
Nepomnjaščǐı’s Theorem and Independence Proofs

in Bounded Arithmetic

Chris Pollett
214 MacQuarrie Hall

Department of Computer Science
San Jose State University

1 Washington Square, San Jose CA 95192
pollett@cs.sjsu.edu

February 20, 2003– Draft

Abstract

The use of Nepomnjaščǐi’s Theorem in the proofs of independence
results for bounded arithmetic theories is investigated. Using this re-
sult and similar ideas, the following statements are proven: (1) At least
one of S1 or TLS does not prove the Matiyasevich-Davis-Robinson-
Putnam Theorem and (2) TLS does not prove Σ̂b

1,1 = Π̂b
1,1. Here S1

is a conservative extension of the well-studied theory I∆0 and TLS is
a theory whose ∆̂b

1,2-predicates are precisely LOGSPACE. The relation
of TLS from this paper to previously studied theories is also developed
and generalizations of the previous two results to quasi-linear settings
are discussed as well.

Mathematics Subject Classification: 03F30, 68Q15
Keywords: bounded arithmetic, independence results

1 Introduction

In this paper applications of Nepomnjaščǐı’s Theorem to the provability of
several important complexity statements in bounded arithmetic theories are
considered. Recall that Nepomnjaščǐı’s Theorem states that those languages
that can be decided in simultaneous time nk, k > 0 and space nε, 1 > ε,
the class TISP(nk, nε), are contained in the linear time hierarchy, LinH. The
study of this theorem has recently undergone a renaissance since Fortnow [5]
used it to prove time-space lower bounds for SAT .

The theory I∆0 consists of defining axioms for the symbols of arithmetic
together with induction for bounded formulas. By Wrathall [19] it is known
that the ∆0-predicates in this language are the predicates computable in
the linear time hierarchy, and so I∆0 is in some sense a reasonable theory
to reason about such sets. Numerous papers concerning how much number
theory and combinatorics can be done in I∆0 have been published and the
interested reader should consult Hájek and Pudák [7] or Kraj́iček [9] both
as introductions to this area and for references into the literature.

Since Buss [1] presented a theory S1
2 for polynomial time, many bounded

arithmetic theories have been proposed to model reasoning about a variety
of complexity classes. In particular, Clote and Takeuti [3] present theories
for a variety of complexity classes within polynomial time. One such theory
is TLS . Clote and Takeuti show that the essentially sharply bounded pred-
icates of TLS are precisely LOGSPACE. In a later paper [18], Takeuti shows
that a subtheory of TLS is able to prove the consistency of Frege propo-
sitional proof systems. From the point of view of propositional complexity
Frege systems are considered quite strong and at the time of this writing
no nontrivial lower bounds on proof size for families of tautologies in these
systems are known. Cook [2] a describes a potentially stronger proof sys-
tem still, L-Frege, and shows the second-order theory of Zambella [20] for
LOGSPACE can prove L-Frege’s consistency. It is quite likely that TLS can
also prove L-Frege’s consistency.

The goal of this paper is to show that Nepomnjaščǐı’s Theorem has im-
portant implications for the provable consequences of I∆0 and TLS . The
results are presented using a conservative extension of I∆0 known as S1 and
a variant on Clote and Takeuti’s TLS which is in a language with multipli-
cation and is axiomatized in a simpler fashion than their theory. The version
of TLS used here contains Clote and Takeuti’s, still has as its ∆̂b

1-predicates
LOGSPACE, and is Σb

1-conservative over their theory. Using Nepomnjaščǐı’s
Theorem and Parikh’s Theorem, it is shown that at least one of the the-
ories S1 and our TLS cannot prove that all Σ1-sets are Diophantine (i.e.,
the Matiyasevich-Robinson-Davis-Putnam (MRDP) Theorem [11]). It was
already known that I∆0+exp, where exp is an axiom for exponentiation,
proves the MRDP Theorem [6]. Being careful with how one defines a uni-
versal predicate for Σ̂b

i,k-formulas, our paper also shows using Nepomnjaščǐı’s
Theorem that TLS cannot prove Σ̂b

1,1 = Π̂b
1,1. This is fairly close to saying

(but not quite) that TLS cannot prove NLIN =co-NLIN. Using the tech-
niques of Pollett and Pruim [15], it is possible that the latter result could
be obtained with the techniques of this paper but the expense would be to

2

make TLS a more awkward looking theory. The arguments presented for
the results above can be generalized to where simply defined functions of
quasi-linear growth are added to both TLS and S1.

A lesser goal of this paper is to clarify the relationship between the TLS
of this paper and Clote and Takeuti’s theory. Simplifications to Clote and
Takeuti’s theories for AC0(2), AC0(6), and NC1 are also briefly discussed.
The Σb

1-conservativety result between the theory of this paper and Clote
and Takeuti’s is very much like a first-order version of Zambella’s result [20]
concerning the Σp

1-conservativety of Σp
1-(rec+choice) over Σp

0-rec. In fact,
Zambella’s paper mentions that he is is unaware of any first-order theory
corresponding to his second-order theories for LOGSPACE. Given the results
of this paper it seems quite likely that Clote and Takeuti’s and our theories
play this role.

This paper is organized as follows: The next section contains the nota-
tions and main definitions used in this paper. This is followed by a section
showing that the ∆̂b

1,2-predicates of TLS are in fact LOGSPACE and that the
TLS of this paper is Σb

1-conservative over the TLS of Clote and Takeuti [3].
The first two results listed in the abstract are then presented.

