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Abstract their classical counterparts. These advances led to consid-
erable efforts in finding new efficient quantum algorithms
For anygq > 1, letMOD,, be a quantum gate that deter- for classical problems and in developing a complexity the-
mines if the number of 1's in the input is divisible pyWe ory of quantum computation.
show that for any;,¢ > 1, MOD, is equivalent taMOD, While most of the original results in quantum computa-
(up to constant depth). Based on the case 2, Moore [8] tion were developed using quantum Turing machines, they
has shown that quantum analogs of &C ACOg], and can also be formulated in terms of quantum circuits, which
ACC, denoted QA@} QACJ?2], QACC respectively, de- yield a more natural model of quantum computation. For
fine the same class of operators, leaving 2 as an open  €xample, Shor [10] has shown that quantum circuits can fac-
question. Our result resolves this question, proving that tor integers more efficiently than any known classical algo-
QAC(U?])C — QACdq] = QACC for allg. We also develop rithm for factoring. And quantum circuits have been shown

techniques for proving upper bounds for QACC in terms of (S€€ Yao [16]) to provide a universal model for quantum
related language classes. We define classes of language§omputation. _ o _
EQACC, NQACC and BQAGE We define a notion of In the classical setting, small depth circuits are consid-
log-planar QACC operators and show the appropriately re- ered a good model for parallel computing. Constant-depth
stricted versions of EQACC and NQACC are contained in circuits, corresponding to constant parallel time, are of cen-
P/poly. We also define a notionlof-gate restricted QACC tral importance. For example, cons_tant_—depth circuits of
operators and show the appropriately restricted versions of AND, OR and NOT gates of polynomial size (called AC
EQACC and NQACC are contained in C To do this circuits) can add and subtract binary numbers. The class
last proof, we show that T® can perform iterated addi- ACC extends)A@) by allowing modular counting gates.
tion and multiplication in certain field extensions. We also 11 ¢lass T€, consisting of constant-depth threshold cir-
introduce the notion of a polynomial-size tensor graph and CUits, can compute iterated multiplication. .

we show that families of such graphs can encode the ampli- N Studying quantum circuits, it is natural to consider

tudes resulting from applying an arbitrary QACC operator the power of small depth circuit families. Quantum cir-
to an initial state. cuit models analogous to the central classical circuit classes

have recently been studied by Moore and Nilsson [7] and
Moore [8]. They investigated the properties of classes of
. guantum operators QA&@, QAC(]g|, and QNC defined to
1. Introduction be analogous to and to contain their classical counterparts.
This paper is a contribution to this line of research.
Advances in quantum computation in the last decade For example, a quantum analog of AG defined by
have been among the most notable in theoretical computetMoore and denoted QA@, is the class of families of oper-
science. This is due to the surprising improvements in ators which can be built out of products of constantly many
the efficiency of solving several fundamental combinatorial layers consisting of polynomial-sized tensor products of
problems using quantum mechanical methods in place ofone-qubit gates (analogous to NOT’s), Toffoli gates (anal-



ogous to AND’s and OR’s) and fan-out gatesAn analog lar, given a QACC operator built out of layeks, ..., M,

of ACCJq] (i.e., ACC circuit families only allowing Mog and an input statgr, 0°(™)), we must show that a T€® cir-
gates) is QAC(], defined similarly to QA@J}, butreplac-  cuitcan keep track of the amplitudes of each possible result-
ing the fan-out gates with quantuliod, gates (which we ing state as each layer is applied. After all layers have been
denote as®MOD,). QACC is the same class but we allow applied, the T& circuit then needs to be able to check
MODq gates for everyy. Moore [8] proves the Surpris- that the amplitude of one pOSSibIe state is non-zero. Un-
ing result QAQ‘S}: QACC[2] = QACC. This is in sharp fortunately, the_re could be expo_nentially many states Wit_h
contrast to the classical result of Smolensky [13] that says"oN-2€r0 am_plltudes after gpplymg z%‘layer. To harldle this
ACC()[q] # ACC() [p] for any pair of distinct primesg, p, problem we introduce the idea of a “tensor-graph,” a new

which implies that for any prime, AC® c ACC)[p] ¢ way to represent a collection of states. We can extract from

