it can be defined with a formula of the form:

y ≤ 1 ∧ (∃v ≤ p(|s(x)|))[(∃w ≤ t)(Out(w, x) = y ∧ A(x,w, v))

∧¬(∃v′ ≤ p(|s(x)|))(∃w′ ≤ t)(v′ > v ∧ A(x,w′, v′))].

where A ∈ Πb
i−1 and where s,Out ∈ L2. But this is a ∀Σb

0(Σ
b
i)-formula, so Si

2

proves LINDf(x)=1. As Si
2 proves f(x) = 1 ⇔ A(x), we also have Si

2 proves
LINDA. Hence, Si

2 proves ∆b
i+1-LIND. 2

We now modify the above to show R̂i
2 proves ∆̂b

i -LLIND and also that T̂ i,τ
2

proves ∆̂b
i+1-INDτ̇ provided τ ⊆ O2(|id|). We first show T̂ i,τ

2 proves Σb
0,τ (Σ̂

b
i)-

INDτ̇ . For this we use the next two theorems, which are modified from
Buss [8]. First, we define a bit comprehension axiom.

Definition 61 Let τ ⊆ O2(|id|). The Ψ-COMP τ are the axioms COMP `
α:

(∃w)(∀x ≤ `(b))(α(v, x) ⇔ Bit(x,w) = 1).

where α ∈ Ψ and ` ∈ τ .

Theorem 62 (i ≥ 1) Let τ ⊆ O2(|id|). The theory T̂ i,τ
2 proves the Σ̂b

i-
COMP τ̇ axioms.
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PROOF. By the usual speed-up techniques it suffices to show T̂ i,τ
2 proves the

Σ̂b
i -COMP τ axioms. Let A ∈ Σ̂b

i . Define B(n, v) :=

(∃w < 2S`(b))(∃w′ ≤ 2S(|w|)|w|)[(∀j ≤ |w|)(β̂(0, |w|, w′) = Bit(0, w)∧
β̂(j + 1, |w|, w′) = β̂(j, |w|, w′) + Bit(j + 1, w)) ∧ β̂(|w|, |w|, w′) = n

∧(∀x ≤ `(b))(Bit(x,w) = 1 ⊃ A(v, x))].

The first two lines of the above say w′ is a sequence of blocks of size |w| which
count up the number of ‘On’ bits in w and that n is this number. We note
T̂ i,τ

2 ` B(0, v) and T̂ i,τ
2 ` n > j ∧ B(n, v) ⊃ B(j, v). By Theorem 26, B is

equivalent to a Σ̂b
i -formula. Further, T̂ i,τ

2 ` ¬B(`(b) + 2, v), so it follows from
Σ̂b

i -INDτ that

T̂ i,τ
2 ` (∃n ≤ `(b) + 1)(B(n, v) ∧ ¬B(n + 1, v)).

Thus, T̂ i,τ
2 proves there is a maximal n such that B(n, v) holds. The w whose

existence is asserted for this n has bit x turned on if and only if A(v, x). 2

Theorem 63 (i ≥ 1) Let τ ⊆ O2(|id|). Then T̂ i,τ
2 proves Σb

0,τ (Σ̂
b
i)-INDτ . In

particular, R̂i
2 proves Σb

0,{||id||}(Σ̂
b
i)-LLIND.

PROOF. Using Remark 18, any A(b,v) ∈ Σb
0,τ (Σ̂

b
i) can be written as

(Q1x1 ≤ `1(r1)) · · · (Qnxn ≤ `n(rn))B(A1, . . . , As).

where Aj ∈ Σ̂b
i , `i ∈ τ̇ , ri ∈ L2, and B(A1, . . . , As) denotes a Boolean com-

bination of A1, . . . , As. We assume rj’s variables are among v. By modifying

Theorem 62, T̂ i,τ
2 proves there are w1, . . . , ws such that

(∀x1 ≤ `1(r1)) · · · (∀xn ≤ `n(rn))[Bit(〈x〉, wj) ⇔ Aj(x,v)].

Here 〈x〉 denotes an n-tuple 〈x1, . . . , xn〉. Thus, given w1, . . . , ws, A is equiva-
lent to a ∆̂b

1-formula. The theorem follows as T̂ i,τ
2 can thus prove INDτ

A. 2

The above two theorems show that R̂i
2 can prove ∆̂b

i+1-LLIND axioms and

T̂ i,τ
2 can prove ∆̂b

i+1-INDτ axioms provided τ ⊆ O2(|id|).

Corollary 64 (i ≥ 1) Let τ ⊆ O2(|id|). R̂i
2 proves ∆̂b

i+1-LLIND and T̂ i,τ
2

proves ∆̂b
i+1-INDτ .

PROOF. The proof is the same as in Theorem 60. Given a ∆̂b
i+1 in T̂ i,τ

2

predicate B, it is equivalent to a predicate f(x) = 1 of the form
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(∃v ≤ `(s(x)))[(∃w ≤ t)(Out(w, x) = 1 ∧ A(x, w, v))

∧¬(∃v′ ≤ `(s(x)))(∃w′ ≤ t)(v′ > v ∧ A(x, w′, v′))].

where A ∈ Π̂b
i−1, ` ∈ τ̇ . This is a Σb

0,τ (Σ̂
b
i)-formula so by Theorem 63, T̂ i,τ

2 can
prove INDτ

f(x)=1. So we have INDτ
B. 2

Another corollary of the proof of Theorem 63 is:

Corollary 65 (i ≥ 1) Let τ ⊆ O2(|id|). The Σb
0,τ (Σ̂

b
i)-formulas are ∆̂b

i+1 with

respect to T̂ i,τ
2 . The Σb

0,{||id||}(Σ̂
b
i)-formulas are ∆̂b

i+1 with respect to R̂i
2.

PROOF. Let A be as in the proof of Theorem 63. Let Bj := Bit(〈x〉, wj).

For the wj’s used in that proof, T̂ i,τ
2 proves A′ :=

(Q1x1 ≤ `1(r1)) · · · (Qnxn ≤ `n(rn))B(B1, . . . , Bs)

equivalent to A. Using REPLτ and working from the innermost quantifier
out, T̂ i,τ

2 can prove A′ equivalent to a Σ̂b
1-formula C(B1, . . . , Bs) and also to a

Π̂b
1-formula D(B1, . . . , Bs). For these particular wj’s, T̂ i,τ

2 proves

C(A1, . . . , As) ⇔ C(B1, . . . , Bs) ⇔ D(B1, . . . , Bs) ⇔ D(A1, . . . , As) ⇔ A.

Finally, C(A1, . . . , As) is equivalent if a Σ̂b
i+1-formula and D(A1, . . . , As) is

equivalent to a Π̂b
i+1-formula in T̂ i,τ

2 . 2

Corollary 66 (i ≥ 1) Let τ ⊆ O2(|id|). The theory T̂ i,τ
2 proves the Σb

0,τ (Σ̂
b
i)-

formulas can be written in the form

(∃v ≤ `(s(x)))[A(x, v) ∧ ¬B(x, v + 1)]

where A,B ∈ Σ̂b
i , ` ∈ τ̇ and s ∈ L2.

PROOF. This follows from Theorem 50 and Corollary 65. 2

The author does not know if for arbitrary set of iterms τ , whether T̂ i,τ
2 proves

∆̂b
i+1-INDτ , but the next theorem gives additional τ ’s for which this result

holds.

Theorem 67 (i ≥ 1) Let τ ⊆ O2(|id|). T̂ i,2τ̇

2 ` ∆̂b
i+1-IND2τ̇

.
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PROOF. Let A be ∆̂b
i+1 in T̂ i,2τ̇

2 . Let AΣ ∈ Σ̂b
i+1 and AΠ ∈ Π̂b

i+1 be equivalent

to A in T̂ i,2τ̇

2 . Let ` ∈ τ , t ∈ L2. Then

AΠ(0) ∧ (∀x ≤ 2min(`(b),|t(b)|))(AΣ ⊃ AΠ) ⊃ AΣ(`(b))

is a Σ̂b
i+1-formula. Since T̂ i+1,τ

2 proves the ∆̂b
i+1-IND2τ̇

axioms by Theorem 27

and Theorem 22 we have T̂ i+1,τ
2 ` IND2min(`(b),|t(b)|)

A . But then by Theorem 57,

T̂ i,2τ̇

2 ` IND2min(`(b),|t(b)|)
A . 2

6 Prenex replacement theories

We now study Ĉi,τ
2 , which we defined in Section 2. Let τ ⊆ O2(|id|). We

show T̂ i,τ
2 ¹B(Σ̂b

i+1)
Ĉi,τ

2 . Our proof is then used to show for i ≥ 1 that

T̂
i+1,||τ ||
2 ¹B(Σ̂b

i+1)
T̂

i+1,||τ ||
2 +Π̂b

i -REPL|τ |. This shows that R̂i+1
2 ¹B(Σ̂b

i+1)
Ri+1

2

for i ≥ 1. We delayed this section until now as our witness predicate is dif-
ferent from earlier sections and we did not want to cause undue confusion by
switching between two types of witness predicate.