2 Preliminaries

The language L0 contains the non-logical symbols: 0, S, +, =, ≤, .−, b1
2xc,

|x|, PAD(x, y), and MSP(x, i); the language L1 is L0∪{‘·’}. The symbols 0,
S(x) = x+1, +, ·, and ≤ have the usual meaning. The intended meaning of
x .− y is x minus y if this is greater than zero and zero otherwise, b1

2xc is x
divided by 2 rounded down, and |x| is dlog2(x + 1)e, that is, the length of x
in binary notation. PAD(x, y) is intended to mean x · 2|y| and will be useful
in defining a pairing functions and projections using just L0-terms. Finally,
MSP(x, i) stands for ‘most significant part’ and is intended to mean bx/2ic.
The language L2 is L1 ∪ {#} and L#

0 is L0 ∪ {#}. x#y reads ‘x smash
y’ and is intended to mean 2|x||y|. The notation 1 is used for S(0), 2 for
S(S(0)), etc. A quantifier of the form (∀x ≤ t) or (∃x ≤ t) where t is a term
not containing x is called a bounded quantifier. A formula is bounded or ∆0

if all its quantifiers are. A quantifier of the form (∀x ≤ |t|) or of the form
(∃x ≤ |t|) is called sharply bounded and a formula is sharply bounded if all its
quantifiers are. Given a language L, the hierarchy of formulas Ei,L and Ui,L

are defined as follows: E1,L are those formulas of the form (∃x ≤ t)φ and
U1,L are those formulas of the form (∀x ≤ t)φ where φ is an open formula.
Ei,L are those formulas of the form (∃x ≤ t)φ where φ ∈ Ui−1,L-formula.

3

Ui,L are those formulas of the form (∀x ≤ t)φ where φ ∈ Ei−1,L. The
notations Ei and Ui are used when L is understood, and Ei,k and Ui,k are
used for Ei,Lk

and Ui,Lk
. The class of quantifier-free formulas is denoted by

open (or openk to emphasize the language is Lk). For i > 0, a Σ̂b
i -formula

(resp. Π̂b
i -formula) is defined to be a Ei+1-formula (resp. Ui+1-formula)

whose innermost quantifier is sharply bounded. To emphasize the language
is Lk we write Σ̂b

i,k and Π̂b
i,k. The classes Σb

i and Πb
i are the closures of

Σ̂b
i and Π̂b

i under subformulas, ∧, ∨, and sharply bounded quantifications.
Kent and Hodgson [8] (see also Pollett [13]) have shown the sets defined by
Σ̂b

i,2-(resp. Π̂b
i,2-)formulas are precisely the Σp

i -(resp. Πp
i -)predicates. Thus,

the Σ̂b
1,2-formulas correspond to the NP predicates.

The theory BASIC k is axiomatized by all subtitution instances of a finite
set of quantifier free axioms for the non-logical symbols of Lk, k = 0, 1, 2.
These are listed in Buss [1] except for the axioms for MSP and .− which are
listed in Takeuti [17], and those for PAD are listed in Clote and Takeuti [3].
Some useful L0-terms are listed below:

2|y| := PAD(1, y)
2min(|y|,x) := MSP(y, |y| .− x)

K¬(x) := 1 .− x
K∨(x, y) := x + y
K≤(x, y) := K¬(y .− x)
LSP(x, i) := x .− PAD(MSP(x, i), i)
DMSB(x) := LSP(x, |x| .− 1)
mod2(x) := x .− PAD(b1

2xc, 1)
BIT(i, x) := mod2(MSP (x, i))

cond(x, y, z) := MSP(y, PAD(K¬(x), y)) + MSP(z,PAD(K¬(K¬(x)), z))
max(x, y) := cond(K≤(x, y), y, x)
min(x, y) := cond(K≤(x, y), x, y)

The following L#
0 terms will also sometimes be used:

(b · c)|a| := cond(K∨(K¬(b),K¬(c)), 0, 2min(|a|,b .−1)#2min(|a|,c .−1))
β̂t(x,w) := LSP(MSP(w, (x · t)|w|), t)

β̇t,s(x,w) := min(β̂t(x,w), s)

For brevity, this paper uses 2`(x) for 2min(|t(x)|,`(x)), if `(x) is a term which is
obviously less than some |t(x)|.

As for the intended meaning of some of the terms above, β̂t(x,w) projects
out the xth block (starting with a 0th block) of t bits from w. β̇t,s(x,w)

4

returns the minimum of β̂t(x,w) and s. Note if the language were L1, as is
the case for Lemma 6 latter in this paper, one can use the usual ‘·’ rather than
(b ·c)|a| to define β̂ and β̇. A term like β̂ that projects blocks that are powers
of 2 is also definable in L0, but would make the correspondence between the
theories of this paper and Clote and Takeuti’s harder to establish.

The pairing operation which will be used is defined as follows. Let B =
2|max(x,y)|+1 = PAD(2,max(x, y)). Thus, B will be longer than either x or
y. Define an ordered pair as 〈x, y〉 := (2|max(x,y)| + y) · B + (2|max(x,y)| +
x). To project out the coordinates from such an ordered pair, use (w)1 :=
DMSB(LSP(w, b1

2 |w|c)) and (w)2 := DMSB(MSP(w, b1
2 |w|c)) which return

the right and left coordinates of the pair w. To check if w is a pair the
function ispair(w) :=

BIT(w, b1
2
|w|c .− 1) = 1 ∧ 2 · |max((w)1, (w)2)|+ 2 = |w|

is used. Notice the above functions can all be expressed as L0-terms and
this last predicate can be expressed as an open L0-formula.

The theories in this paper will all be formulated in the sequent calculus
system LKB of Buss [1].

Definition 1 A Ψ-LmIND inference is an inference:

A(b), Γ → A(Sb), ∆
A(0),Γ → A(|t(x)|m),∆

where b is an eigenvariable and must not appear in the lower sequent, t ∈ L2,
|x|0 = x, and |x|m+1 = ||x|m|.

The notations IND , LIND , LLIND will be used instead of L0IND ,
L1IND , and L2IND .

Definition 2 (i ≥ 0) The theories T i
k and S i

k axiomatized as BASIC k+Σ̂b
i,k-

IND and BASIC k+Σ̂b
i,k-LIND, respectively.

We define Sk := ∪iS i
k.

That S i
k and T i

k can be equivalently defined using Σ̂b
i,k induction schemas

rather than Σb
i,k schemas was shown in Pollett [13]. From Buss [1] is it known

that
S i

k ⊆ T i
k ⊆ S i+1

k .

It should be noted that the correctness of the pairing function given above
can be proven using the techniques of Pollett [13] in BASIC 0+open0-LIND .

5

The theory I∆0 is defined using the language 0,S,+,‘·’; ≤. It consists of
some base axioms for these symbols together with ∆0-IND . The symbols in
L1 are all definable in I∆0, and it is known the S1 is a conservative extension
of I∆0. For more details on this relationship and this theory, the reader is
advised to consult Kraj́iček [9].

To introduce TLS , a function algebra characterization of Clote and
Takeuti [3] for the functions in LOGSPACE needs to be discussed.