ACC. This result showed that parity gates are as powerful as"€S€ 9raphs (via TE or P/poly computations) whether
the amplitude of any particular vector is non-zero.

any other mod gates in QACC, but left open the complexity N ) )
The exponential growth in the number of states is one

of MOD,, gates forg > 2. . . I

In [8], Moore conjectured that QACG: QACCq] for of the primary obstacles to proving that all of NQACC is in
oddg. In this paper, we provide the missing ingredients to TC(®) (or even P/Poly), and thus the tensor graph formalism
show that in fact QACE QACClg] for anyq > 2. Moore’s represents a significant step towards such an upper bound.
result showed that parity is as good as ;ny ofkik®D The reason the bounds apply only in the restricted cases is
gate; our result further shows that abOD, gate is ;s that a}lthough tensor graphs can represent any.QACC Oper-
good as any other. The main technical contribution is the 2°" in the case of operators with layers that might do arbi-
application of the Quantum Fourier Transform (using com- &y permutations, the top-down approach we use to com-
plex¢'" roots of unity), and encodings of bagdigits using pute a desired amplitude from the graph no longer seems to

work. We feel that it is likely that the amplitude of any vec-

qubits. : . .
We also develop methods for proving upper bounds for torina tensor graph can be written asa polynomial product
of a polynomial sum in some extension algebra of the ones

language classes related to QACC. Our methods result in R . X .2 L )
upper bounds for restricted QACC circuits. Roughly speak- we work with in this paper, in which case it is quite likely it

ing, we show that QACC is no more powerful than P/Poly can be Eval_uated In 1@5 | btaini e
provided that a layer of “wire-crossings” in the QACC op- b Ané’t, erhlmportant Od stacs tot())l talnlndgda q upple_r |
erator can be written as log many compositions of Kro- 20Und is that one needs to be able to add and multiply a

necker products of controlled-not gates. We call this class polynom|al number O,f complex ampllt.udes that may appear
QACCE, where the “ol is for this planarity condition. We in a QACC computation. We solve this problem. It reduces
ol ? '

show if one further restricts attention to the case where the!© 2dding and multiplying polynomially many elements of
number of multi-line gates (gates whose input is more than & certain transcendental extension of the rational numbers.

1 qubit) is log-bounded then the circuits are no more power- Ve show that in fact T€) is closed under iterated addition

ful than TG®). We call this class QACQ‘}ES. These results a”?' multipli.catio'n of such numbers (Lemma 4.1 bglovy).
hold for arbitrary complex amplitudes in the QACC circuits. This result is of independent interest, and_our application
To be more precise, it is necessary to show how a classmc tensor-graphs and these C_Iosgre properties ¢f Tiday
of operators in QACC can define a language, as usua”yprove_ usgful in further investigations of small-depth quan-
considered in complexity theory. In this paper, we define tum cwcuns.' L )
classes of languages EQACC, NQACC, and BQACC based We now dlscu_ss the qrganlzanon of the_ r_e§t of this paper.
on the expectation of observing a certain state after apply-'_n the next S?Ct'o_n we mtroducg the def|n|t|_ons anq nota-
ing the QACC operator to the input state. For example, the fions we use in this paper. Then m_the following S(_act|on we
class NQACC corresponds to the case whei®in the lan- prove ?AC%‘{; N SA/CCI' Finally, t;n thg l?St shectlon, .Wed
guage if the expectation of the observed state after applyingplrove t S,T ar:j F;po Y upper bounds for the restricte
the QACC operator is non-zero. This is analogous to the C'aSSES CISCUSSEd above.
definition of the class NQP in Fenner et al. [5]. o _
In this paper, we show that NQAGE, .is in TC® and 2. Preliminaries

NQACCL‘;gis in P/poly. Although the proof uses some of the

techniques developed by Yamakami and Yao [14] to show In this section we define the gates used as building blocks

that NQR, = co-C_P, the small depth circuit case presents for our quantum circuits. Classes of operators built out of

technical challenges not present in their setting. In particu-these gates are then defined. We define language classes
1The subscript 4 f” in the notation denotes “with fan-out.” The idea tha.t Can be determined by these operators and give a.COUple

of fan-out in the quantum setting is subtle, as will be made clearer later in d€finitions from.algebra- Lastly, some closure properties of

this paper. See Moore [8] for a more in-depth discussion. TC® are described.




