
A Theory for Log-Space and NLIN versus co-NLIN

Chris Pollett
214 MacQuarrie Hall

Department of Computer Science
San Jose State University

1 Washington Square, San Jose CA 95192
pollett@cs.sjsu.edu

August 10, 2003– Draft

Abstract

The use of Nepomnjaščǐı’s Theorem in the proofs of independence
results for bounded arithmetic theories is investigated. Using this re-
sult and similar ideas, it is shown that at least one of S1 or TLS does
not prove the Matiyasevich-Robinson-Davis-Putnam Theorem. It is
also established that TLS does not prove a statement that roughly
means nondeterministic linear time is equal to co-nondeterministic lin-
ear time. Here S1 is a conservative extension of the well-studied theory
I∆0 and TLS is a theory for LOGSPACE reasoning.

Mathematics Subject Classification: 03F30, 68Q15
Keywords: bounded arithmetic, independence results, MRDP

1 Introduction

In this paper applications of Nepomnjaščǐı’s Theorem to the provability of
several important complexity statements in bounded arithmetic theories are
considered. Recall that Nepomnjaščǐı’s Theorem states that those languages
that can be decided in simultaneous time nk, k > 0 and space nε, 1 > ε,
the class TISP(nk, nε), are contained in the linear time hierarchy, LinH. The
study of this theorem has recently undergone a renaissance since Fortnow [5]
used it to prove time-space lower bounds for SAT .

The theory I∆0 consists of defining axioms for the symbols of arithmetic
together with induction for bounded formulas. By Wrathall [20] it is known
that the ∆0-predicates in this language are the predicates computable in

the linear time hierarchy, and so I∆0 is in some sense a reasonable theory
to reason about such sets. Numerous papers concerning how much number
theory and combinatorics can be done in I∆0 have been published and the
interested reader should consult Hájek and Pudlák [7] or Kraj́ıček [9] both
as introductions to this area and for references into the literature.

Since Buss [1] presented a theory S1
2 for polynomial time, many bounded

arithmetic theories have been proposed to model reasoning about a variety
of complexity classes. In particular, Clote and Takeuti [3] present theories
for a variety of complexity classes within polynomial time. One such theory
is TLS . Clote and Takeuti show that the essentially sharply bounded pred-
icates of TLS are precisely LOGSPACE. In a later paper [19], Takeuti shows
that a subtheory of TLS is able to prove the consistency of Frege propo-
sitional proof systems. From the point of view of propositional complexity
Frege systems are considered quite strong and at the time of this writing
no nontrivial lower bounds on proof size for families of tautologies in these
systems are known. Cook [2] a describes a potentially stronger proof sys-
tem still, L-Frege, and shows the second-order theory of Zambella [21] for
LOGSPACE can prove L-Frege’s consistency. It is quite likely that TLS can
also prove L-Frege’s consistency.

The goal of this paper is to show that Nepomnjaščǐı’s Theorem has im-
portant implications for the provable consequences of I∆0 and TLS . The
results are presented using a conservative extension of I∆0 known as S1 and
a variant on Clote and Takeuti’s TLS which is in a language with multipli-
cation and is axiomatized in a simpler fashion than their theory. The version
of TLS used here contains Clote and Takeuti’s, still has as its ∆̂b

1-predicates
LOGSPACE. Using Nepomnjaščǐı’s Theorem and Parikh’s Theorem, it is
shown that at least one of the theories S1 and our TLS cannot prove that
all Σ1-sets are Diophantine (i.e., the Matiyasevich-Robinson-Davis-Putnam
(MRDP) Theorem [11]). It was already known that I∆0+exp, where exp
is an axiom for exponentiation, proves the MRDP Theorem [6]. Being
careful with how one defines a universal predicate for Σ̂b

i,k-formulas, our
paper also shows using Nepomnjaščǐı’s Theorem that TLS cannot prove
Σ̂b

1,1 = Π̂b
1,1. This is fairly close to saying (but not quite) that TLS cannot

prove NLIN =co-NLIN. Using the techniques of Pollett and Pruim [16], it
is possible that the latter result could be obtained with the techniques of
this paper but the expense would be to make TLS a more awkward looking
theory. The arguments presented for the results above can be generalized
to where simply defined functions of quasi-linear growth are added to both
TLS and S1.