Definition 3 The function f is defined by CRN from the functions g, h0,
and h1 if

f(0, ~x) = g(~x)
f(2n, ~x) = 2f(n, ~x) + h0(n, ~x)

f(2n + 1, ~x) = 2f(n, ~x) + h1(n, ~x)

Definition 4 The function f is defined by B2RN from the functions g, h0,
h1, and k if

f(0, ~x) = g(~x)
f(2n, ~x) = h0(n, ~x, f(n, ~x))

f(2n + 1, ~x) = h1(n, ~x, f(n, ~x))

provided that f(n, ~x) < |k(n, ~x)|.
Theorem 1 The functions in LOGSPACE are precisely those functions con-
taining the L#

0 base functions, closed under composition, CRN , and B2RN .
Alternatively, it can be defined as those functions containing the L2 base
functions, closed under composition, CRN , and B2RN .

Proof. This is proven in Clote and Takeuti [3]. The only difference is that
there a slightly different set of initial functions was used. It is well known
that all the L2 base functions are in LOGSPACE. In particular, multiplication
is in LOGSPACE. So the algebras above are contained in theirs. On the other
hand, the only initial function in their paper that is not an L#

0 base function
is BIT, for which an L#

0 -term was given above. ¤
The last definitions needed to present TLS are now given.

Definition 5 Given a term t in one of the languages of this paper we define
a monotonic term t∗ as follows: If t is constant or a variable, then t = t∗. If
t is f(s), where f is a unary function symbol, then t∗ is f(s∗). If t is s1 ◦ s2

for ◦ a binary operation other than .− or MSP , then t∗ is s∗1 ◦ s∗2. Lastly, if
t is s1

.− s2 or MSP(s1, s2), then t∗ is s∗1.

6

It is easily proved in BASIC +open-LIND that t∗ is monotonic, and t ≤ t∗.
In the next definition, ∃! is used to abbreviate two sequents expressing

uniqueness and existence.

Definition 6 The Ψ-WSN (weak successive nomination rule) is the follow-
ing rule:

b ≤ |k(j,~a)| → ∃!x ≤ |k|A(j,~a, b, x)

→ ∃w ≤ bd(|k|, t)∀j < |t|A(j,~a, β̂|k∗|(j, w), β̂|k∗|(Sj,w))

where A ∈ Ψ and bd(a, b) := 2(2a#2b).

The last rule needed to define TLS is:

Definition 7 Ψ-REPL (quantifier replacement) is the following rule:

(∀x ≤ |s|)(∃y ≤ t(x, a))A(x, y, a) ⇔
(∃w ≤ bd(t∗(|s|, a), s))(∀x ≤ |s|)A(x, β̇|t∗(|s|,a)|,t(x,w))

where A ∈ Ψ.

Definition 8 TLS is the theory consisting of BASIC 2+open2-LIND+Σ̂b
1,2-

WSN+Σ̂b
1,2-REPL. TLS− is the same theory but in the language L#

0 .

3 Bootstrapping

This theory is axiomatized in a different fashion than the version of TLS
presented in Clote-Takeuti [3], so time is needed to show that it is in fact
a Σb

1-conservative extension of their theory. Recall A is said to be ∆̂b
i in a

theory T if T ` AΣ ≡ A ≡ AΠ where AΣ is Σ̂b
i and AΠ is Π̂b

i . ∆b
i is defined

analogously, but using Σb
i and Πb

i . Recall also that f is Ψ-defined in T if
there is a Ψ-formula A such that N |= A(x, f(x)) and T ` ∀x∃!yA(x, y).
Because TLS proves quantifier replacement for Σ̂b

1-formulas, the notions
of Σb

1-definability and Σ̂b
1-definability coincide; similarly, the notions ∆̂b

1

and ∆b
1-coincide. Johannsen and Pollett [10] give two theories for the TC0-

predicates (predicates computable by constant depth threshold circuits), C0
2

and ∆b
1-CR. These theories consisted of BASIC+open2-LIND and Σb

0-
replacement for C0

2 and BASIC+open2-LIND and the following rule of
inference for ∆b

1-CR:

7

Definition 9 ∆b
1-CR is the following sequent calculus rule:

A → B B → A

→ ∃y ≤ 2|s|∀i < |s|(BIT(i, y) = 1 ≡ A(i,~a))

where A ∈ Σb
1 and B ∈ Πb

1.

By quantifier replacement TLS contains C0
2 . Johannsen and Pollett [10]

show this theory contains ∆b
1-CR and so the latter is also in TLS . A direct

argument, however, is given below.

Lemma 1 (1) TLS and TLS− prove ∆b
1-CR. (2) T := BASIC+open2-

LIND+Σ̂b
1-WSN proves ∆̂b

1-CR.

Proof. The same argument shows (1) and (2). Suppose TLS proves A′ → B′

and B′ → A′ where A′ ∈ Σb
1 and B′ ∈ Πb

1. Then by quantifier replacement,
pairing to get rid of ∧ and ∨, and adding dummy quantifiers if needed, it
can be assumed that A′ ∈ Σ̂b

1 and B′ ∈ Π̂b
1. In which case, the formula

((b = 1 ∧ A′(i,~a)) ∨ (b = 0 ∧ ¬B′(i,~a))) ∧
((x = 1 ∧ A′(Si,~a)) ∨ (x = 0 ∧ ¬B′(Si,~a)))

is provably equivalent in TLS to some Σ̂b
1-formula A. If k is taken to be

1, TLS also proves there is a unique x such that A(i,~a, b, x). Further, if
k = 1 then BIT(i, w) = β̂|k|(i, w) is provable in TLS , so the w witnessing
the existential one gets from the conclusion of the Σ̂b

1,2-WSN rule applied
to A can also be used to satisfy the conclusion of the ∆b

1,2-CR rules for A′

and B′. ¤

Lemma 2 TLS and TLS− prove ∆b
1-LIND and TLS and TLS− prove the

bit-extensionality axiom:

|a| = |b| ∧ ∀i < |a|(BIT(i, a) = BIT(i, b)) ⊃ a = b .