Definition 2.1

By aone-qubit gatave mean an operator from the group

U(2).

LetU = (UOO um) € U(2). An(U) is defined as:
U1o U11

No(U) = U and form > 0, A, (U) is

Uyo|Z, 0) + uyn |7, 1) if AT, 2 =1
|Z, y) otherwise

A (U)(7.3)) = {

01
10
m > 0. Acontrolled-nogate is aA; (X) gate.

LetX = . ATofolli gateis aA,,,(X) gate for some

An(m-)spaced controlled-not gaitean operator that maps
Y15 Y, T) O Z @ Y1, Y2 Y, ) OF Y1, o, Y,y )
to |z, Y1 -, Ym—1,Ym D )

An (m-ary) fan out gateF' is an operator that maps from
Y1y s Ym, ) O By1,..., T D Ym, ).
AMOD, , gate is an operator that magsg;, . . .
Y1, Ymex @ (3o yi mod ¢ = 1)),

7yn171» to

We use the following graphical notation for parity (i.e.,
MODy) or, in the case of = 1, for controlled-not:

x

Tn

bdx1 P ...z,

and forMOD,:

1 1
’1:7L ITL
b® Mod, (1, ..., Tn)

where theM;'s are our base gates, i.e., those gates for
which no inherent ordering on thg is assumea priori.
Since it is important to keep track of such details in our
upper bounds proofs, we will always use Kronecker prod-
ucts of the form®? M; without unspoken permutations.
Nevertheless, being able to do permutation operators (not
conjugation by a permutation) intuitively allows our cir-
cuits to simulate classical wire crossings. To handle per-
mutations, we allow our circuits to have controlled-not lay-
ers. Acontrolled-not layeris a gate which performs, in
one step, controlled-not’s between an arbitrary collection of
disjoint pairs of lines in its domain. That is, it performs
@7 A (X))~ for some permutation operathr. Moore
Nilsson [7] show that any permutation can be written as a
finite product of controlled-not layers. We say a controlled-
not layer islog-depthif it can be written as the composition
of log many matrices each of which is the Kronecker prod-
uct of identities and spaced controlled-not gates.

M®" is then-fold Kronecker product of\/ with itself.
The next definitions are based on Moore [8].

Definition 2.2

QAC*) is the class of familiesF,}, where F, is in
U(2n*+r(), p a polynomial, and eacltF,, is writable as

a product of O(log" n) layers, where aayer is a Kro-
necker product of one-qubit gates and Toffoli gates or is
a controlled-not layer. Also for alh the number of distinct
types of one qubit gates used must be fixed.

QACCH)[qg] is the same as QAE except we also allow
MOD, gates. QACE) = U,QACCH [q].

QAdj} is the same as QA® but we also allow fan-out
gates.

QACC is defined as QACGE and QAC(q] is defined as
QACCY[q]. QACC;‘Fis QACC restricted to log-depth con-
trolled not layers. QAC(S,_.is QACC restricted so that the

ates

total number of multi-line gates in all layers is log-bounded.

If C is one of the above classes, th&n are the families in
C with coefficients restricted t&'.