6.1 Preliminaries

We begin with the following theorem.

Theorem 68 (i ≥ 0) Let τ ⊆ O2(|id|). Then Ĉi,τ
2 ` T̂ i,τ

2 .

PROOF. The proof is the same as the proof in Buss [7] that Si
2 is contained

in S1
2+Σb

i+1-REPL. 2

To show T̂ i,τ
2 ¹B(Σ̂b

i+1)
Ĉi,τ

2 we first show T̂ i,τ
2 ¹Σ̂b

i+1
Ĉi,τ

2 . We need to show that

FPΣp
i (wit, |τ |) is closed under a certain kind of parallel computation.

Theorem 69 (i ≥ 1) Let ` ∈ O2(|id|) and ` ∈ O2(`2) for some `2 ∈ τ̇ . Let
f(j,x) be Qi,τ̇ -definable in T̂ i,τ

2 and suppose f is bounded by t∗(x) ∈ L2 for
j ≤ `(h(x)), h ∈ L2. Then:

(a) f`(x) =
∑`−1

j=0 f(j,x) · 2j·|t∗| is Qi,τ̇ -definable in T̂ i,τ
2 .

(b) T̂ i,τ
2 proves β̂(j, |t∗|, f`(x)) = f(j,x) where this is translated into the lan-

guage of L2 using Definition 30 and where f` is interpreted using the Qi,τ̇ -
definition from (a).
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PROOF. For (a) suppose f is Qi,τ̇ -defined by

B(j,x, y) := (∃v ≤ s(r(x)))[(∃w′ ≤ q)(Out(w′, j,x) = y ∧ A(j,x, w′, v))

∧¬(∃v′ ≤ s(r(x)))(∃w′′ ≤ q)(v′ > v ∧ A(j,x, w′′, v′))]

where s ∈ τ̇ , q, r ∈ L2. Notice we are assuming that r does not depend on j.
We can do this without loss of generality since we are only considering values
j ≤ `(h(x)). Define C(u) := (∃w ≤ 2 · (`(h)#t∗))(∀j ≤ `(h))D where D is

(∃v ≤ s(r))(A(j,x, β̇(j, |t∗|, q, w), v) ∧ v ≥ β̂(j, |s(r)|, u)).

T̂ i,τ
2 proves C is a Σ̂b

i -formula by Lemma 17 and Theorem 22 since A is Σ̂b
i and

since ` is both O2(|id|) and ` ∈ O2(`2) for some `2 ∈ τ̇ . Using the properties of
Qi,τ̇ -definition when v is 0, the theory T̂ i,τ

2 proves A equivalent to a Π̂b
0-formula.

Also, T̂ i,τ
2 proves (∀j ≤ `(h))(∃w′ ≤ q)A(j,x, w′, 0). So using Π̂b

0-REPL{`}, the
theory T̂ i,τ

2 proves C(0). The theory T̂ i,τ
2 also proves ¬C(2 · (s(r) · `(h)) + 1).

Using INDτ̇
C , we thus have

(∃u ≤ 2 · (s(r) · `(h)))(C(u) ∧ ¬C(u + 1)). (9)

T̂ i,τ
2 proves for this u and for each j ≤ `(s) there is not a v′ ≥ β̂(j, |s(r)|, u))

such that we could satisfy A with v′ and some other w′. (If there were such
a v′ we could modify u to obtain a larger value for u such that C held.) So
T̂ i,τ

2 proves Out(β̇(j, |t∗|, q, w), j,x) is an output of f(j,x). Using Σ̂b
1-INDτ ,

the theory T̂ i,τ
2 can define a function g which given w produces a y such that

β̂(j, |t∗|, y) = Out(β̇(j, |t∗|, q, w), j,x) for all j ≤ `(h). A Σ̂b
1-defined function

is trivially Qi,τ̇ -defined in T̂ i,τ
2 . So we can define f` using Lemma 38, where we

use (9) to Qi,τ̇ -define a multifunction outputting w and then compose it with
g. The statement (b) above is easily verified from our Qi,τ̇ -definition. 2

We also need the Qi,τ̇ -definable multifunctions of T̂ i,τ
2 are closed under τ̇ -

bounded µ-operator.

Theorem 70 (i ≥ 1) Let τ ∈ O2(|id|) and let f be a Qi,τ̇ -definable multifunc-
tions of T̂ i,τ

2 . Then the function

(µj < `(x))[f(j, x) = 0]

is Qi,τ̇ -definable in T̂ i,τ
2 .

PROOF. Consider the multifunction

g(j, x) := cond((∃n < `(x))(n < j ∧ f(n, x) = 0), 1, 0).
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Define (µi < `(x))[f(i, x) = 0] to be |∑`(x)−1
j=0 g(j, x) · 2j| .− 1. The condition

in the cond is equivalent to a Σb
0,τ (Σ̂

b
i)-formula since f(n, x) = 0 ⇔ B(n, x, 0)

where B is the Qi,τ̇ -definition of f . So it will be Qi,τ̇ -defined in T̂ i,τ
2 by Corol-

lary 65, Corollary 49, and Theorem 35. 2

6.2 Witnessing arguments for replacement theories

We use a witnessing argument to show T̂ i,τ
2 ¹Σ̂b

i+1
Ĉi,τ

2 provided τ ⊆ O2(|id|).
By Theorem 42, a free-cut free Ĉi,τ

2 -proof of an EΣ̂b
i+1-formula has formulas

in LEΣ̂b
i+1 ∪ LAτ Σ̂

b
i+1 ∪ LEAτ Π̂

b
i . Our witness predicate is as before except

with the three additional cases:

If A(a) ∈ Aτ Π̂
b
i then Witi+1

A (w, a) := w = 0 ∧ A.

If A(a) is of the form (∃x ≤ t(a))B where A ∈ Σ̂b
i+1 ∪ EAτ Π̂

b
i then

Witi+1
A (w, a) := b ≤ t(a) ∧B(b, a).

If A(a) is (∀x ≤ `(s))(∃y ≤ t)B where A ∈ Aτ Σ̂
b
i+1, then

Witi+1
A (w, a) :=

w ≤ 2 · (t∗(`(s), a)#`(s)) ∧ (∀x ≤ |`(s)|)B(β̇(x, |t∗(`(s), a)|, t(x, a), a).

For the above definitions, the analog of Lemma 43 is:

Lemma 71 (i ≥ 1) Let τ ⊆ O2(|id|) and let A ∈ LEΣ̂b
i+1∪LAτ Σ̂

b
i+1∪LEAτ Π̂

b
i

with free variables a. Then: EBASIC ` Witi+1
A (w, a) ⊃ A(a) and there is a

term tA such that

Ĉi,τ
2 ` A(a) ⇔ (∃w ≤ tA(a))Witi+1

A (w, a). (10)

For this tA, we also have EBASIC ` Witi+1
A (w, a) ⊃ w ≤ tA.

Remark 72 If A ∈ LEΣ̂b
i+1 then (10) requires only EBASIC to prove.

We extend the definition of witness for a formula to a definition for witness
for a cedent as before. A lemma similar to the above also holds for cedents.

Theorem 73 (i ≥ 1) Let τ ⊆ O2(|id|). Suppose Ĉi,τ
2 ` Γ → ∆ where Γ and

∆ are cedents of formulas in LEΣ̂b
i+1∪LAτ Σ̂

b
i+1∪LEAτ Π̂

b
i with free variables
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among a. Then there is a f ∈ FPΣp
i (wit, |τ |) which is Qi,τ̇ -defined in T̂ i,τ

2 such
that:

T̂ i,τ
2 ` Witi+1

∧∧Γ (w, a) ⊃ Witi+1
∨∨∆ (f(w, a), a).