Proof. If A is ∆b
1,2 in TLS , then TLS proves LIND for A since TLS proves

∃y ≤ 2|s|∀i < |s|(BIT(i, y) = 1 ≡ A(i,~a)) and since TLS proves LIND on
i for the formula BIT(i, y) = 1. The second statement is easily proved by
LIND on x in the following ∆̂b

1-formula:

∀i < |a|(i ≤ x ⊃ BIT(i, a) = BIT(i, b)) ⊃ LSP(a, x) = LSP(b, x) .

¤
The next lemma will be useful to show the TLS of this paper is Σb

1-
conservative over Clote and Takeuti’s TLS .

8

Lemma 3 T ′ := BASIC+open-LIND+∆b
1-WSN proves Σb

1-WSN .

Proof. Argue informally in T ′. If T ′ proves b ≤ |k(j,~a)| → ∃!x ≤
|k|A(j,~a, b, x), then T ′ proves A(j,~a, b, x) is equivalent to

∀j ≤ |k|[(j < x ∨ x < j) ⊃ ¬A(j,~a, b, x)]

which is equivalent to a Πb
1-formula. So T ′ has WSN for A. ¤

Write CTTLS for Clote and Takeuti’s version of TLS which will be
defined in a moment.

Lemma 4 (1) TLS contains CTTLS. (2) TLS and TLS− prove their
Σ̂b

1-definable functions are closed under CRN and B2RN , and so, contain
LOGSPACE.

Proof. (1) CTTLS is defined using the idea of essentially sharply bounded
(esb) formulas of a theory T. This is the smallest class containing the
atomic formulas, closed under boolean connectives and sharply bounded
quantifications, and such that, if A and B are esb-formulas and T proves
∃!x ≤ s(~a)A(~a, x), then CΣ := ∃x ≤ s(A(~a, x) ∧ B(~a, x)) and CΠ := ∀x ≤
s(A(~a, x) ⊃ B(~a, x)) are esb-formulas. Noticing that CΣ ⇔ CΠ, by induction
of the complexity of an esb-formula and using ∆b

1-CR, it can be shown in
TLS that every esb-formula is a ∆̂b

1-predicate in TLS . CTTLS was defined
in the language L#

0 and consisted of BASIC2 restricted to this language, bit
extensionality, comprehension for esb formulas, and esb-WSN , where their
WSN looked slightly different from this paper’s:

b ≤ |k(j,~a)| → ∃!x ≤ |k|A(j,~a, b, x)
s ≤ |k| → Seq(w) ∧ right(w) = |k| ∧ Len(w) = |t| ∧ β(1, w) = s ∧

(∃w ≤ (2k + 1)#(4 · (2t + 1)2))∀j < |t|A(j,~a, β(j + 1, w), β(j + 2, w))

.

Here w for the lower sequent is not just a string of blocks, but coded, using
a form of sequence coding. Also, the start value of the first element of w
is fixed to s. Except for the differences in WSN , though, Lemma 1 and
Lemma 2 show that TLS contains CTTLS . In Clote and Takeuti sequences
are coded as pairs, the right hand side of pair saying the block size the
left hand giving the string of blocks. In the case of the witness to the lower
sequent’s outer existential quantifier for Clote and Takeuti’s WSN , the right
hand side is chosen to be |k|. So given a witness w to the outer existential
of the WSN rule in this paper, if the start value condition is pushed into

9

A and the pair 〈w, |k|〉 is made, one gets a witness satisfying their WSN ’s
outer existential. Thus, the WSN of this paper implies Clote and Takeuti’s.
and, as TLS has Σ̂b

1-WSN , this completes the proof that the TLS contains
CTTLS .

(2) TLS and TLS− can Σ̂b
1-define any L#

0 -term trivially. The proof
that these theories are closed under CRN is the same as the proof given in
Theorem 4 of Johannsen and Pollett [10]. The proof that these theories are
closed under B2RN is essentially the same as the proof given in Theorem 5.1
of Clote and Takeuti where k is chosen to be |k′|. Note quantifier replacement
is being used to show that the formula inside the scope of the outer existential
quantifier of the lower sequent in a Σ̂b

1,2-WSN inference is in fact equivalent
to a Σ̂b

1-formula. ¤
It is now possible to give an alternative chracterization of CTTLS :

Theorem 2 (1) CTTLS can be equivalently defined as the theory T :=
BASIC+open-LIND+Σb

1-WSN in the language L#
0 . (2) CTTLS proves its

Σb
1-definable functions are closed under CRN and B2RN and so contain

LOGSPACE.

Proof. (1) From the proof of Lemma 4, it follows that T ⊇ CTTLS . For the
other direction notice that the projection of the left hand side of the outer
existential of Clote and Takeuti’s WSN gives a witness to the WSN of this
paper. So in view of Lemma 3, it suffices to show that the notions of esb and
∆b

1 coincide for CTTLS . This almost follows directly, though, from Clote
and Takeuti’s witnessing argument to show that the esb-definable functions
of CTTLS are the functions in LOGSPACE. To see this note if A is ∆b

1 in
CTTLS , then there are AΣ ∈ Σb

1 and AΠ ∈ Πb
1 such that CTTLS proves

∃y ≤ 1(AΣ(x) ∧ y = 0) ∨ (AΠ(x) ∧ y = 1).

If the witnessing method of Johanssen and Pollett[10] for handling sharply
bounded universal quantifiers in front of existential quantifiers is also used,
then by Clote and Takeuti’s witnessing argument, y can be witnessed by an
esb-definable function f . If Aesb

f is the defining formula for f , it follows A

is equivalent to Aesb
f (x, 1). (2) This is proved the same way as in Clote and

Takeuti or in the same way as Lemma 4 (2). ¤

Remark 1 Besides the theory TLS, Clote and Takeuti consider theories
for AC0(2), AC0(6), NC1. These theories were denoted TAC 0(2), TAC 0(6)
and TNC 0 and were obtained by restricting the |k| in Clote and Takeuti’s

10

WSN rules to be 1, 2, or any fixed number respectively. Let m-WSN de-
note the restriction that the |k| in the WSN rule must be the number m.
Let LIOpen := BASIC+open-LIND in the language L#

0 . Then by the same
reasoning as above TAC 0(2), TAC 0(6) and TNC 0 could be alternately ax-
iomatized as LIOpen together with Σb

1-1-WSN , Σb
1-2-WSN , or Σb

1-m-WSN
respectively.

Since CTTLS is formulated in the language without multiplication, to
get our Σb

1-conservation result, the next theorem needs to be established.