As a final point before proceeding to the outline of the paper, it should

2

be noted that because of Parikh’s Theorem, what the MRDP theorem is for
a bounded arithemtic theory depends on the fastest growth rate functions in
the underlying language. For instance, for I∆0 to be able to prove MRDP, it
suffices for it to show that linear sized bounded quantifiers can be eliminated
in a Diophantine way. In the TLS case, since there is a function of growth
rate 2|x||y| in the language, one needs to be able to eliminate polynomial
sized bounded quantifiers in a Diophantine way. Thus, the recent work in
Pollett [15], which is in a language with 2x is incomparable with the results
of this paper.

This paper is organized as follows: The next section contains the nota-
tions and main definitions used in this paper. This is followed by a section
showing that the ∆̂b

1-predicates of TLS are in fact LOGSPACE. The first
two results listed in the abstract are then presented.

2 Preliminaries

The language L1 contains the non-logical symbols: 0, S, +, ·, ≤, .−, b1
2xc,

|x|, PAD(x, y), and MSP(x, i). The symbols 0, S(x) = x + 1, +, ·, and ≤
have the usual meaning. The intended meaning of x .− y is x minus y if
this is greater than zero and zero otherwise, b1

2xc is x divided by 2 rounded
down, and |x| is dlog2(x + 1)e, that is, the length of x in binary notation.
PAD(x, y) is intended to mean x ·2|y| and will be useful in defining a pairing
function as an L1-term. Finally, MSP(x, i) stands for ‘most significant part’
and is intended to mean bx/2ic. The language L2 is L1 ∪ {#}. x#y reads
‘x smash y’ and is intended to mean 2|x||y|. The notation 1 is used for S(0),
2 for S(S(0)), etc. A quantifier of the form (∀x ≤ t) or (∃x ≤ t) where t is a
term not containing x is called a bounded quantifier. A formula is bounded or
∆0 if all its quantifiers are. A quantifier of the form (∀x ≤ |t|) or of the form
(∃x ≤ |t|) is called sharply bounded and a formula is sharply bounded if all its
quantifiers are. Given a language L, the hierarchy of formulas Ei,L and Ui,L

are defined as follows: E1,L are those formulas of the form (∃x ≤ t)φ and
U1,L are those formulas of the form (∀x ≤ t)φ where φ is an open formula.
Ei,L are those formulas of the form (∃x ≤ t)φ where φ ∈ Ui−1,L-formula.
Ui,L are those formulas of the form (∀x ≤ t)φ where φ ∈ Ei−1,L. The
notations Ei and Ui are used when L is understood, and Ei,k and Ui,k are
used for Ei,Lk

and Ui,Lk
. The class of quantifier-free formulas is denoted by

open (or openk to emphasize the language is Lk). For i > 0, a Σ̂b
i -formula

(resp. Π̂b
i -formula) is defined to be a Ei+1-formula (resp. Ui+1-formula)

whose innermost quantifier is sharply bounded. To emphasize the language

3

is Lk we write Σ̂b
i,k and Π̂b

i,k. The classes Σb
i and Πb

i are the closures of
Σ̂b

i and Π̂b
i under subformulas, ∧, ∨, and sharply bounded quantifications.

Kent and Hodgson [8] (see also Pollett [17]) have shown the sets defined by
Σ̂b

i,2-(resp. Π̂b
i,2-)formulas are precisely the Σp

i -(resp. Πp
i -)predicates. Thus,

the Σ̂b
1,2-formulas correspond to the NP-predicates.

The theory BASIC k is axiomatized by all substitution instances of a
finite set of quantifier free axioms for the non-logical symbols of Lk, k = 1, 2.
These are listed in Buss [1] except for the axioms for MSP and .− which are
listed in Takeuti [18], and those for PAD are listed in Clote and Takeuti [3].

For this paper, it is useful to be able to have a pairing function, as
well as to have functions that can project blocks of bits from a number so
that a limited amount of sequence coding can be done. These can be de-
fined using L1-terms as follows: For projection of bits, define the functions
2|y| := PAD(1, y), 2min(|y|,x) := MSP(2|y|, |y| .−x), LSP(x, i) := x .−MSP(x, i)·
2min(|x|,i), β̂|t|(x,w) := MSP(LSP(w, (Sx)|t|), x|t|), and BIT(i, x) := β̂1(i, x).
Here β̂ is supposed to project the xth block of |t| bits from w and BIT is
supposed to return the ith bit of x. Given these functions to define pairing
operations, let max(x, y) := (1 .− ((x + 1) .− y)))y + (1 .− (y .− x))x and set
B = 2|max(x,y)|+1. Thus, B will be longer than either x or y. Define an or-
dered pair as 〈x, y〉 := (2|max(x,y)|+y)·B+(2|max(x,y)|+x). To project out the
coordinates from such an ordered pair, use (w)1 := β̂b 1