Let{F,} and{G,}, G, F, € U(2") be families of oper-
ators. We say{ F,,} is QAC?) reducibleto {G,,} if there

As discussed in [8], the no-cloning theorem of quantum js g family {R,}, R, € U(2""?(")) of QAC?) operators

mechanics makes it difficult to directly fan out qubits in augmented with operators frofiG,,} such that for alln,
constant depth (although constant fan-out is no problem).x y ¢ {0,1}", there is a setting of1, ..., zp(n) € {0,1}

Thus it is necessary to define the operdtas in the above
definition; refer to [8] for further details. Also, in the liter-

for which (y|F,,|x) = (y,z|R.|x,z). Operator families
are QACY) equivalenif they are QACY reducible to each

ature it is frequently the case that one says a given operatopther. IfC; andC, are families of QA equivalent oper-

M on|yy,...

,Ym) Can be written as a tensor product of ators, we write?; = Cs.

certain gates. What is meant is that there is an permutation

operatorIl (a maplyi, ..., ym) 10 |[yra), . .-
some permutation) such that

7yﬂ(rn)> for

Mlys, .. ym) =T @7 MIT  y1, ... y)

We refer to thez;’s above as “auxiliary bits” (called “an-
cillae” in [8]). Note that in proving QA equivalence,
the auxiliary bits must be returned to their original values in
a computation.



It follows for any {F},} € QAC(® that F,, is writable ~ Lemma 2.5 (1) TC”) functions are closed under compo-
as a product of finite number of layers. Moore [8] shows sition. (2) The following are T® computable: z + y,
QAC(} = QACCJ2] = QACC. Moore [8] places no re- &=y :=z—yif z—y > 0 and0 otherwise|x| := [log, (z+
striction on the number of distinct types of one-qubit gates 1)1, z-y, [z /y], 22(:»(=) andcond(z, y, z) := yif x >
used in a given family of operators. We do this so that the 0 andz otherwise. (3) Iff (i, z) is a TC?) computable then
number of distinct amplitudes which appear in matrices in zzﬁg“ f(k,x), Hziﬁ‘) f(k,2), Vi < p(Jz])(f(i,xz) = 0),
a layer is fixed with respect ta. This restriction arises  3i < p(|z|)(f(i,z) = 0), andui < p(|z|)(f(i,z) = 0) :=
implicitly in the quantum Turing machine case of the up- the least such thatf(:,x) = 0 or p(z) + 1 otherwise, are
per bounds proofs in Fenner, et al. [5] and Yamakami and TC(®) computable.

Yao [14]. Also, it seems fairly natural since in the classical
case one builds circuits using a fixed number of distinct gate, o drop thenin from the2min(i:r(1zD) when it is obvious a

types. Our classes are, thus, more “uniform” than Moore’s. suitably largep(||) can be found. We defineaz (z, y) :=

We now dgfme language classes based on our classes of opc-ond(1 ~ (y = x)),2,y) and define
erator families.

Definition 2.3 LetC be a class of families dff (2" +7(")) maxigp(‘“)(f(,i)) "~ , ‘ .
operators where is a polynomial and: = |z|. (i < p(lz]) )V < p(|lz[)(f(5) = f(@) = 0)

1. EC is the class of languagek such that for some  Using the above functions we describe a way to do sequence
{Fn} ecC and {<Zn|} = {<Zn,1; B -azn,n-i-p(n)‘} a COding in TGO) Let ﬁ‘t‘(x,w) = \_(U} - Lw/2(w+1)‘t|J .
family of statesyn := |(Z,|F,|z,0°™)|? is 1 or 0 2@+ DIt /221t | The functiongy, is useful for block cod-
andx € Liff m = 1. ing. Roughly, 3, first gets rid of the bits after thér +

. 1)Jt|th bit then chops off the low ordet|t| bits. Let

2. NC is the class of languages such that for some p _ glmax(z.w)| o thatB is longer than either: or y.
{F,} € C and{(Z,|} a family of statesg € L iff Hence, we code pairs ds,y) := (B +y) - 2B + B + z,
(20| Ful, 0P() ]2 > 0. and projections agw): = B 1,(j=1(0, 81w (0, w))

3. BC is the class of languages so that for some  @nd (w)2 := By 1ju=1(0;, B 410 (Lw)). We can en-
{F,} € Cand{(z]}, x € Lif |(Z,|F,|z,0P(™)]? > code a poly-length, T® computable sequence of num-