Theorem 3 (1) TLS is a conservative extension of TLS−. (2) CTTLS in
L2 with axioms for ‘·’, denoted CTTLS ∗, is conservative over CTTLS.

Proof. Both these results are proved in the same way, so only (1) is
sketched. To prove (1), a ∆̂b

1 in TLS− predicate for MULT(x, y, z) is given
to represent x · y = z. To do this, MULT(x, y, z) will be defined in TLS−

using B2RN definitions. First, define NCol(i, j, n, x, y) :=

min(min(min(BIT(i, x), BIT(j, y)),K≤(i + j, n)), K≤(n, i + j)).

This function will be 1 if and only if i + j = n and BIT(i, x) ·BIT(j, y) is 1.
Next define a function Sumi(m, j, n, x, y) for

∑m
i=0 NCol(i, j, n, x, y) as:

Sumi′(0, j, n, x, y) = 0
Sumi′(2m, j, n, x, y) =

Sumi′(2m + 1, j, n, x, y) = Sumi′(m, j, n, x, y) + NCol(m, j, n, x, y)
Sumi(m, j, n, x, y) = Sumi′(MSP(2|x|+|y|, |x|+ |y| .−m), j, n, x, y).

In turn, define Sumij(m, k, n, x, y) for
∑k

j=0

∑m
i=0 NCol(i, j, n, x, y) as

Sumij′(m, 0, n, x, y) = 0
Sumij′(m, 2k, n, x, y) =

Sumij′(m, 2k + 1, n, x, y) = Sumij′(m, k, n, x, y) + Sumi(m, k, n, x, y)
Sumij(m, k, n, x, y) = Sumij′(m, MSP(2|x|+|y|, |x|+ |y| .− k), n, x, y).

Let Sum(n, x, y) := Sumij(n, n, n, x, y). This defines the sum of the bits
of the nth column when x · y is computed in the grade school fashion. To
calculate the nth bit of x · y, one needs to account for carry-bits. Let

11

CarrySum(n, x, y) be

CarrySum′(0, x, y) = 0
CarrySum′(2n, x, y) =

CarrySum′(2n + 1, x, y) = b1
2
CarrySum′(n, x, y)c+ Sum(n, x, y)

CarrySum(n, x, y) = CarrySum′(MSP (2|x|+|y|, |x|+ |y| .− n), x, y).

Then MULT′(n, x, y), which computes the nth bit of x · y, can be defined as
mod2(CarrySum(n, x, y)), and by Lemma 4, can be 9 Σ̂b

1-defined in TLS−.
Thus, MULT(x, y, z) can be defined as:

(∀i ≤ |x|+ |y|)(MULT′(n, x, y) = 1 ⇔ BIT(n, z)).

This is clearly equivalent to a ∆̂b
1-formula, given that TLS− has quantifier

replacement and that MULT′(n, x, y) = 1 ≡ ¬MULT′(n, x, y) = 0. The
BASIC2 axioms for ‘·’ can be shown using this predicate, using the fact that
TLS− has ∆̂b

1-LIND , and using bit extensionality. Standard techniques,
such as the technique of induction on theorems explained in Shoenfield [16],
can then be used to show using MULT that TLS is conservative over TLS−.
¤

The last goal of this section is to give a witnessing argument to show
TLS is Σb

1-conservative over CTTLS and that the ∆̂b
1-predicates of TLS are

LOGSPACE. A bounding term and witness predicate for Σb
1-formulas are

now defined.

• If A(~a) ∈ Σb
0 then tA = 0 and WITA(w,~a) := A(~a) ∧ w = 0.

• If A(~a) is of the form B◦C where ◦ is ∧ or ∨ then tA := 4·(22|max(tB ,tC)|)
and

WITA(w,~a) := ispair(w) ∧ (WITB((w)1,~a) ◦WITC((w)2,~a))

• If A(~a) ∈ Σb
1 \ Σb

0 is of the form ∃x ≤ tB(x,~a) where B(x,~a), then
tA := 4 · (22|max(t,tB)|) and

WITA(w,~a) := ispair(w) ∧ (w)1 ≤ t ∧ WITB((w)2, (w)1,~a) .

• If A(~a) is of the form ∀x ≤ |s|B(x,~a) where B(x,~a) ∈ Σb
1 \ Σb

0, then
tA := bd(t∗B(|s|), s) and

WITA(w,~a) := w ≤ tA ∧ ∀x ≤ |s|WITB(β(x, |tA|, w), x,~a)) .

12

The following lemma is true for this witness predicate:

Lemma 5 If A(~a) ∈ Σb
1, then:

(1) WITA is a Σb
0-predicates.

(2) TLS ` ∃w ≤ tA(~a)WITA(w,~a) ⊃ A(~a).

Proof. Part (a) follows from the definition of witness and since β̂ and
the pairing functions are defined by L0-terms. Part (b) is easily proved by
induction on the complexity of A. ¤

The witness predicate is extended to a witness predicate on cedents in
the natural way [1, 9, 14].

Theorem 4 Suppose
TLS ` Γ → ∆

where Γ and ∆ are cedents of Σb
1-formulas. Let ~a be the free variables in

this sequent. (1) There is a LOGSPACE function f which is Σ̂b
1-defined in

TLS such that

TLS ` WIT∧Γ(w,~a) → WIT∨∆(f(w,~a),~a).

(2) There is a LOGSPACE function f which is Σb
1-defined in CTTLS ∗ such

that
CTTLS ∗ ` WIT∧Γ(w,~a) → WIT∨∆(f(w,~a),~a).

Proof. Both (1) and (2) are proved in the same way, the only difference
is that, in the (1) case, the function definition can be shown to be a Σ̂b

1-
definition in the theory, and in the (2) case, one has to settle for a Σb

1-
definition. Thus, only (1) is shown. The proof is by induction on the number
of sequents in a TLS proof of Γ → ∆. As was already mentioned, by cut
elimination, all the sequents in the proof are Σb

1. The proof breaks into cases
depending on the type of inference used for a given line of the proof. All
the cases, except Σ̂b

1-WSN can be handled essentially as in Johannsen and
Pollett [10], so only this case is shown.
(Σ̂b

1-WSN case) Suppose the inference is:

b ≤ |k(j,~a)| → ∃!x ≤ |k|A(j,~a, b, x)

→ ∃w ≤ bd(|k|, t)∀j < |t|A(j,~a, β̂|k∗|(j, w), β̂|k∗|(Sj,w))

13

where A ∈ Σ̂b
1. By the induction hypothesis there is a LOGSPACE function

g such that

WIT b≤|k(j,~a)|(w, b, j,~a) ⊃ WIT ∃x≤|k|A(j,~a,b,x)(g(w, b, j,~a), j,~a, b).