2
|w|c .−1(0, β̂b 1

2
|w|c(0, w))

and (w)2 := β̂b 1
2
|w|c .−1(0, β̂b 1

2
|w|c(1, w)) which return the left and right coor-

dinates of the pair w. To check if w is a pair the formula ispair(w) :=

Bit(w, b1
2
|w|c .− 1) = 1 ∧ 2 · |max((w)1, (w)2)|+ 2 = |w|

is used. The usual properties of this formula as well as the terms listed
above are provable in the theories we will consider in this paper [17].

The theories in this paper will all be formulated in the sequent calculus
system LKB of Buss [1].

Definition 1 A Ψ-LmIND inference is an inference:

A(b),Γ → A(Sb),∆
A(0),Γ → A(|t(x)|m),∆

where b is an eigenvariable and must not appear in the lower sequent, t ∈ L2,
|x|0 = x, and |x|m+1 = ||x|m|.

The notations IND , LIND , LLIND will be used instead of L0IND ,
L1IND , and L2IND .

4

Definition 2 (i ≥ 0) The theories T i
k and S i

k are BASIC k+Σ̂b
i,k-IND and

BASIC k+Σ̂b
i,k-LIND, respectively.

We define Sk := ∪iS i
k.

That S i
k and T i

k can be equivalently defined using Σ̂b
i,k induction schemas

rather than Σb
i,k schemas was shown in Pollett [17]. From Buss [1] is it known

that
S i

k ⊆ T i
k ⊆ S i+1

k .

The theory I∆0 is defined using the language 0,S,+,·; ≤. It consists of
axioms for these symbols together with ∆0-IND . The symbols in L1 are all
definable in I∆0, and it is known that S1 is a conservative extension of I∆0.
For more details on this relationship and this theory, the reader is advised
to consult Kraj́ıček [9].

The last definitions needed to present TLS are now given.

Definition 3 Given a term t in one of the languages of this paper we define
a monotonic term t∗ as follows: If t is constant or a variable, then t = t∗. If
t is f(s), where f is a unary function symbol, then t∗ is f(s∗). If t is s1 ◦ s2

for ◦ a binary operation other than .− or MSP , then t∗ is s∗1 ◦ s∗2. Lastly, if
t is s1

.− s2 or MSP(s1, s2), then t∗ is s∗1.

It is easily proved in BASIC +open-LIND that t∗ is monotonic, and t ≤ t∗.
In the next definition, ∃! is used to abbreviate two sequents expressing

uniqueness and existence.

Definition 4 The Ψ-WSN (weak successive nomination rule) is the follow-
ing rule:

b ≤ |k(j,~a)| → ∃!x ≤ |k|A(j,~a, b, x)

→ ∃w ≤ bd(|k|, t)∀j < |t|A(j,~a, β̂|k∗|(j, w), β̂|k∗|(Sj, w))

where A ∈ Ψ and bd(a, b) := 2(2a#2b).

The last rule needed to define TLS is:

Definition 5 Ψ-REPL (quantifier replacement) is the following rule:

(∀x ≤ |s|)(∃y ≤ t(x, a))A(x, y, a) ⇔
(∃w ≤ bd(t∗(|s|, a), s))(∀x ≤ |s|)A(x, β̇|t∗(|s|,a)|,t(x,w))

where A ∈ Ψ and β̇t,s(x,w) := min(β̂t(x,w), s). Here min(x, y) := x + y .−
max(x, y).

Definition 6 TLS is BASIC 2+open2-LIND+Σ̂b
1,2-WSN+Σ̂b

1,2-REPL.

5

3 Bootstrapping

TLS is axiomatized in a different fashion than the version presented in Clote
and Takeuti [3]. The theory here actually has a slightly stronger axiomati-
zation. Nevertheless, in this section it is argued that its ∆̂b

1-predicates are
still LOGSPACE.

Recall A is said to be ∆̂b
i in a theory T if T ` AΣ ≡ A ≡ AΠ where

AΣ is Σ̂b
i and AΠ is Π̂b

i . ∆b
i is defined analogously, but using Σb

i and Πb
i .