PROOF. This is proved by induction on a Ĉi,τ
2 proof of Γ → ∆. By cut

elimination, we assume the sequents in the proof are in LEΣ̂b
i+1 ∪ LAτ Σ̂

b
i+1 ∪

LEAτ Π̂
b
i . Almost all cases are handled as in the witnessing argument for T̂ i,τ

2 .
However, the ∀ : cases change, and we have an additional case for REPLτ -
inferences.

(∀:left case) Suppose we have the inference:

A(t), Γ → ∆

t ≤ s, (∀x ≤ s)A(x), Γ → ∆

By hypothesis there is a Qi,τ̇ -definable g such that

T̂ i,τ
2 ` Witi+1

A(t)∧Γ(w, a) ⊃ Witi+1
∨∨∆ (g(w, a), a).

The definition of Witi+1 implies

T̂ i,τ
2 ` Witi+1

t≤s∧(∀x≤s)A(x)∧Γ(w, a) ⊃ t ≤ s ∧Witi+1
(∀x≤s)A(x)∧Γ(β(2, w), a).

By cut-elimination, (∀x ≤ s)A(x) is in LAτ Π̂
b
i or in Aτ Σ̂

b
i+1. In the first case,

define f to be f(w, a) := g(〈0, β(2, β(2, w))〉, a). This function is Qi,τ̇ -definable
in T̂ i,τ

2 and also

T̂ i,τ
2 ` Witi+1

t≤s∧(∀x≤s)A(x)∧Γ(w, a) ⊃ Witi+1
∨∆ (f(w, a), a).

In the second case, (∀x ≤ s)A(x) is Aτ Σ̂
b
i+1. So s is of the form `(s′) where

` ∈ τ and A is of the form (∃y ≤ v(x, a))B where B ∈ Π̂b
i . Let h(w, a) :=

〈β̇(t, |v∗(`(s′), a)|, v(t, a), β(1, β(2, w))), β(2, β(2, w))〉. Then by the definition
of witness,

T̂ i,τ
2 ` Witi+1

t≤s∧(∀x≤s)A(x)∧Γ(w, a) ⊃ Witi+1
A(t)∧Γ(h(w, a), a)

and f(w, a) := g(h(w, a), a) has the desired witnessing properties.

(∀:right case) Suppose we have the inference:

b ≤ t, Γ → A(b), ∆

Γ → (∀x ≤ t)A(x), ∆
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By hypothesis there is a Qi,τ̇ -definable g ∈ FPΣp
i (wit, |τ |) such that

T̂ i,τ
2 ` Witi+1

b≤t∧Γ(w, a, b) ⊃ Witi+1
A∨∆(g(w, a, b), a, b).

By cut-elimination, (∀x ≤ t)A(x) is in LAτ Π̂
b
i or is in Aτ Σ̂

b
i+1. In the first case,

(∃x ≤ t)¬A(x) is a Σp
i -predicate. So we can ask an oracle for a value b ≤ t

such that ¬A(b) holds. If such a value exists set f(w, a) = g(〈0, w〉, a, b). If
no such value exists let f(w, a) = 〈0, 0〉 since (∀x ≤ t)A(x) would be a valid
LAτ Π̂

b
i -formula. In the second case, (∀x ≤ t)A(x) is really of the form

(∀x ≤ `(s))(∃y ≤ t′)B(x, y)

where B ∈ Π̂b
i . By the comment just before Lemma 44, Witi+1

A as a 0 − 1
valued function is Qi,τ̇ -definable in T̂ i,τ

2 . Let k be

k(w, a) = (µj ≤ `(s))[¬Witi+1
A (β(1, g(w, a, j)), a, j) = 0].

By Theorem 70, Lemma 37, and Lemma 38, k is Qi,τ̇ -defined in T̂ i,τ
2 and in

FPΣp
i (wit, |τ |). Define f(w, a) :=

cond(K=(k, `(s) + 1), 〈
`(s)∑

j=0

β(1, g(w, a, j)) · 2j·|(t′)∗(`(s),a)|, 0〉, g(w, a, k).

Using Theorem 69, T̂ i,τ
2 ` Witi+1

Γ (w, a) ⊃ Witi+1
(∀x≤`(s))A∨∆(f(w, a), a).

(Π̂b
i −REPLτ :case) Suppose we have the inference:

Γ → (∀x ≤ `(s))(∃y ≤ t)A(x, y), ∆

Γ → (∃w ≤ 2 · (t∗(`(s))#2min(`(s),|s|)))(∀x ≤ `(s))A(x, β̇(x, |t∗(`(s))|, t, w))), ∆

where ` ∈ τ and s ∈ L2. By hypothesis there is a g ∈ FPΣp
i (wit, |τ |) which is

Qi,τ̇ -definable in T̂ i,τ
2 such that

T̂ i,τ
2 ` Witi+1

Γ (w, a) ⊃ Witi+1
(∀x≤`(s))(∃y≤t)A∨∆(g(w, a), a).

Notice that Witi+1
(∀x≤`(s))(∃y≤t)A and Witi+1

(∃w≤2·(t∗(`(s))#2min(`(s),|s|)))(∀x≤`(s))A
are the

same. Hence, if we let f = g then

T̂
i,|τ |
2 ` Witi+1

Γ (w, a, b) ⊃ Witi+1
(∃w≤2·(t∗(`(s))#2min(`(s),|s|)))(∀x≤`(s))A∨∆

(f(w, a), a).

This completes the remaining cases and the proof. 2

Theorem 74 (i ≥ 1) If T̂
i+1,||τ ||
2 +Π̂b

i-REPL|τ | ` Γ → ∆ where Γ and ∆ are
cedents of formulas in

LEΣ̂b
i+1 ∪ LA|τ |Σ̂

b
i+1 ∪ LEA|τ |Π̂

b
i .
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with free variables among a, then there is a f ∈ FPΣp
i (wit, ˙(||τ ||)) which is

Qi,2
˙(||τ ||)

-defined in T̂ i,2
˙(||τ ||)

2 such that:

T̂ i,2
˙(||τ ||)

2 ` Witi+1
∧∧Γ (w, a) ⊃ Witi+1

∨∨∆ (f(w, a), a).

PROOF. This is proved by induction on the number of sequents in an

T̂
i+1,||τ ||
2 +Π̂b

i -REPL|τ |

proof of Γ → ∆. By cut elimination, we assume all the sequents in the proof
are in LEΣ̂b

i+1 ∪LA|τ |Σ̂b
i+1 ∪LEA|τ |Π̂b

i . We handle all cases of this witnessing

argument as in Theorem 73 above except for the (Σ̂b
i+1-IND||τ ||) case which

we handle as in Theorem 46. 2

Corollary 75 (i ≥ 1)

(a) T̂ i,τ
2 ¹B(Σ̂b

i+1)
Ĉi,τ

2 provided τ ⊆ O2(|id|).

(b) T̂ i,2
˙(||τ ||)

2 ¹B(Σ̂b
i+1)

T̂
i+1,||τ ||
2 ¹B(Σ̂b

i+1)
T̂

i+1,||τ ||
2 +Π̂b

i-REPL|τ |.

(c) R̂i+1
2 ¹B(Σ̂b

i+1)
Ri+1

2 .

(d) Si
2 ¹B(Σ̂b

i+1)
Si

2+Πb
i-REPL{|id|}.

PROOF. By Remark 72 and the method of Theorem 57 it suffices to show
Σ̂b

i+1-conservativety. (a) Suppose Ĉi,τ
2 ` (∃x ≤ t)A(x, a) where A is Π̂b

i . Then

by Theorem 73, T̂ i,τ
2 ` Witi+1

(∃x≤t)A(f(x, a), a). By Lemma 71,

T̂ i,τ
2 ` Witi+1

(∃x≤t)A(w, a) ⊃ (∃x ≤ t)A(x, a).

So T̂ i,τ
2 ` (∃x ≤ t)A(x, a).

(b) Follows from Theorem 74 by the same argument as in (a). Recall that by

Theorem 27, T̂ i,2
˙(||τ ||)

2 ⊆ T̂
i+1,||τ ||
2 .

(c) Follows from the τ = {id} case of (b) and Theorem 23.