Hence, as a witness w to the antecedent must equal 0, TLS proves

A(j,~a, b, (g(0, b, j,~a))1).

Using B2RN , TLS can Σ̂b
1-define

f ′(0,~a) = (g(0, 0, 0,~a))1
f ′(2n,~a) = f ′(2n + 1,~a) = (g(0, f ′(n,~a), n,~a))1

f(j,~a) = f ′(MSP (2|t|, |t|+ 1 .− j)).

Given this definition, TLS shows

∀j < |t|A(j,~a, f(j,~a), f(Sj,~a)).

So using CRN , TLS can define the sum Outer(~a) :=
∑|t|−1

j=0 f(j,~a) ·2j|k| and
prove this witnesses the outermost existential of the lower sequent. To get a
witness function for WIT ∃w≤bd(|k|,t)∀j<|t|A, however, also requires witnesses
for the different values of the existential quantifier of A. Witnesses for these
values can be defined using B2RN :

h′(0,~a) = (g(0, 0, 0,~a))2
h′(2n,~a) = h′(2n + 1,~a) = (g(0, f ′(n,~a), n,~a))2

h(j,~a) = h′(MSP (2|t|, |t|+ 1 .− j)).

Note earlier values of h′ are not actually needed in the above definition using
B2RN . Given that g witnesses the upper sequent, and that TLS proves the
(g)1 that witnesses the quantifier ∃x ≤ |t| is the unique value witnessing this
x, it follows TLS proves:

∀j < |t|WIT ∀j<|t|A(〈f(Sj,~a), h(j,~a)〉, j,~a, f(j,~a)).

Using CRN , TLS can define the sum Inner(~a) :=
∑|t|−1

j=0 h(j,~a) ·2j|tA|. From
which TLS proves 〈Outer(~a), Inner(~a)〉 witnesses WIT ∃w≤bd(|k|,2t)∀j<|t|A. ¤

Corollary 1 The theory TLS is Σb
1,2-conservative over CTTLS∗. Hence,

TLS is Σb
1,L#

0

-conservative over CTTLS.

14

Proof. Suppose TLS ` A a Σb
1-formula. Then by Theorem 4, CTTLS ∗

proves WITA(f(w,~a),~a), where f is Σb
1-define in CTTLS ∗. Let Af be the

formula for this definition. This means that CTTLS ∗ proves Af (w,~a, y) →
WITA(y,~a). Since CTTLS ∗ proves → ∃y ≤ tAAf , an (∃ ≤: right), fol-
lowed by an (∃ ≤: left), followed by a cut, allows the sequent → ∃w′ ≤
tAWITA(w′,~a) to be derived. So CTTLS ∗ proves A by Lemma 5. If A was
an L#

0 formula, then CTTLS would prove A by Theorem 3. ¤

Corollary 2 (1) The Σ̂b
1-definable functions of TLS and TLS− are ex-

actly LOGSPACE. (2) The ∆̂b
1-predicates of TLS and TLS− are exactly

the LOGSPACE predicates. (3) The Σb
1–definable functions of CTTLS∗ and

CTTLS are exactly LOGSPACE. (4) The ∆b
1-predicates of CTTLS∗ and

CTTLS are exactly the LOGSPACE predicates.

Proof. (1) TLS defines all the Σ̂b
1-functions by Lemma 4. Suppose TLS `

∀x∃!yA(x, y). Then by a Parikh’s Theorem TLS ` ∃y ≤ tA(a, y). Taking
Γ to be empty in the previous theorem gives a LOGSPACE function f(a)
such that TLS ` WITA(f(a), a). So TLS ` A(a, (f(a))1). The TLS−

result follows from Theorem 3. (2) Suppose f is a predicate in LOGSPACE.
Then by Lemma 4, TLS proves ∀x∃!y ≤ 1Af (x, y) where Af is some Σ̂b

1-
formula for the graph of f . Then TLS proves Af (x, 1) ⇔ ¬Af (x, 0) and so
f predicate is a ∆̂b

1-predicate. For the other direction, suppose A is ∆̂b
1 in

TLS . Let AΣ ∈ Σ̂b
1 and AΠ ∈ Π̂b

1 be equivalent to A. Consider B(x, y) :=

(¬AΠ(x) ∧ y = 0) ∨ (AΣ(x) ∧ y = 1).

Certainly, TLS proves (∀x)(∃!y ≤ 1)B(x, y). The preceding theorem can
now be used as in the proof of (1) to get a LOGSPACE predicate.

(3) and (4). Notice TLS , using quantifier replacement, can prove any
Σb

1-formula equivalent to a Σ̂b
1. Thus, (3) and (4) follow from Theorem 3

and Corollary 1. ¤

4 Independence results

To begin we recall some well known results:

Theorem 5 (Wrathall [19], Kent-Hodgson [8]) (1) The predicates in ∪iΣ̂b
i,1

are precisely LinH. (2) For i > 0, Σ̂b
i,2 = Σp

i .

Theorem 6 (Nepomnjaščǐı [12]) LinH contains TISP(nk, n1−ε). So LinH
contains LOGSPACE.

15

The next lemma provides a universal predicate for Σ̂b
i -formulas which

will be convenient to work with in the sequel.

Lemma 6 There is Σ̂b
i,1-formula (note the 1) Ui(e, x, z) such that for any

Σ̂b
i,2-formula A(x) there is a number eA and L2-term tA for which

TLS ` Ui(eA, x, tA(x)) ≡ A(x).

If A is in Σ̂b
i,1 then tA can be chosen to be an L1-term in x or we can choose

a single L2-term t(eA, x) which works for all A.