3/4andx ¢ Lif |(Z,|Fp |z, 0PM) ]2 < 1/4 . bers(f(1),..., f(k)) asthe paif> 1 (f(i)2¢™), m) where
m := |f(max;(f(¢)))] + 1. We then define the func-
It follows E-C C N-C and EC C B-C. We frequently  tion which projects out théth member of a sequence as
will omit the ‘-’ when writing a class, so BACC is writ- B, w) 1= B, (i, w).
ten as EQACC. Le{U) := F,|z,0°™). Notice that We can code integers using the positive natural numbers

[(Z|Fo |z, 0°(M) |2 = (W] Pz | W), wherePz,  is the pro- by letting the negative integers be the odd natural numbers
jection matrix ontg z;,). We could allow in our definitions  and the positive integers be the even natural number$) TC
measurements of up to polynomially many such projection can use the T circuits for natural numbers to compute
observables and not affect our results below. However, thiSboth the po|ynomia| sum and po|ynomia| product of a se-
would shift the burden of the computation in some sense guence of TEY definable integers_ It can also compute the
away from the QACC operator and instead onto preparationrounded quotient of two such integers. For instance, to do

of the observable. a polynomial sum of integers, compute the natural number
Next are some variations on familiar definitions from al- which is the sum of the positive numbers in the sum us-
gebra. ing cond and our natural number iterated addition circuit.
Then compute the natural number which is the sum of the
Definition 2.4 Letk > 0. A subsef{;}1<i<i of Cislin- negative numbers in the sum. Use the subtraction circuit to
early independerif Zle a;p; # 0forany(aq,...,ax) € subtract the smaller from the larger number and multiply by
QF — {0*}. A set{f;}1<i<x is algebraically independent two. One is then added if the number should be negative.
if the onlyp € Q[z1,...,z;] withp(Sy,...,B8;) = 0is the For products, we compute the product of the natural num-
zero polynomial. bers which results by dividing each integer code by two and

rounding down. We multiply the result by two. We then
We now briefly mention some closure properties of sum the number of terms in our product which were nega-
TC© computable functions that are useful in proving tive integers. If this number is odd we add one to the product
NQACC®e_ C TC©. For proofs of the statements in the we just calculated. Finally, division can be computed using

gates =

next lemma see [11, 12, 3]. the Taylor expansion aof/z.



3. QACC[(]

In this section, we show QACG][=QACC for anyq >
2.

Letq € N, ¢ > 2 be fixed throughout this discus-
sion. Consider quantum states labelled by digit9in=
{0, ...,q — 1}. By analogy with “qubit,” we refer to a state

of the form,
q—1
> cxlk)

k=0

with >~ |cx|? = 1 as a “qudigit.” Direct products of the ba-
sis states will be labelled by lists of eigenvalues, éag]y)
is denoted agr, y).

We define three important operations on qudigits. The

n-ary modular additionoperator)/, acts as follows:

M|z, ..., xn,b) = |21, ..xp, (b+ 21 + ... + z,,) mod ¢)

Proof.  We apply the operatorsl;’ """, F.-!, and

(HZ" ™))=L in that order to the statpr:, ..., z,,,b), and
check that the result has the same effect&s

The operato/$ " ") simply appliesH, to each of the
n + 1 qudigits of|z, ..., 2, b), which yields,

—1
1 — .
(n+1) Z ngy+ab|yl7“'7yn7a>7

q 2 yeD" a=0

wherey is a compact notation fayy, ..., y,, andx - y de-
notes) . , z;y;. Then applyinqu—1 to the above state
yields,

1 =
x-y+ab
==l DD DN Sad

4 2  yeDma=0

|(y1 —a) mod g, ..., (y» — a) mod g, a).

The gate is represented graphically as in the following fig- BY @ change of variable, the above can be re-written as,

ure:

x1

‘rﬂ,

(b+z1 + ... + x,) mod ¢q

SinceM, merely permutes the states, it is clear that it is
unitary. Similarly, then-ary unitarybaseq fanoutoperator
F, acts as,

F,lz1,..xp,b) = |(z1 +b) mod g, ...(z,, + b) mod ¢, b).