(d) Follows from the τ = {id} case of (a) and since Si
2 proves every Πb

i -formula
is equivalent to a Π̂b

i -formula. In [23], this result was strengthened to Si
2+Σb

i+1-

REPL{|id|} is B(Σ̂b
i+1)-conservative over Si

2. 2
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The above corollary does not imply that T̂ i,τ
2 = Ĉi,τ

2 since T̂ i,τ
2 does not nec-

essarily prove that any Π̂b
i -REPLτ axiom is equivalent to a B(Σ̂b

i+1)-formula.

Similarly, the above result does not imply Ri
2 equals R̂i

2.

We now consider Σ̂b
i+k-definability in Ĉi,τ

2 for k > 1 and where τ ⊆ O2(|id|).
Since EBASIC ⊆ Ĉi,τ

2 , it can define the multifunctions in FPΣp
i+k−1(wit, 1).

For the converse, consider any proof of a sequent of formulas in

LEΣ̂b
i+k ∪ LAτ Σ̂

b
i+1 ∪ LEAτ Π̂

b
i .

For formulas not in EΣ̂b
i+k ∪ Σ̂b

i+k, we let the witness predicate just be the for-
mula itself. Otherwise, define the witness predicate as Witi+k where either the
definition of Witi+k is from earlier in this section or from the Σ̂b

i+1-definability
section (they will both be equivalent for the remaining cases).

Theorem 76 (i ≥ 1, k ≥ 2) Let τ ⊆ O2(|id|). If Ĉi,τ
2 ` Γ → ∆ where the

formulas in Γ and ∆ are cedents of formulas in LEΣ̂b
i+k∪LAτ Σ̂

b
i+1∪LEAτ Π̂

b
i

with free variables among a, then there is a f ∈ FPΣp
i+k−1(wit, 1) which is

Qi+k−1,cl-definable in Ĉi,τ
2 such that:

Ĉi,τ
2 ` Witi+k

∧∧Γ (w, a) ⊃ Witi+k
∨∨∆ (f(w, a), a).

When i = 0 there is a f ∈ FPΣp
k−1(wit, 1) such that

N |= Witk∧∧Γ(w, a) ⊃ Witk∨∨∆(f(w, a), a).

PROOF. All the cases are handled in the same way as in the Σ̂b
i+1-witnessing

argument except the (Π̂b
i −REPLτ :case). In this case you actually need Π̂b

i −
REPLτ to argue in Ĉi,τ

2 that a witness multifunction for the top sequent in
such an inference will be a witness multifunction for the lower sequent. 2

From the above, the next theorem and its corollaries follow by the type of
proof used in Section 3.

Theorem 77 (i ≥ 0, k ≥ 2) Let τ ⊆ O2(|id|). The Σ̂b
i+k-definable multifunc-

tions of Ĉi,τ
2 are precisely the class FPΣp

i+k−1(wit, 1). The ∆̂b
i+k-predicates of

Ĉi,τ
2 are precisely the predicates in PΣp

i+k−1(1) and can be written in the form

∨n
v=0[A(x, Sv(0)) ∧ ¬B(x, Sv+1(0))]

where A,B ∈ Σ̂b
i+k−1 and n is a fixed integer. Here S0(0) = 0 and Sv+1(0) =

S(Sv(0)).
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Remark 78 From the above theorem it follows that the Σ̂b
j-definable multi-

functions of T̂ i,τ
2 and Ĉ i,τ

2 are the same for all j and yet these theories are not
as far as we know equal. This is the example mentioned in the introduction.

One last interesting question about prenex replacement theories is the follow-
ing: Does T i

2 contain Ĉi,τ
2 for some τ containing an unbounded iterm? Obvi-

ously, since T i
2 = T̂

i,{id}
2 , it contains the theories T̂ i,τ

2 for all τ ⊆ O2(|id|). Yet,
even though Ĉi,τ

2 is B(Σ̂b
i+1)-conservative over T̂ i,τ

2 , it seems difficult to prove

T i
2 contains Ĉi,τ

2 for some τ containing an unbounded term.

6.3 Summary of structural and definability results

This subsection contains two tables summarising the principle definability and
structural results obtained so far in this paper.

∆̂b
i+1−j (i > j ≥ 0) ∆̂b

i+k (i ≥ 1, k > 1)

T̂ i,τ
2 PΣp

i (|2 ↑ j(τ)|) if τ ⊆ O2(|id|j) PΣp
i+k−1(1)

Ĉi,τ
2 PΣp

i (|2 ↑ j(τ)|) if τ ⊆ O2(|id|j) PΣp
i+k−1(1)

and τ ⊆ O2(|id|)
T i

2 PΣp
i if j = 0 PΣp

i+k−1(1)

Si
2 PΣp

i (log) PΣp
i+k−1(1)

PΣp
i−1 if j = 1, i > 1

Ri
2 PΣp

i (log log) j = 0 PΣp
i+k−1(1)

PΣp
i−1(logO(1)) j = 1

EBASIC PΣp
i−j (O(1)) PΣp

i+k−1(1)

The corresponding Σ̂b
i+1-definability results are obtained by adding an ‘F’ in

front of a class and a ‘wit’ inside the parentheses. The above table follows
from Corollary 49 and Corollary 58.
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General Result (i ≥ 1, τ ⊆ O2(|id|)) Application (i ≥ 1)

T̂
i,{`}
2 ⊆ T̂

i,{`′}
2 if ` ∈ O2(`

′) R̂i
2 ⊆ Si

2 ⊆ T i
2

T̂ i,2τ̇

2 ¹B(Σ̂b
i+1)

T̂ i+1,τ
2 T i

2 ¹B(Σ̂b
i+1)

Si+1
2

T̂ i,2
˙{||id||}

2 ¹B(Σ̂b
i+1)

R̂i
2

T̂
i+1,||τ ||
2 ¹B(Σ̂b

i+1)
T̂

i+1,||τ ||
2 +Π̂b

i -REPL|τ | R̂i
2 ¹B(Σ̂b

i+1)
Ri

2

Ĉi−1,τ
2 ⊆ T̂ i,τ

2 ¹B(Σ̂b
i+1)

Ĉi,τ
2 Si

2 ¹B(Σ̂b
i+1)

Si
2+Π̂b

i -REPL

T̂ i,τ
2 ` Σ̂b

i -COMP τ̇ Si
2 ` Σ̂b

i -COMP
˙{|id|}

Ri
2 ` Σ̂b

i -COMP
˙{||id||}

T̂ i,τ
2 ` ∆̂b

i+1-INDτ Si
2 ` ∆̂b

i+1-LIND

Ri
2 ` ∆̂b

i+1-LLIND

T̂ i,2τ̇

2 ` ∆̂b
i+1-IND2τ̇

T i
2 ` ∆̂b

i+1-IND

T̂ i,τ
2 ` Σb

0,τ (Σ̂
b
i) ⊆ ∆̂b

i+1 Si
2 ` Σb

0(Σ̂
b
i) ⊆ ∆̂b

i+1

Ri
2 ` Σb

0,{||id||}(Σ̂
b
i) ⊆ ∆̂b

i+1

T̂ i,τ
2 ` ∀A ∈ ∆̂b

i+1∃A′ ∈ Eτ (Σ̂
b
i ∧ Π̂b

i)(A ⇔ A′)

By the last line in the table, we mean Corollary 50. By T̂ i,τ
2 ` Σb

0,τ (Σ̂
b
i) ⊆ ∆̂b

i+1

we mean Corollary 65. The remaining lines in the above table follow from
Corollary 12, Theorem 57, Corollary 75, Theorem 20, Theorem 62, Corol-
lary 64, and Theorem 67.