Proof. Using K≤, K∨, and K¬, one can write any open formula A(x, ~y) as
an equation f(x, ~y) = 0 where f ∈ Lk. By induction, on the complexity of
A this is provable in TLS . So any Σ̂b

i -formula φ(x) is provably equivalent
in TLS to one of the form

(∃y1 ≤ t1) · · · (Qyi ≤ ti)(Q′yi+1 ≤ |ti+1|)(ti+2(x, ~y) = 0)

where the quantifiers Q and Q′ will depend on whether i is even or odd.
We fix some coding scheme for the 12 symbols of L2 as well as for the i + 2
variables x, y1, . . . , yi+1. We use de to denote the code for some symbol. i.e.,
d= e is the code for =. We choose our coding so that all codes require less
than |i + 14| bits and we use 0 as dNOP e meaning no operation. The code
for a term t is a sequence of blocks of length |i + 14| that write out t in
postfix order. So x+ y1 would be coded as the three blocks dxedy1

ed+ e. The
code for a Σ̂b

i -formula will be 〈〈dt1e, . . . , dti+3
e〉〉. We now describe Ui(e, x, z).

It will be obtained from the formula

(∃w ≤ z)(∃y1 ≤ z)(∀j ≤ |e|)(∀y2 ≤ z) · · ·
· · · (Qyi ≤ z)(Q′yi+1 ≤ |z|)φi(e, j, x, ~y)

after pairing is applied. Here φi consists of a statement saying w is a tuple
of the form 〈〈w1, . . . , wi+2〉〉 together with statements saying each wi codes a
postfix computation of ti in e = 〈〈dt1e, . . . , dti+3

e〉〉. This amounts to checking
conditions for each m

[β̂|i+14|(j, dtme) = dxe ⊃ β̂|z|(j, wm) = x] ∧

[β̂|i+14|(j, dtme) = d+ e ⊃
β̂|z|(j, wm) = β̂|z|(j .− 2, wm) + β̂|z|(j .− 1, wm)] ∧ · · ·

16

[β̂|i+14|(j, dtme) = d#e ⊃
|β̂|z|(j, wm)| = S(|β̂|z|(j .− 2, wm)||β̂|z|(j .− 1, wm)|)
∧ LSP (β̂|z|(j, wm), |β̂|z|(j, wm)| .− 1) = 0] ∧ · · ·

· · ·

[β̂|i+14|(j, dtme) = dNOP e ⊃ β̂|z|(j, wm) = β̂|z|(j .− 1, wm)].

φi also has conditions ym ≤ β̂|z|(|e|, wm) ∧ if ym was existentially quantified
and conditions ym ≤ β̂|z|(|e|, wm) ⊃ if ym was universally quantified. Notice
none of the conditions above make use of the # function. Finally, φi has
a condition saying β̂|z|(|e|, wi+2) = 0. Since TLS can prove simple facts
about projections from pairs, it can prove by induction on the complexity
of the terms in any Σ̂b

i -formula φ(x) that Ui(eφ, x, t(eφ, x)) ≡ φ(x) provided
t(eφ, x) is large enough.

To estimate the size of tA, an upper bound on wm is calculated. First, all
real formulas A have their terms represented as trees, so we can assume eA

codes terms which are trees. By induction over the subtrees of a given term
tm, one can show an upper bound on the block size needed to store a step of
wm of the form |em|(|x|+ |eA|). So the length of any wm can be bounded by
` = |eA||eA|(|x|+ |eA|) > |em||em|(|x|+ |eA|). So choosing an L1-term larger
than 2(i+2)` suffices. This is possible since eA is a fixed number. Notice if
both eA and x are viewed as parameters, this is in fact boundable by an
L2-term t. If A does involve # than a similar estimate can be done to show
that an L2-term for tA suffices. ¤

Lemma 7 For i ≥ 1, Σ̂b
i,1 6= Π̂b

i,2.

Proof. Both results are proved the same way. If A is in Σ̂b
i,1 then the

last argument from Lemma 6 is an L2-term. So there is a Σ̂b
i,2-formula

U(x, eA) ≡ A for all A in Σ̂b
i,1. Consider ¬U(x, x) this formula is equivalent

to a Π̂b
i,2-formula. Also, it is easy to see it is not in Σ̂b

i,1. ¤
The independence results in this section are all a consequence of the

following lemma:

Lemma 8 If Σ̂b
i,1 = Π̂b

i,1 then LOGSPACE 6= NP.

Proof. Suppose Σ̂b
i,1 = Π̂b

i,1 and LOGSPACE = NP. As LOGSPACE is
closed under complement LOGSPACE = PH. By Theorem 6 and Theorem 5

17

LOGSPACE is contained in LinH, and we have that Σ̂b
i,1 = LinH = PH. But

by Lemma 7, there are languages in Π̂b
i,2 that are not in Σ̂b

i,1. ¤
Lemma 8 is similar to a result of Ferreira [4] where it is shown that

LOGSPACE = ∆0 implies ∆0 6⊆ Σl
s. Here Σl

s is a secord-order class of for-
mulas defining sets similar to Σb

s,1. Ferreira’s argument was model theoretic.
One consequence of Lemma 8 concerns the provability of the Matiyasevich-
Robinson-Davis-Putnam (MRDP) Theorem [11] in bounded arithmetic. Re-
call the MRDP Theorem says that the Σ1-sets are equivalent to the sets that
can be defined by formulas of the form:

A = {x|(∃~y)P (x, ~y) = Q(x, ~y)},

where P , Q are polynomials with coefficients in N. It is known that I∆0+exp,
where exp is an axiom for exponentiation, proves the MRDP Theorem [6].
To prove our result, we first have need of a well-known lemma whose proof
we include for completeness.

Lemma 9 Let T be one of S i
k, Sk or TLS. If T proves the MRDP theorem

then T proves E1,k = U1,k.

Proof. To see this, suppose T proves the MRDP theorem. Then for
every U1,k-formula A(~x) there is a formula F (~x) := (∃~y)P (~x, ~y) = Q(~x, ~y)
where P, Q are polynomials such that T ` A ≡ F . In particular, T proves
A → (∃~y)P (~x, ~y) = Q(~x, ~y). By Parikh’s theorem (see Hájek and Pudlák [7]
for a proof), since T is a bounded theory one can bound the ~y’s by an Lk-
term t giving an E1,k-formula F2. Note F2 ⊃ F ⊃ A so A ≡ F2 completing
the proof. ¤

Theorem 7 At least one of S1 and TLS does not prove MRDP.