We write F' for I3y, since itis the “standard” fan-out gate in-
troduced by Moore (see Definition 2.1). Note ttMgl =
Mg~ tandF; !t = Fi~t

Finally, the Quantum Fourier Transforf, (which gen-
eralizes the Hadamard transfordhon qubits) acts on a sin-
gle qudigit as,

1
Hq|a> = ﬁ Zgabw),
b=0

where( = i isa primitive complex;*" root of unity. Itis
easy to see thdf, is unitary, via the fact thaz:z;é (*=0
iff @ £ 0 mod q.

-1

1 K " ey b

(atD) Z Zgzizla(yﬁa)ﬁ_a [Y15 e Yns @)
9 2 yeDma=0

Finally, applying (HE™)=1 to the above undoes the

Fourier transform and puts the coefficientoin the ex-

ponent into the last slot of the state. The result is,

(HZTO) TR AHE ) |2y 2, b) =
|€1,y ooy Ty (b4 21 + ... + 2,) mod @),

which is exactly whai\/, would yield.
]

We now describe how the operatoid,, F, and H,
can be modified to operate on registers consisting bftqu
rather than qdigits. Firstly, we encode each digit using
[logq] bits. Thus, for example, whep = 3, the basis
states|0), |1) and|2) are represented by the two-qubit reg-
isters|00), |01) and|10), respectively. Note that there re-
mains one state (in the examp|e])) which does not cor-
respond to any of the qudigits. In general, there will be
2Mlegal — ¢ such “non-qudigit” statesM,, F,, and H, can
now be defined to act on qubit registers, as follows. Con-
sider a statéx) wherez is a number represented asbits
(i.e., anm-qubit register). Ifm < [logq], thenH, leaves
|x) unaffected. I0 < = < ¢ — 1 (where here we are identi-
fying = with the number it represents), théh, acts exactly

as one expects, namelif, |z) = (1/,/q) ZZ;(l) C*Yy). If

The first observation is that, analogous to parity and * > ¢, againH, leaves|x) unchanged. Since the resulting

fanout for Boolean inputs, the operatab$, and F;, are
“conjugates” in the following sense.

Proposition 3.1 M, = (Hy ")~ F H Y,

transformation is a direct sum of unit matrices and matrices
of the form of H, as it was originally set down, the result
is a unitary transformationl/, and F, can be defined to
operate similarly onn-qubit registers for anyn: Break up



the m bits into blocks offlog ¢] bits. If m is not divisible Proof. First note thaMOD, andMOD, ,. are equivalent,

by [log ¢], then, and F;, do not affect the “remainder”  since aMOD, , gate can be simulated byMOD, gate

block that contains fewer thafog ¢| bits. Likewise, ina  with ¢ — r extra inputs set to the constant 1. Hence we can

quantum registefzy, ..., ,,) where each of the;,’s (with freely useMOD, ,- gates in place oM OD, gates.

the possible exception af,,) are [log ¢]-bit numbers M, . ) )

and F,, operate on the blocks of bits,, ..., z,, exactly as Itis easy to see that, given ai, gate, we can simulate

expected, except that there is no affect on the “non-qudigit’ @ MOD, gate. ApplyingM, ton + 1 digits (represented as

blocks (in whichz; > ¢), or on the (possibly) one remain- bits, but each digit only taking on the values 0 or 1) trans-

der block for which|z,,| < [logq]. SinceM, andF, op- forms,

erate exactly as they did originally on blocks representing

qudigits, and like unity for non-qudigit or remainder blocks,

it is clear that they remain unitary. |21, eees T, 0) 1 |1, cony iy (O ) mod ).
Henceforth M, F,, andH, should be understood to act i

on qubit registers as described above. Nevertheless, it will

usually be convenient to think of them as acting onligit

registers consisting dflog ¢| qubits in each. Now send the bits of the last block]; 2; mod ¢) to a Tof-
foli gate with all inputs negated and control bit The re-
Lemma 3.2 F, and M, are QAC”-equivalent. sulting output is exactly & Mod,(z1, ..., z,,). The bits in

the last block can be erased by re-negating them and revers-

] ) ) ) ing the M, gate. This leaves only, ..., z,,, O(n) auxiliary
Proof. By Barenco et al. [1], any fixed dimension unitary piic and the output & Mod, (; Tn)
, o(Z1, .y Tp).