7 Collapses and oracle separations

This section gives evidence that certain relationships do not hold between the
bounded arithmetic theories we have been considering. We show if T i

2 = T̂ i+1,τ
2

or if T i
2 = Ĉi+1,τ ′

2 or if Ĉi,τ
2 = T̂ i+1,τ ′

2 where τ, τ ′ ⊆ O2(|id|) and τ ′ contains at
least one unbounded iterm then PH = B(Σp

i+2). It was known from Kraj́ıček,
Pudlak, and Takeuti [19] that if T i

2 = Si+1
2 the polynomial hierarchy collapses

to the (i + 2)nd level. Buss [9] and Zambella [29] showed that if T i
2 = Si+1

2

then T i
2 proves the polynomial hierarchy collapses to the (i + 3)rd level. Both

of these results make use of Herbrand’s theorem and some combinatorics;
whereas, our result is implied by our witnessing argument characterisations
of the ∆̂b

i+2-predicates of these theories. One can generalise Kraj́ıček, Pudlak,
and Takeuti [19]’s combinatorics to get the first two statements imply the hier-
archy collapses; however, the third statement seems harder to show. We then
devote a couple subsections to giving an oracle X such that PΣp

i (X)({||`||})

51



is contained in but not equal to PΣp
i (X)({||`||2}) where ` is a nondecreasing,

unbounded iterm. This result implies many oracle separations. Some of these
results were obtained independently by Arnold Beckmann in his Ph.D. the-
sis [2] using a technique called “dynamic ordinal analysis”. Lastly, we give a
result concerning models separating theories.

7.1 Hierarchy collapses

In this subsection, we use brackets in expressions like PΣp
i [k] to denote at

most k queries to a Σp
i -oracle and use parentheses such as PΣp

i (k) to mean
O(k) queries. From Hemaspaadra, Hemaspaadra, and Hempel [14,15] and
Buhrman and Fortnow [4] it is known that PΣp

i [k] = PΣp
i [k + 1] implies

PH = B(Σp
i+2). Here k is a fixed number. Let ` be a nondecreasing, unbounded

iterm. We will show that the class PΣp
i ({|`|}) has complete problems. Thus, if

PΣp
i ({|`|}) = PΣp

i (1) then in fact PΣp
i ({|`|}) = PΣp

i [k] for some fixed k and so
PΣp

i [k] = PΣp
i [k+1] implying the hierarchy collapses to B(Σp

i+2). Let τ be a set

of iterms containing `. Then the ∆̂b
i+2-predicates of T̂ i+1,τ

2 contain PΣp
i+1({|`|}).

Similarly, the ∆̂b
i+2-predicates of T i

2 are PΣp
i+1(1). So if T i

2 = T̂ i+1,τ
2 the polyno-

mial hierarchy collapses to B(Σp
i+2). By the same argument if τ, τ ′ ⊆ O2(|id|)

where the ` above is in τ , we get T i
2 = Ĉ i+1,τ

2 implies the hierarchy collapses to

B(Σp
i+2) and likewise Ĉi,τ ′

2 = T̂ i+1,τ
2 implies the hierarchy collapses to B(Σp

i+2)
where τ ′ contains an unbounded iterm. We now show that the PΣp

i ({|`|}) has
complete problems.

Theorem 79 (i ≥ 1) Let ` be a nondecreasing, unbounded iterm. PΣp
i ({|`|})

has problems complete under polynomial-time many-one reductions.

PROOF. It is not hard to see that the set K:

{〈e, x, y, 1s〉|The machine coded by e accepts x with fewer than

|`(y)| queries to SATi and in fewer than s steps.}

is PΣp
i ({|`|})-complete. Here SATi is the problem of determining whether a

closed quantified boolean formula of i alternations the outermost block being
an exists block is valid. 2

Corollary 80 (i ≥ 0) The following statements imply PH = B(Σp
i+2): (a)

T i
2 = T̂ i+1,τ ′

2 , (b) T i
2 = Ĉi+1,τ ′

2 , and (c) Ĉi,τ
2 = T̂ i+1,τ ′

2 where τ, τ ′ ⊆ O2(|id|) are
two sets of iterms and τ ′ has a nondecreasing, unbounded iterm.
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PROOF. These statements follow from the discussion at the beginning of this
section, the fact PΣp

i ({|`|}) has complete problems, Corollary 55, Theorem 77,
Corollary 49, and Corollary 75. 2

One can view this as saying that the complexity characterisation of the ∆̂b
i+2-

predicates of T i
2 and T̂ i+1,τ

2 where τ has an unbounded iterm will not separate
these theories unless the polynomial hierarchy is infinite.

The results of Hemaspaandra, Hemaspaandra, Hempel [14,15] and Buhrman
Fortnow [4] are based on the easy-hard arguments of Kadin [16] and are of a
simplistic enough nature that they might be formalizable in T i

2. This would

give a provable collapse to B(Σp
i+2) if T i

2 = T̂ i+1,τ ′
2 .

The i = 0 case of the equality (c) is interesting since the Σ̂b
1-definable functions

of Ĉ
0,{|id|}
2 are FTC0 [23], functions computable by constant-depth threshold

circuits. If Ĉ
0,{|id|}
2 = R1

2 or S1
2 then the polynomial hierarchy collapses. So this

gives some indirect evidence that TC0 and NC are not equal.

7.2 Oracle results

We now give an oracle X for which PΣp
i (X)({||`||}) ( PΣp

i (X)({||`||2}) where
` is a nondecreasing, unbounded iterm. The relativisation of Corollary 49
implies the ∆̂b

i+1(α)-predicates of T̂
i,{|`|}
2 (α) are PΣp

i (α)({||`||}) and those of

T̂
i,{2||`||2}
2 (α) are PΣp

i (α)({||`||2}). So our oracle implies T̂
i,{|`|}
2 (α) ( T̂

i,{2||`||2}
2 (α)

where α is a new 1-ary predicate symbol added to L2 without defining equa-
tions. This follows since (N, X) where X interprets α models T̂

i,{|`|}
2 (α). So

T̂
i,{|`|}
2 (α)’s ∆̂b

i+1(α)-predicates are not all of PΣp
i (α)({||`||2}), yet T̂

i,{2||`||2}
2 ’s

are. By Corollary 12, this shows T̂ i,τ ′
2 (α) ( T̂ i,τ

2 (α) for any set τ ′ surpassed by
|`| and for any τ containing a term surpassing 2||`||

2
. This result also shows

these theories are separated by a ∆̂b
i+1(α)-predicate. We define W ⊆∆̂b

i (α) V to

mean the ∆̂b
i(α) predicates of W are contained in the ∆̂b

i(α) predicates of V .
We define (∆̂b

i (α) in a similar manner. Taking ` to be id the previous argument

then gives

Si
2(α) (∆̂b

i+1(α) T̂ i,2
˙{||x||}

2 (α) ¹B(Σ̂b
i+1(α)) Ri+1

2 (α).

The relativisation of Corollary 75 shows Ĉi,τ
2 (α) is B(Σ̂b

i+1(α))-conservative

over T̂ i,τ
2 (α) provided τ ⊆ O2(|id|). So for τ, τ ′ as above, our oracle separation

shows

T̂ i,τ ′
2 (α) ¹B(Σ̂b

i+1(α)) Ĉi,τ ′
2 (α) (∆̂b

i+1(α) T̂ i,τ
2 (α) ⊆ Ĉi,τ

2 (α).
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We get that the ∆̂b
i+1(α)-predicates of Ĉi,τ

2 (α) will actually be contained in

T̂ i,τ
2 (α) because of the first conservation and since T̂ i,τ ′

2 (α) ( T̂ i,τ
2 (α). Noticing

||x|| ≤ 2|||x|||
2 ≤ |x| ≤ 2||x||

2 ≤ x for large enough x and using the relativisation

of Corollary 75(c), our T̂
i,{|`|}
2 (α) versus T̂

i,{2||`||2}
2 (α) argument implies for i ≥

1:

R̂i
2(α) ⊆ Ri

2(α) (∆̂b
i+1(α) Si

2(α) (∆̂b
i+1(α) T i

2(α).

The ∆̂b
i+1(α)-predicates of T i−1

2 (α) for i > 1 are PΣp
i (α)(1) by Corollary 55.

Our oracle thus gives us T i−1
2 (α) 6⊇∆̂b

i+1(α) T̂ i,τ
2 (α) for any τ containing an

unbounded, nondecreasing iterm. Now consider T̂
i,{`}
2 (α) versus T̂

i+1,{||`||}
2 (α).