Proof. By the previous lemma, if S1 proves the MRDP Theorem then
LinH = Σ̂b

1,1. By a similar, argument if TLS proves MRDP Theorem then
LOGSPACE = Π̂b

1,2 = Σ̂b
1,2 = PH. Thus, we contradict Lemma 8. ¤

The next theorem gives another application of Lemma 8.

Theorem 8 TLS cannot prove Σ̂b
1,1 = Π̂b

1,1.

Proof. Suppose TLS proves Σ̂b
1,1 = Π̂b

1,1. This means that for each Σ̂b
1,1-

formula A we can find some Π̂b
1,1-formula B such that TLS ` A ≡ B. Let

18

A(x) := ∃y ≤ t(x)D(x, y) be an arbitrary Σ̂b
1,2-formula in one variable. Let

C(x, z) := U1(eA, x, z) where U1 is from Lemma 8. So C is a Σ̂b
1,1-formula,

and, thus, by assumption, provably equivalent to some Π̂b
1,1-formula C ′(x, z)

in TLS . So TLS proves

A ≡ C(x, tA(x)) ≡ C ′(x, tA(x))

where tA is the bounding term on U1 in Lemma 6. The last formula is a
Π̂b

1,2-formula. Hence, it follows that TLS proves Σ̂b
1,2 = Π̂b

1,2. i.e., NP = co-
NP. As the ∆̂b

1-formulas of TLS are LOGSPACE, one also gets that Σ̂b
1,2 =

LOGSPACE. But this contradicts Lemma 8. ¤

Remark 2 The results presented above are reasonably insensitive to the
underlying language as long as the functions symbols added are LOGSPACE
computable and have O(n1+o(1)) growth rate. For instance, one could add to
L1 and L2 a symbol for x#|y| and add to S1 and TLS defining axioms for this
symbol. The resulting TLS would be conservative over the TLS used above.
On the hand, the ∆0-sets in the resulting L1 would now define the quasi-
linear time hierarchy and the resulting S1 would be able to reason about such
sets. Nevertheless, the part of Lemma 6 concerning a single L2-term able to
work for all A still holds. Now, though, a bound on the length of the code for
computation of eA will be 2(i+2)` where ` is O((|x|+ |eA|)(||x|+ |eA||)|eA|). If
one requires that eA ≤ ||x|| then strings of this length can be bounded by an
L1-term. So in Lemma 7, one now considers a Π̂b

1,2 predicate ¬U(x, ||x||) to
diagonalize out of Σ̂b

1,1. All the other results of this section also hold. Hence,
it still holds that at least one of S1 or TLS in the new languages does not
prove MRDP and also that TLS does not prove Σ̂b

1,1 = Π̂b
1,1.

5 Conclusion

Hájek and Pudlák [7] develop definitions for context free grammars in the
theory I∆0. Thus, it is quite likely that the results of this paper could be
extended to a theory whose ∆b

1-predicates were LOGCFL. Here LOGCFL is
the class of languages logspace reducible to context free languages. It is
known that LOGCFL contains NLOGSPACE. So such a result seems like the
next logical step in pushing the techniques of this paper.

References

[1] S.R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

19

[2] S. Cook. A Survey of Complexity Classes and their Associated Propo-
sitional Proof Systems and Theories, and a Proof System for Log Space
Slides for Edinburgh talk, presented at the ICMS Workshop ”Circuit and
Proof Complexity”, Edinburgh, October, 2001.

[3] P. Clote and G. Takeuti. First order bounded arithmetic and small
boolean circuit complexity classes. In P. Clote and J. Remmel, editors,
Feasible Mathematics II, pages 154–218. Birkhäuser, Boston, 1995.

[4] F. Ferreira. A proof that LOGSPACE 6= NLIN. Unpublished notes. 1998.

[5] L. Fortnow Time-space tradeoffs for satisfiability. Journal of Computer
and System Sciences, 60(2):337-353, April 2000.

[6] H. Gaifman and C. Dimitracopoulos. Fragments of Peano’s arith-
metic and the MRDP theorem. Monographie 30 de L’Enseignement
Mathématique, pages 187–206, 1982.

[7] P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetics.
Springer-Verlag, 1993.

[8] C. F. Kent and B.R. Hodgson. An arithmetical characterization of NP.
Theoretical Computer Science, 21:255–267, 1982.

[9] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic and Complexity
Theory. Cambridge University Press, 1995.

[10] J. Johannsen and C. Pollett. On the ∆b
1-Comprehension Rule. In

S. Buss, P. Hájek and P. Pudlák Lecture Notes in Logic 13 – Logic Col-
loquium 1998, pages 269–286, A.K. Peters, 2000.

[11] Y. Matiyasevich. Enumerable sets are Diophantine. Dokl. Acad. Nauk,
191:279–282, 1970.

[12] V.A. Nepomnjaščǐı. Rudimentary predicates and Turing computations.
Dokl. Acad. Nauk, Vol. 195, pages 282–284, 1970, transl. Vol. 11 1462–
1465, 1970.

[13] C. Pollett. Structure and definability in general bounded arithmetic
theories. Annals of Pure and Applied Logic. Vol. 100. pages 189–245,
October 1999.

[14] C. Pollett. Multifunction algebras and the provability of PH ↓. Annals
of Pure and Applied Logic. Vol. 104 July 2000. pp. 279–303.

20

[15] C. Pollett and R. Pruim. Strengths and Weaknesses of LH Arithmetic.
Mathematical Logic Quarterly. 48:221–243(No.2) Feb. 2002.

[16] J.R. Shoenfield. Mathematical Logic. A.K. Peters, 2001.

[17] G. Takeuti. RSUV isomorphisms. In P. Clote and J. Kraj́ıček, editors,
Arithmetic, Proof Theory and Computational Complexity, volume 23 of
Oxford Logic Guides, pages 364–386. Clarendon Press, Oxford, 1993.

[18] G. Takeuti. Frege Proof Systems and TNC0. The Journal of Symbolic
Logic, 63(2):709-738, June 1998.

[19] C. Wrathall. Complete sets and the polynomial time hierarchy. Theo-
retical Computer Science, 3:23–33, 1976.

[20] D. Zambella. End Extensions of Models of Linearly Bounded Arith-
metic. Annals of Pure and Applied Logic 88(2-3):263–277, 1997.

21