Recall also that f is Ψ-defined in T if there is a Ψ-formula A such that
N |= A(x, f(x)) and T ` ∀x∃!yA(x, y). Because TLS proves quantifier re-
placement for Σ̂b

1-formulas, the notions of Σb
1-definability and Σ̂b

1-definability
coincide; similarly, the notions ∆̂b

1 and ∆b
1-coincide.

Johannsen and Pollett [10] give two theories for the TC0-predicates (pred-
icates computable by constant depth threshold circuits), C 0

2 and ∆b
1-CR.

The former theory is of interest in the present discussion. It was axioma-
tized as BASIC+open2-LIND and Σb

0-REPL and so is contained in TLS .
This is because it is easy to show Σb

0-REPL and in fact even Σb
1-REPL using

Σ̂b
1-REPL. Given that Σb

0-REPL implies Σb
1-REPL by the same method as

was used in Buss [1] to show Πb
i -REPL implies Σb

i+1-REPL, the only differ-
ence between C 0

2 and TLS is that the latter theory has Σ̂b
1,2-WSN . In what

follows, a function is said to be in TC0 or in LOGSPACE, if its graph is in
the given class and if the number of bits in its output is polynomial in the
number of input bits.

Theorem 1 (1) The Σ̂b
1-definable functions of TLS are exactly LOGSPACE.

(2) The ∆̂b
1-predicates of TLS are exactly the LOGSPACE predicates.

Proof. From Clote and Takeuti [3], the functions in LOGSPACE can
be viewed as the closure TC0 under B2RN . Here a function f is de-
fined by B2RN from the functions g, h0, h1, and k if f(0, ~x) = g(~x),
f(2n, ~x) = h0(n, ~x, f(n, ~x)), f(2n + 1, ~x) = h1(n, ~x, f(n, ~x)) and, in addi-
tion, it is required that f(n, ~x) < |k(n, ~x)|. Given that TLS contains C 0

2

and Johannsen and Pollett [10] show the Σb
1-definable functions of C 0

2 are
precisely TC0, it follows TLS can Σb

1-define TC0. Using Σ̂b
1-REPL, it can

thus Σ̂b
1-define these functions. Then by using Σ̂b

1-WSN and essentially
same argument as used in Theorem 5.1 and 6.3 by Clote and Takeuti [3] for
their version of TLS , one can show TLS can proves it Σ̂b

1-definable func-
tions closed under B2RN . For the other direction, one needs to carry out
a Buss-style witnessing argument, to show that only the LOGSPACE func-
tions are Σ̂b

1-definable by TLS . This argument is essentially the same as

6

the witnessing argument of Johannsen and Pollett [10] to show C 0
2 can only

Σ̂b
1-define TC0 functions. The only additional case is to handle Σ̂b

1-WSN .
The witness function in this case is constructed using B2RN in a similar
fashion to Theorem 5.2 of Clote and Takeuti. The reader interested in more
of the gory details can consult the technical report Pollett [14]. Given that
the Σ̂b

1-definable functions of TLS are those functions in LOGSPACE, the
fact that the ∆̂b

1-predicates of TLS are exactly LOGSPACE, follows from
the usual correspondence between 0-1 valued Σ̂b

1-definable functions and the
∆̂b

1-predicates of a theory. This argument can be found in Buss [1]. �

4 Independence results

To begin some well known results are recalled:

Theorem 2 (1) The predicates in ∪iΣ̂b
i,1 are precisely LinH. (Wrathall [20])

(2) For i > 0, Σ̂b
i,2 = Σp

i .(Kent-Hodgson [8])

Theorem 3 (Nepomnjaščǐı [12]) LinH contains TISP(nk, n1−ε). So LinH
contains LOGSPACE.

The next lemma provides a universal predicate for Σ̂b
i -formulas which

will be convenient to work with in the sequel.

Lemma 1 There is a Σ̂b
i,1-formula (note the 1), Ui(e, x, z), such that for

any Σ̂b
i,2-formula A(x) there is a number eA and L2-term tA for which

TLS ` Ui(eA, x, tA(x)) ≡ A(x).

If A is in Σ̂b
i,1 then tA can be chosen to be an L1-term in x or we can choose

a single L2-term t(eA, x) which works for all A.