By Corollary 49 and Corollary 58, the ∆̂b
i+1(α)-predicates of the former are

PΣp
i (α)({|`|}) and of the latter are PΣp

i (α)( ˙{||`||}), so T̂
i+1,{||`||}
2 (α) (∆̂b

i+1(α)

T̂
i,{`}
2 (α). Containment follows, since by conservation the ∆̂b

i+1(α)-predicates

of T̂
i+1,{||`||}
2 (α) are those of T̂ i,2

˙{||`||}
2 (α) which is contained in T̂

i,{`}
2 (α). The

strictness of the inclusion follows from our oracle result since any term in ˙{||`||}
is O(|`|1/2). For i ≥ 1, using T i

2 = T̂
i,{id}
2 this result shows R̂i+1

2 (α) (∆̂b
i+1(α)

T i
2(α) and by Corollary 75, Ri+1

2 (α) (∆̂b
i+1(α) T i

2(α).

7.3 The oracle separation

Let ` be a nondecreasing, unbounded iterm. So any term in | ˙{`}| can be
bounded by some term of the form e · |`(s)| where e is fixed s ∈ L2. Our oracle
construction follows [17]. By Corollary 50 and Corollary 49, a predicate in
PΣp

i ({||`||}) can be written as

(∃v ≤ e · |`(s(x))|)[A(x, v) ∧ ¬B(x, v + 1)]

where A, B ∈ Σp
i , and s ∈ L2 and e is fixed. The converse also holds by

applying Corollary 65 and Corollary 49 to formulas of this kind. One can
relativise these results to show any predicate is in PΣp

i (X)({||`||}), where X is
an oracle set, if and only if it can be written as

(∃v ≤ e · |`(s(x))|)[A(x, v, X) ∧ ¬B(x, v + 1, X)]

where A,B ∈ Σp
i (X) and s ∈ L2 and e is fixed. So the problem of show-

ing PΣp
i (X)({||`||}) ( PΣp

i (X)({||`||2}) reduces to giving a problem solvable by
predicates of the form

(∃v ≤ 2f ·||`(s(x))||2)[A(x, v,X) ∧ ¬B(x, v + 1, X)]
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where A,B ∈ Σp
i (X) and s ∈ L2 and f is fixed, but unsolvable by predicates

of the form

(∃v ≤ |`(t)|)[C(x, v, X) ∧ ¬D(x, v + 1, X)]

where C,D ∈ Σp
i (X).

We now define such a problem. Henceforth, we assume ` is of the form `′(2|id|)
where `′ is a nondecreasing, unbounded iterm. Although the new predicate
symbol α is 1-ary we can use pairing to feed it inputs of higher arity.

Definition 81

(i) (i ≥ 1) We define the Σb
i(α)-formulas

(a) Ψ1(x, v, α) := v = 0 ∨ (∃y1 <
(

x log(x)
2

)1/2
)α(〈x, v, y1〉)

(b) Ψ2(x, v, α) := v = 0 ∨ (∃y1 < x)(∀y2 < (x log(x))1/2)α(〈x, v, y1, y2〉)
(c)

Ψi(x, v, α) := v = 0 ∨ (∃y1 < x)(∀y2 < x) · · · (Qi−1yi−1 < x)

(Qiyi <
(i · x · log(x)

2

)1/2
)α(〈x, v, y1, . . . , yi〉)

where Qi−1 is a ∀ if i is odd and an ∃ otherwise. Likewise, Qi is a ∃
if i is odd and an ∀ otherwise.

(ii) (i ≥ 1) we define

P `
i (x, α) := (∃v < 2||`(x)||2)[(Ψi(x, v, α) ∧ v = 1mod2 ∧

¬(∃v′ < 2||`(x)||2)(v′ > v ∧Ψi(x, v′, α))]

P `
i (x, α) is true if the maximal v satisfying Ψi(x, v, α) is odd. We have modified

the definition of Ψi above from Kraj́ıček [18] and so have not entirely directly
adapted the problem used there to separate Si

2(α) from T i
2(α). We did this

to simplify our proof of Lemma 86 and because Lemma 91 seemed harder to
show using a more direct adaptation of that paper’s problem. The next lemma
follows from the definition of P `

i and the relativisations of Corollary 65 and
Corollary 49.

Lemma 82 (i ≥ 1) P `
i (x, α) ∈ PΣp

i (α)({||`||2}) for all α ⊂ ω.

To separate PΣp
i (X)({||`||}) and PΣp

i (X)({||`||2}) we use propositional trans-
lations P `

i (x, α). These translations allow us to apply results from Boolean
circuit complexity to help solve our problem.

Definition 83 Let n := (i · k log(k)/2)1/2. We define the propositional trans-

lations Ψi(k, v) and P
`,k
i of Ψi(k, v, α) and P `

i (k, X).
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(i) The variables in Ψi(k, v) are of the form

pv,y1,y2,...,yi−1,yi

for v < 2||`(k)||2 and, for every (i − 1)-tuple y1, y2, . . . , yi−1 < k and for
each yi < n.

(ii) We define the circuit Ψi(k, v) to be

k−1∨

y1=0

k−1∧

y2=0

k−1∨

y3=0

. . .
k−1∨∧

yi−1=0

n−1∨∧

yi=0

pv,y1,...,yi

where
k−1∨∧

yi−1=0
is

k−1∧
yi−1=0

if i is odd and an
k−1∨

yi−1=0
otherwise. Likewise,

n−1∨∧
yi=0

is

a
n−1∨
yi=0

if i is odd and an
n−1∧
yi=0

otherwise.

(iii) The circuit P
`,k
i is

∨

v<2||`(k)||2 , v odd

(
Ψi(k, v) ∧ ∧

v<v′<2||`(k)||2
¬Ψi(k, v′)

)
.

The idea of the above is that atomic formulas α(〈k, v, y1, . . . , yi〉) are translated
as propositional variables pv,y1,...,yi

, existential quantifiers are translated as
OR’s, and universal quantifiers are translated as AND’s. No atoms of the

form p0,y1,...,yi
appear in P

`,k
i . This makes sense since if the maximal v satisfying

Ψi(k, v, α) is 0 then P `
i (k, α) will be false. From this discussion, the next lemma

is easily verified.

Lemma 84 (i ≥ 1, k ≥ 0) Let ` ∈ τ . The circuit P
`,k
i computes the value of

P `
i (k, α) under the assignment

pv,y1,...,yi
=





1 if 〈k, v, y1, . . . , yi〉 ∈ α

0 otherwise

The next definition is needed to apply a result of Hastad [13].

Definition 85 (i) Let (Bj)j be a partition of the atoms of P
`,k
i into 2||`(k)||2 ·

ki−1 classes of the form

{
pv,y1,...,yi−1,yi

∣∣∣yi <
( i · k log(k)

2

)1/2}

one for every choice of y1, . . . yi−1 < k, v < 2||`(k)||2.
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(ii) Let 0 < q < 1 be a real number. A probability space R+
q of random

restrictions is a space of restrictions ρ determined by the following process
(a) Let

sj :=




∗ with probability q

0 with probability 1− q

(b) and for every atom p ∈ Bj let

ρ(p) :=





sj with probability q

1 with probability 1− q

(iii) R−
q is defined in the same way as R+

q except the roles of 0 and 1 are
interchanged.

(iv) For any ρ ∈ R+
q , g(ρ) is a further restriction and renaming of the atoms

defined for each j as follows:
(a) for j such that sj = ∗ let pj = pv,y1,...,yi−1,yi

be the atom from Bj given
value ∗ by ρ for the least value of yi.

(b) g(ρ) gives value 1 to all p ∈ Bj, p 6= pj such that ρ(p) = ∗.
(c) g(ρ) renames pj to pv,y1,...,yi−1

.
(v) For ρ ∈ R−

q , g(ρ) is is defined as in (iv) except interchanging the roles of
0 and 1.

(vi) For G a circuit with atoms among those of P
`,k
i , let Gρ denote the circuit

obtained from G, by performing the restriction ρ followed by the restric-

tion g(ρ). The atoms of Gρ are among those of P
`,k
i−1.

The next lemma is one of two results we use from Hastad [13].

Lemma 86 Let q := (2i log(k)/k)1/2 and assume k is sufficiently large. Then
the following three conditions hold.

(i) Let G be a depth 2 subcircuit of P
`,k
i : So G is either an OR of AND’s of

size < (i ·k log(k)/2)1/2 or is an AND of OR’s of size < (i ·k log(k)/2)1/2.
Pick ρ at random from R+

q , if G is an OR of ANDs, and from R−
q , if

it is an AND of ORs. With probability at least 1− 1
3
k−i+1 Gρ is an OR

(resp. an AND) of at least ((i− 1) · k log(k)/2)1/2 different atoms.
(ii) (i ≥ 2) Pick ρ at random from R+

q for i even and from R−
q for i odd. With

probability at least two-thirds the circuit (P
`,k
i )ρ is P

`,k
i−1 after a suitable

renaming of variables.