matrix can be computed in fixed depth using one-qubit gates

and controlled nots. Hendé, can be computed in QA®, The converse (simulating/, given MOD,) requires
as canH> "™, The result now follows immediately from some more work. The first step is to show thdOD,
Proposition 3.1. O can also determine if a sum dfgits is divisible byq. Let

. _ o z1,...,z, € D be a set of digits represented Hsg ¢]
The classical BooleadMod,-function onn bits is de- bits each. For each let xgk) © < k < [logq] — 1)

fined so thatMod,(z1,...,zn) = 1iff 357, 2 = 0 ganote the bits of;. Since the numerical value of; is

(mod ¢). (The more common definition sets it to 1 if slogal=1 , (Mok it follows that
n ; B ; ; ; k=0 i J

> i1 x; is not divisible by ¢, but this convention is less

convenient in this setting, and is not important technically

either.) We also defindlod, (1, ..., z,) to output 1 iff

Y x; =r (mod g). Note thatMod, = Mod, . Re- " flogg] =1 n K)ok
versible, quantum versions of these functions can also be sz = Z le 2.
defined. The operatéOD,, . onn + 1 qubits has the fol- =t k=0 =t

lowing effect:

b b & Mod . . . . .
|23, s T, B) = @15 ey T b © Modg (1, 20 ) The idea is to express this last sum in terms of a set

We write MOD, , asMOD,. Since negation is buil of Boolean inputs that are fed into ©lOD, gate. To

into the output (via the exclusive ORY), it is easy to simulate @ccount for the factor2®, each x(*) is fanned out2®
negations usinyIOD, , gates. For example, by setting= ~ Umes _before plugging it into th&IOD, gate. ~ Since
1, we can compute-Mod, .. More generally, using one * < [logg], this requires only constant depth atn)
auxiliary bit, it is possible to simulate*MOD, ,.,” defined auxiliary bits (which of course are set back to O in the

so that, end by reversing the fanout). Thus, just usikfDD,
and constant fanout, we can determinedif, , z; = 0
|21, ooy T, BY = [T, ooy T, b B (“Mod g (21, ony ), (mod ¢). More generally, we can determinet’’ , z; =

r (mod g) using just aMOD, , gate and constant fanout.

using justMOD,, and a controlled-NOT gate. Thus Let M/C)\Dq7r(x1,...,xn) denote the resulting circuit, that
MOD, , and -MOD,, . are QAG?)-equivalent. Moore’s  determines if a sum of digits is congruenttanodg. The

version ofMOD,, is our—-MOD,,. Observe thaMOD;}, = construction oM/(TDW(;rl, ..., T, is illustrated in the fig-
MODy, ;. ure below for the case af = 3. In the figure,mod(z)

denotesMods (1, ..., x,). The notation on the right will
Lemma 3.3 MOD,, and M,, are QAG®)-equivalent. be used as a shorthand for this circuit:



We can get the bits in the value of the sin{._, z; mod

g usingMOD,, ,- circuits. This is done, essentially, by im-
plementing the relatiom mod ¢ = Zf;é r - Mody »(z).
For eachr, 0 < r < ¢ — 1, we computéModg (21, ..., T»)
(where now thex;’s are digits). This can be done by apply-
ing theM/O\Dq,r circuits in series (for each) to the same
inputs, introducing an auxiliary 0-bit for each application,
as illustrated here.