Proof. Using K¬(x) := 1 .−x, K∨(x, y) := x+y, and K≤(x, y) := K¬(y .−x),
one can write any open formula A(x, ~y) as an equation f(x, ~y) = 0 where
f ∈ Lk. By induction, on the complexity of A this is provable in TLS . So
any Σ̂b

i -formula φ(x) is provably equivalent in TLS to one of the form

(∃y1 ≤ t1) · · · (Qyi ≤ ti)(Q′yi+1 ≤ |ti+1|)(ti+2(x, ~y) = 0)

where the quantifiers Q and Q′ will depend on whether i is even or odd.
We fix some coding scheme for the 12 symbols of L2 as well as for the i + 2
variables x, y1, . . . , yi+1. We use de to denote the code for some symbol. i.e.,

7

d= e is the code for =. We choose our coding so that all codes require less
than |i + 14| bits and 0 is used as dNOP e meaning no operation. Thus, if
one tries to project out operations beyond the end of the code of the term
one naturally just projects out dNOP e’s. The code for a term t is a sequence
of blocks of length |i+14| that write out t in postfix order. So x+ y1 would
be coded as the three blocks dxedy1

ed+ e. The code for a Σ̂b
i -formula will be

〈〈dt1e, . . . , dti+3
e〉〉. We now describe Ui(e, x, z). It will be obtained from the

formula

(∃w ≤ z)(∃y1 ≤ z)(∀j ≤ |e|)(∀y2 ≤ z) · · ·
· · · (Qyi ≤ z)(Q′yi+1 ≤ |z|)φi(e, j, x, ~y)

after pairing is applied. Here φi consists of a statement saying w is a tuple
of the form 〈〈w1, . . . , wi+2〉〉 together with statements saying each wi codes a
postfix computation of ti in e = 〈〈dt1e, . . . , dti+3

e〉〉. If z′ := MSP (z, b1
2 |z|c)

(roughly, the square root of z) is used as the block size, this amounts to
checking conditions for each m

[β̂|i+14|(j, dtme) = dxe ⊃ β̂|z′|(j, wm) = x] ∧

[β̂|i+14|(j, dtme) = d+ e ⊃
β̂|z′|(j, wm) = β̂|z′|(j .− 2, wm) + β̂|z′|(j .− 1, wm)] ∧ · · ·

[β̂|i+14|(j, dtme) = d#e ⊃
|β̂|z′|(j, wm)| = S(|β̂|z′|(j .− 2, wm)||β̂|z′|(j .− 1, wm)|)
∧ LSP (β̂|z′|(j, wm), |β̂|z′|(j, wm)| .− 1) = 0] ∧ · · ·

· · ·

[β̂|i+14|(j, dtme) = dNOP e ⊃ β̂|z′|(j, wm) = β̂|z′|(j .− 1, wm)].

φi also has conditions ym ≤ β̂|z′|(|e|, wm) ∧ if ym was existentially quantified
and conditions ym ≤ β̂|z′|(|e|, wm) ⊃ if ym was universally quantified. Notice
none of the conditions above make use of the # function. Finally, φi has
a condition saying β̂|z′|(|e|, wi+2) = 0. Since TLS can prove simple facts
about projections from pairs, it can prove by induction on the complexity
of the terms in any Σ̂b

i -formula φ(x) that Ui(eφ, x, t(eφ, x)) ≡ φ(x) provided
t(eφ, x) is large enough.

To estimate the size of tA, an upper bound on wm is calculated. First, all
real formulas A have their terms represented as trees, so we can assume eA

codes terms which are trees. By induction over the subtrees of a given term

8

tm, one can show an upper bound on the block size needed to store a step of
wm of the form |em|(|x|+ |eA|). So the length of any wm can be bounded by
` = |eA||eA|(|x|+ |eA|) > |em||em|(|x|+ |eA|). So choosing an L1-term larger
than 2(i+2)` suffices. This is possible since eA is a fixed number. Notice if
both eA and x are viewed as parameters, this is in fact boundable by an
L2-term t. If A does involve # than a similar estimate can be done to show
that an L2-term for tA suffices. �

Lemma 2 For i ≥ 1, Σ̂b
i,1 6= Π̂b

i,2.

Proof. If A is in Σ̂b
i,1 then the last argument of Ui from Lemma 1 is an

L2-term. So there is a Σ̂b
i,2-formula U(x, eA) ≡ A for all A in Σ̂b

i,1. Consider
¬U(x, x) this formula is equivalent to a Π̂b

i,2-formula. Also, it is easy to see
it is not in Σ̂b

i,1. �
The independence results in this section are all a consequence of the

following lemma:

Lemma 3 If Σ̂b
i,1 = Π̂b

i,1 then LOGSPACE 6= NP.