PROOF. We sketch this following Kraj́ıček [18] and Buss and Krajicek [6].

(i) The proof of this is the same as Lemma 10.4.7 (i) in Kraj́ıček [18].
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(ii) There are 2||`(k)||2 · ki−2 different subcircuits of depth 2 in P
`,k
i . By our

assumption 2||`(k)||2 ≤ k, and (i), with probability

(1− 1

3
k−i+1)2||`(k)||2 ·ki−2 ≥ 1− 1

3
2||`(k)||2 · k−1 ≥ 2

3

all of them are restricted by ρ as described in the conclusion of (i). The first
inequality holds by looking at the series expansion of the first term. Thus,

after renaming the atoms, (P
`,k
i )ρ becomes P

`,k
i−1. 2

We now give a notion a truth table reducibility which we use to represent
propositional translations of predicates in PΣp

i (α)({||`||}).

Definition 87

(i) A Boolean circuit is called ΣS,t
i,k if

(a) it has depth i + 1 and its top gate is an OR.
(b) OR’s and AND’s gates alternate in levels.
(c) it has at most S gates at each level greater than 2.
(d) its bottom gates have arity at most t.

(e) the inputs to its bottom gates are the atoms or negated atoms of P
`,k
i .

(ii) A tt||`||-reducibility of type (i, k, d) is a Boolean formula of the form

f(w1, . . . , wm)

in m ≤ e · |`(k)| variables where e is fixed together with ΣS,t
i,k -circuits

E1, . . . , Em where S = 2(log k)d
, and t = log(S).

(iii) A tt||`||-reducibility D of type (i, k, d) computes a function of the atoms of

P
`,k
i in the following way: First evaluate wj := Ej on the atoms and then

evaluate f(w1, . . . , wm).

Let S = 2(log k)d
for a fixed d. Suppose one has a A(x) ∈ Σb

i(α). For a fixed k
one translates A(k) into propositional formula Ā(k) as follows:

(1) If A(k) is t(k) ≤ s(k) or t(k) = s(k) then Ā(k) is either > or ⊥ according
to the value of the atomic formula on input k.

(2) If A(k) is α(〈k〉) then Ā(k) is pk.
(3) If A(k) is B ◦ C where ◦ is a binary connective then Ā(k) is B̄ ◦ C̄.
(4) If A(k) is ¬B then Ā(k) is ¬B̄.

(5) If A(k) is (∃y ≤ t(k))B(k, y) then Ā(k) is ∨t(k)
j=0B̄(k, j).

(6) If A(k) is of the form (∀y ≤ t(k))B(k, y) then Ā(k) is ∧t(k)
j=0B̄(k, y).

One can modify the quantifier bounds of a prenexification of a Σb
i(X)-formula

A so that a Σ
S,log(S)
i,k -circuit can be used to compute A(k) under this translation

and under the truth assignment pk = > iff 〈k〉 ∈ X. If A,B ∈ Σb
i(X) and e
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is fixed, then it follows there is a tt||`||-reducibility of type (i, k, d) computing
the value of (∃v ≤ e · |`(k)|)[A(k, v, X)∧¬B(k, v +1, X)]. We now prove some
lemmas that show the limitations on tt||`||-reducibilities.

Lemma 88 Let G be an AND of OR’s of size ≤ t with atoms among those

of P
`,k
i . Pick ρ randomly from R+

q or from R−
q .

Then with probability at least 1 − (6qt)s the circuit Gρ can be written as an
OR of ANDs of size < s.

This is also the probability of switching an OR of AND’s to an AND of OR’s.

The proof of the above lemma is in Hastad [13].

Lemma 89 Let q := (2i log(k)/k)1/2 and let D be a tt||`||-reducibility of type
(i, k, d). Pick ρ at random from R+

q or from R−
q . Then with probability at least

a half, Dρ := 〈f ; Eρ
1 , . . . , E

ρ
m〉 is a tt||`||-reducibility of type (i− 1, k, d).

PROOF. Let t = s = (log k)d and apply Lemma 88. The probability that a
depth 2 subcircuit of any Ej fails to be switched is at most

(6qt)t =
(
6
(2i log(k)

k

)1/2
(log k)d

)(log k)d

< 2−f ·(log k)d+1

for large enough k and some sufficiently small constant f .

There are fewer than e · |`(k)| ·(2(log k)d
)i−2 ≤ 2i·(log k)d

such depth 2 subcircuits,
so with probability at least

1− 2i·(log k)d−f ·(log k)d+1

> 1/2

all of them are switched. The switched subcircuits can be combined with the
level 3 gates, reducing the depth of the Ej’s by 1. 2

Lemma 90 Let D be a tt||`||-reducibility of type (i, k, d) computing the predi-
cate P `

i (k, X) for all X ⊆ ω. Then there is a tt||`||-reducibility of type (1, k, d)
computing P `

1(k, Y ) for every Y ⊆ ω.

PROOF. By Lemma 84, P `
i (k, X) is computed by P

`,k
i . Lemma 86 and

Lemma 89 imply a random restriction ρ (drawn from R+
q if i is even and

R−
q if i odd) has greater than a 1/6 chance of both converting P

`,k
i into P

`,k
i−1

and converting D into a tt||`||-reducibility of type (i−1, k, d). As this is nonzero,
some ρ does this conversion. Applying this conversion (i− 1)-times proves the
lemma. 2
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Lemma 91 (i ≥ 1) For fixed d and large enough k no tt||`||-reducibility of type
(i, k, d) computes P `

i (k, X) for all X ⊆ ω.

PROOF. In view of Lemma 90, it suffices to show no tt||`||-reducibility of
type (1, k, d) computes P `

1(k, Y ) for all Y ⊆ ω.

Let t := log(k)d, and let D = 〈f ; E1, . . . , Em〉 be a tt||`||-reducibility of type

(1, k, d). So m ≤ e · |`(k)|. Here Ei are Σ
2(log k)d ,(log k)d

1,k -circuits. For simplicity

write P for P
k
1.

We work with triples 〈k, v, y1〉 where k is as in the statement of the lemma.
For a finite set X of triples 〈k, v, y1〉, we write maxp(X) for p = 1, 2, 3 for
the largest value of the pth coordinate in any triple in X. We define minp(X)
similarly. We construct a sequence of sets X+

s , X−
s , Is satisfying

(1) X+
s ∩X−

s = ∅ and for any number 〈k, v, y1〉 in X+
s we have v < 2s.

(2) |X+
s | ≤ s and |X+

s ∪X−
s | ≤ st.

(3) Is ⊆ {1, . . . , m} and |Is| = s.
(4) for every Y ⊆ ω such that X+

s ⊆ Y ∧X−
s ∩Y = ∅ we have EY

j = 1 for all
j ∈ Is. Here EY

j denotes the circuit Ej evaluated according to Y where
evaluated according to Y means a propositional variable pv,y1 is true iff
〈k, v, y1〉 ∈ Y .

We set X+
0 := X−

0 := I0 = ∅. For stage s + 1, assume X+
s , X−

s , Is satisfy the
conditions stated.

Set Y := X+
s . By (4), EY

j = 1 for all j ∈ Is. Consider the following three
cases:

(a) DY = 1 but max2(Y ) is 0 mod2, or DY = 0 but max2(Y ) is 1 mod2. In
this case STOP.

(b) DY = 1 and max2(Y ) is 1 mod2. Consider the set

V = {〈k, v, y1〉 |max2(X
+
s ) < v < 2||`(k)||2 ,

y1 ≤ ((k log k)/2)1/2, v = 0 mod2, 〈k, v, y1〉 6∈ X−
s }

The upper bounds on v and y1 are the largest values these indices have
in variables in P . By condition (1), (2) and (3), the set V is nonempty
since

2s ≤ 2m ≤ 2 · e · |`(k)| ≤ 2||`(k)||2

for sufficiently large k and since `(k) is unbounded. There are two sub-
cases:

(b1) It is possible to add some element 〈k, v, y1〉 ∈ V to Y to form

Y ′ := Y ∪ {〈k, v, y1〉}
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such that DY ′ = DY = 1. In this subcase set X+
s+1 := X+

s ∪{〈k, v, y1〉}
and X−

s+1 := X−
s and STOP.