Proof. Suppose Σ̂b
i,1 = Π̂b

i,1 and LOGSPACE = NP. As LOGSPACE is
closed under complement LOGSPACE = PH. By Theorem 3 and Theorem 2
LOGSPACE is contained in LinH, and we have that Σ̂b

i,1 = LinH = PH. But
by Lemma 2, there are languages in Π̂b

i,2 that are not in Σ̂b
i,1. �

Lemma 3 is similar to a result of Ferreira [4] where it is shown that
LOGSPACE = ∆0 implies ∆0 6⊆ Σl

s. Here Σl
s is a secord-order class of for-

mulas defining sets similar to Σb
s,1. Ferreira’s argument was model theoretic.

One consequence of Lemma 3 concerns the provability of the Matiyasevich-
Robinson-Davis-Putnam (MRDP) Theorem [11] in bounded arithmetic. Re-
call the MRDP Theorem says that the Σ1-sets are equivalent to the sets that
can be defined by formulas of the form:

A = {x|(∃~y)P (x, ~y) = Q(x, ~y)},

where P , Q are polynomials with coefficients in N. It is known that I∆0+exp,
where exp is an axiom for exponentiation, proves the MRDP Theorem [6].
To prove our result, we first have need of a well-known lemma whose proof
we include for completeness.

Lemma 4 Let T be one of S i
k, Sk or TLS. If T proves the MRDP theorem

then T proves E1,k = U1,k.

9

Proof. To see this, suppose T proves the MRDP theorem. Then for
every U1,k-formula A(~x) there is a formula F (~x) := (∃~y)P (~x, ~y) = Q(~x, ~y)
where P,Q are polynomials such that T ` A ≡ F . In particular, T proves
A → (∃~y)P (~x, ~y) = Q(~x, ~y). By Parikh’s theorem (see Hájek and Pudlák [7]
for a proof), since T is a bounded theory one can bound the ~y’s by an Lk-
term t giving an E1,k-formula F2. Note F2 ⊃ F ⊃ A so A ≡ F2 completing
the proof. �

Theorem 4 At least one of S1 and TLS does not prove MRDP.

Proof. By the previous lemma, if S1 proves the MRDP Theorem then
LinH = Σ̂b

1,1. By a similar, argument if TLS proves MRDP Theorem then
LOGSPACE = Π̂b

1,2 = Σ̂b
1,2 = PH. Thus, we contradict Lemma 3. �

The next theorem gives another application of Lemma 3.

Theorem 5 TLS cannot prove Σ̂b
1,1 = Π̂b

1,1.

Proof. Suppose TLS proves Σ̂b
1,1 = Π̂b

1,1. This means that for each Σ̂b
1,1-

formula A we can find some Π̂b
1,1-formula B such that TLS ` A ≡ B. Let

A(x) := ∃y ≤ t(x)D(x, y) be an arbitrary Σ̂b
1,2-formula in one variable. Let

C(x, z) := U1(eA, x, z) where U1 is from Lemma 1. So C is a Σ̂b
1,1-formula,

and, thus, by assumption, provably equivalent to some Π̂b
1,1-formula C ′(x, z)

in TLS . So TLS proves

A ≡ C(x, tA(x)) ≡ C ′(x, tA(x))

where tA is the bounding term on U1 in Lemma 1. The last formula is a
Π̂b

1,2-formula. Hence, it follows that TLS proves Σ̂b
1,2 = Π̂b

1,2. i.e., NP = co-
NP. As the ∆̂b

1-formulas of TLS are LOGSPACE, one also gets that Σ̂b
1,2 =

LOGSPACE. But this contradicts Lemma 3. �

Remark 1 The results presented above are reasonably insensitive to the
underlying language as long as the functions symbols added are LOGSPACE
computable and have O(n1+o(1)) growth rate. For instance, one could add to
L1 and L2 a symbol for x#|y| and add to S1 and TLS defining axioms for this
symbol. The resulting TLS would be conservative over the TLS used above.
On the hand, the ∆0-sets in the resulting L1 would now define the quasi-
linear time hierarchy and the resulting S1 would be able to reason about such
sets. Nevertheless, the part of Lemma 1 concerning a single L2-term able to

10

work for all A still holds. Now, though, a bound on the length of the code for
computation of eA will be 2(i+2)` where ` is O((|x|+ |eA|)(||x|+ |eA||)|eA|). If
one requires that eA ≤ ||x|| then strings of this length can be bounded by an
L1-term. So in Lemma 2, one now considers a Π̂b

1,2 predicate ¬U(x, ||x||) to
diagonalize out of Σ̂b

1,1. All the other results of this section also hold. Hence,
it still holds that at least one of S1 or TLS in the new languages does not
prove MRDP and also that TLS does not prove Σ̂b

1,1 = Π̂b
1,1.

5 Conclusion

Hájek and Pudlák [7] develop definitions for context free grammars in the
theory I∆0. Thus, it is quite likely that the results of this paper could be
extended to a theory whose ∆b

1-predicates were LOGCFL. Here LOGCFL is
the class of languages logspace reducible to context free languages. It is
known that LOGCFL contains NLOGSPACE. So such a result seems like the
next logical step in pushing the techniques of this paper.

References

[1] S.R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[2] S. Cook. A Survey of Complexity Classes and their Associated Propo-
sitional Proof Systems and Theories, and a Proof System for Log Space
Slides for Edinburgh talk, presented at the ICMS Workshop ”Circuit and
Proof Complexity”, Edinburgh, October, 2001.

[3] P. Clote and G. Takeuti. First order bounded arithmetic and small
boolean circuit complexity classes. In P. Clote and J. Remmel, editors,
Feasible Mathematics II, pages 154–218. Birkhäuser, Boston, 1995.

[4] F. Ferreira. A proof that LOGSPACE 6= NLIN. Unpublished notes. 1998.

[5] L. Fortnow Time-space tradeoffs for satisfiability. Journal of Computer
and System Sciences, 60(2):337-353, April 2000.

[6] H. Gaifman and C. Dimitracopoulos. Fragments of Peano’s arith-
metic and the MRDP theorem. Monographie 30 de L’Enseignement
Mathématique, pages 187–206, 1982.

[7] P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetics.
Springer-Verlag, 1993.

11

[8] C. F. Kent and B.R. Hodgson. An arithmetical characterization of NP.
Theoretical Computer Science, 21:255–267, 1982.

[9] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic and Complexity
Theory. Cambridge University Press, 1995.

[10] J. Johannsen and C. Pollett. On the ∆b
1-Comprehension Rule. In

S. Buss, P. Hájek and P. Pudlák Lecture Notes in Logic 13 – Logic Col-
loquium 1998, pages 269–286, A.K. Peters, 2000.

[11] Y. Matiyasevich. Enumerable sets are Diophantine. Dokl. Acad. Nauk,
191:279–282, 1970.

[12] V.A. Nepomnjaščǐı. Rudimentary predicates and Turing computations.
Dokl. Acad. Nauk, Vol. 195, pages 282–284, 1970, transl. Vol. 11 1462–
1465, 1970.

[13] C. Pollett. Multifunction algebras and the provability of PH ↓. Annals
of Pure and Applied Logic. Vol. 104 July 2000. pp. 279–303.

[14] C. Pollett. Nepomnjaščǐı’s Theorem and Independence Proofs in
Bounded Arithmetic. Electronic Colloquium on Computational Com-
plexity. TR02-051.

[15] C. Pollett. Sk,exp does not prove NP = co-NP uniformly. Submitted.

[16] C. Pollett and R. Pruim. Strengths and Weaknesses of LH Arithmetic.
Mathematical Logic Quarterly. 48:221–243(No.2) Feb. 2002.

[17] C. Pollett. Structure and definability in general bounded arithmetic
theories. Annals of Pure and Applied Logic. Vol. 100. pages 189–245,
October 1999.

[18] G. Takeuti. RSUV isomorphisms. In P. Clote and J. Kraj́ıček, editors,
Arithmetic, Proof Theory and Computational Complexity, volume 23 of
Oxford Logic Guides, pages 364–386. Clarendon Press, Oxford, 1993.

[19] G. Takeuti. Frege Proof Systems and TNC0. The Journal of Symbolic
Logic, 63(2):709-738, June 1998.

[20] C. Wrathall. Rudimentary Predicates and Relative Computation.
SIAM Journal of Computing, Vol. 7 pp. 194–209, 1978.

[21] D. Zambella. End Extensions of Models of Linearly Bounded Arith-
metic. Annals of Pure and Applied Logic 88(2-3):263–277, 1997.

12