(b2) There is no 〈k, v, y1〉 ∈ V with property (b1). Take 〈k, v, y1〉 in V
such that v = min2(V ) and such that 〈k, v, y′1〉 in V implies y1 ≤
y′1. Since (b1) does not apply the circuit D evaluated according to
Y ∪ {〈k, v, y1〉} changes value. So either: (1) some Ej0 for j0 6∈ Is

received new value 1, or (2) some Ej0 for j0 6∈ Is received new value
0. In the first case, we set X+

s+1 := X+
s ∪ {〈k, v, y1〉}. As the circuit

Ej0 is an Σ2t,t
1,k -circuit, it is an OR of ANDs. One of the ANDs of Ej0

must have become true. Add the indices of all negatively occurring
atoms of this AND in Ej0 to X−

s to form X−
s+1. This is correct since

if they were in X+
s then the AND in Ej0 could not have evaluated

to 1. Similarly, all the positive atoms necessary to make this AND
true must be in X+

s+1. In the second case, we want to make sure
Ej0 stays equal to 1 so we set X+

s+1 = X+
s . The element 〈k, v, y1〉

must occur negatively in one of Ej0 ’s ANDs, so we form X−
s+1 by

adding to X−
s the element 〈k, v, y1〉 and the at most t negatively

occurring elements in this AND. Notice in both cases |X+
s+1| ≤ s + 1

and |X+
s+1 ∪X−

s+1| ≤ st + t = (s + 1)t. Since for sufficiently large k

|X+
s ∪X−

s | < st ≤ m · (log k)d ≤ e|`(k)|(log k)d < (
k log k

2
)1/2

there will always be y1’s such that for each sized v > max2(X
+
s )

there is a tuple 〈k, v, y1〉 in V . So min2(V ) is at most max2(X
+
s )+ 2,

since either max2(X
+
s ) + 1 or max2(X

+
s ) + 2 is 1mod2 and there will

be tuples in V with these values of v. Thus in both cases of (b2)
condition (1) will be satisfied since for any 〈k, v, y1〉 ∈ X+

s+1 we have
v ≤ min2(V ) ≤ max(X+

s )+2 ≤ 2s+2 = 2(s+1). Let Is+1 := Is∪{j0}
and go to s+2. It is easy to check that the new sets X+

s+1, X−
s+1, and

Is+1 fulfill conditions (1)-(4).
(c) DY = 0 and max1(Y ) is even. In this case, let

V = {〈k, v, y1〉 |max2(X
+
s ) < v < 2||`(k)||2 ,

y1 ≤ ((k log k)/2)1/2, v = 1 mod2, 〈k, v, y1〉 6∈ X−
s }

and proceed analogously to case (b).

If the construction has not terminated by stage s, then Is ( Is+1. Thus, by
(3) the construction must halt eventually.

Let Y := X+
s for the final s. If during the construction only step (b) or (c)

apply then DY does not agree with P Y because condition (4) would imply
the circuit was constant, yet for sufficiently large k that there are elements
〈k, v, y1〉, 〈k, v′, y′1〉 in Y such that v := 0 mod2 and such that v′ := 1 mod2.
If (a) ever applies then we are also done. 2
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Theorem 92 (i ≥ 1) There is an X so that PΣp
i (X)({||`||}) ( PΣp

i (X)({||`||2})

PROOF. We construct X ⊆ ω such that P `
i (x,X) 6∈ PΣp

i (X)({||`||}). By an
easy extension to Corollary 50, any PΣp

i (X)({||`||}) predicate can be written
as A := (∃v ≤ e · |`|)[C(x, v,X) ∧ ¬D(x, v + 1, X)] where C, D ∈ Σp

i (X)

and e is fixed. Let F
||`||
j , j=0,1, . . . enumerate all such predicates. We consider

successive j’s and build X in stages to ensure that F
||`||
j 6= P `

i (x,X).

Let Xs be the approximation of X constructed by stage s and let s+1 be the
index of the predicate F

||`||
s+1 to be considered next. Choose k := ks+1 so large

that all numbers considered in the first s stages are small with respect to k.
As stated before, for each fixed k, formulas of the form A can be computed by
a tt||`||-reducibility D in a straightforward way. Let D

||`||
s+1 be the reducibility

computing F
||`||
s+1. Evaluate indices corresponding to “n ∈ α” with k′ < k

according to Xs and otherwise, set to 0 all atoms whose indices are not of the
form 〈k, v, y1, . . . , yi〉.

This leaves a tt||`||-reducibility of type (i, k, d), which cannot compute P `
i (k, Y )

for all Y ⊂ ω by Lemma 91. A finite Y for which the reducibility fails was
constructed in Lemma 91, take Xs+1 = Xs ∪ Y and the reducibility fails for

Xs+1. Hence, F
||`||
s+1 6= P `

i (x,Xs+1). So F
||`||
s+1 6= P `

i (x, X) where X =
⋃

s Xs.

Proceed to s + 2. 2

The next corollaries follow from the above theorem and the discussion in
Section 7.2.

Corollary 93 Suppose `′ ∈ τ surpasses 2||`||
2

and is a nondecreasing, un-
bounded iterm and suppose τ ′ is surpassed by |`|. Then:

(i) T̂ i,τ ′
2 (α) ⊆ Ĉi,τ ′

2 (α) (∆̂b
i+1(α) T̂ i,τ

2 (α) ⊆ Ĉi,τ
2 (α).

(ii) T i−1
2 (α) 6⊇∆̂b

i+1(α) T̂ i,τ
2 (α).

(iii) T̂
i+1,{||`||}
2 (α) (∆̂b

i+1(α) T̂ i,2
˙{|`|}

2 (α).

(iv) T̂
i,{|`|}
2 (α) (∆̂b

i+1(α) T̂ i,2
˙{||`||}

2 ¹B(Σ̂b
i+1(α)) T̂

i+1,{||`||}
2 (α).

Corollary 94 (i ≥ 1,m ≥ 0)

(i) R̂i
2(α) ⊆ Ri

2(α) (∆̂b
i+1(α) Si

2(α) (∆̂b
i+1(α) T i

2(α).

(ii) T i−1
2 (α) 6⊇∆̂b

i+1(α) T̂
i,{|id|m}
2 (α).

(iii) R̂i+1
2 (α) (∆̂b

i+1(α) T i
2(α).

(iv) Ri+1
2 (α) (∆̂b

i+1(α) T i
2(α).
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(v) Si
2(α) (∆̂b

i+1(α) T̂ i,2
˙{||id||}

2 ¹B(Σ̂b
i+1(α)) Ri+1

2 (α).

7.4 Models separating theories

Recall from the introduction that a model M separates the theories A and B
with respect to ∆̂b

i(α)-predicates if: (a) M models A and B. (b) The ∆̂b
i(α)-

predicates of A are ΨA and those of B are ΨB. (c) M |= ΨA 6= ΨB.

Theorem 95 There is an oracle X such that for all i ≥ 1 there is an `
for which (N, X) separates T̂

i,{`}
2 (α) from T̂

i,{|`|}
2 (α) for ∆̂b

2(α)-predicates yet
(N, X) |= PH(α) = ∆p

2(α).

PROOF. Buhrman and Torenvliet [3] give an oracle X for which NEXPX ⊆
PNP X

. So (N, X) |= NEXP (α) = PH(α) = PNP (α). Mocas [20] shows

PNP (nk) ( NEXP and this relativizes. Now consider T̂
i,{|id|i}
2 (α) versus

T̂
i,{|id|i−1}
2 (α). For all i ≥ 1, T̂

i,{|id|i−1}
2 (α) ⊇ T 1

2 (α) so its ∆̂b
2(α)-predicates

contain PNP (α). By Corollary 58, however, one sees the ∆̂b
2(α)-predicates of

T̂
i,{|id|i}
2 (α) have subpolynomially many queries to an NP (α)-oracle. In par-

ticular, they are contained in PNP (n2)(α). So by the Burhman and Torenvliet

result and the Mocas result (N, X) separates T̂
i,{|id|i−1}
2 (α) from T̂

i,{|id|i}
2 (α)

with respect to ∆̂b
2(α)-predicates. 2
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