Z1

Ln
0 4(/1\70 MOdq,O(zla ,In)
0 q,1 Modg 1 (21, ..., Tp)
0 4,2~ Mody (1, ..., 2n)

Let r, denote the:t" bit of r. For each- and for each
k, we take the AND of the output of thelOD,, . with 7
(again by applying the AND’s in series, which is still con-
stant depth, but introducesextra auxiliary inputs). Ledy,
denote the output of one of these AND'’s. For eactve OR
together all they, ,’s, that is, compute/ﬁ;éam, again in-
troducing a constant number of auxiliary bits. Since only
one of ther’s will give a non-zero output fronM/O\Dq_,,‘,
this collection of OR gates outputs exactly the bits in the
value of}_" | z; mod ¢. Call the resulting circuiC, and
the sum it outputs.

Finally, to simulate),, we need to include the input
digit b € D. To do this, we apply a unitary transforma-
tion T to |5, b) that transforms it tdS, (b + .S) mod ¢). By
Barenco, et al. [1] (as in the proof of Lemma 3.2),can

clearing the auxiliary inputs. This is illustrated in this fig-
ure:

xr1T — — I

Ty — C 1 T

— CTH o
S S

0 — T — 0
b1 —(b+S) mod ¢

The result is an output consisting of, ..., z,, O(n)
auxiliary bits, andb+> .-, ;) mod g, which is the output
of an M, gate. |

It is clear that we can fan out digits, and therefore bits,
using ank, gate (settings; = 0 for 1 < ¢ < n fans out
n copies ofb). Itis slightly less obvious (but still straight-
forward) that, given ai, gate, we can fully simulate afi
ate.

Lemma3.4 For any ¢ > 2, F and F, are QAGY-
equivalent.

Proof. By the preceeding lemmag;, and MOD, are
QAC®-equivalent. By Moore’s resulylOD,, is QAC")-
reducible toF. HenceF, is QACY)-reducible toF.
Conversely, arrange each block [dbg ¢] input bits to
an F;, gate as follows. For the control-bit block (which con-
tains the bit we want to fan out), set all but the last bit to
zero, and call the last bit Set all bits in thei*” input-bit
block to 0. Now thei*” output of theF, circuit is b, rep-
resented a$log ¢] bits with only one possibly nonzero bit.
Send this last output bitand the input bit:; to a controlled-
NOT gate. The outputs of that gate @arandb & x;. Now
appIqu—1 to the bits that were the outputs of tli¢ gate
(which are all left unchanged by the controlled-not’s). This
returns all theb’s to O except for the control bit which is
always unchanged. The outputs of the controlled-not’s give
the desired & x;. Thus the resulting circuit simulatds,
with O(n) auxiliary bits. |

Theorem 3.5 For anyq € N, g # 1, QACC= QACCJg].

Proof. By the preceeding lemmas, fanout of bits is equiv-
alent to theMOD,, function. By Moore’s result, we can do
MOD, if we can do fanout in constant depth. By our result,

be computed in fixed depth using one-qubit gates and con+wye can do fanout, and hend&0D., if we can doMOD,,.

trolled NOT gates. Now using and all the other auxiliary
inputs, we reverse the computation of the ciradit thus

Hence QACC= QACCJ2] € QACCIq]. |



4. Upper Bounds Lemma 4.1 Letp be a polynomial. (1) Lef (i, z) € TC®)
output encodings af; . € Z[A]. ThenZ[A] encodings of

In this sectlon we prove the following upper bounds sedeh g, ande“I‘ . are TGY computable. (2) Let
results NQACGY, . C TC(®, BQACCS,..C TCC fi,x) c o) output encodmgs of; ., € G. ThenG
NQACC#C P/poly, and BQACE? < P/poly. encodings o ?1V g, . and 1?17 4, are TG® com-

Suppose{Fn} and {z,} determine a languagé in putable.
NQACC. Let F;, be the product of the layersy, ..., U;
and E be the distinct entries of the matrices used in the
Uj's. By our definition of QACC, the size ok is fixed
with respect ton. We need a canonical way to write
sums and products of elements fhto be able to check
[(Z|U; - - Uy, 0P(M)2 > 0 with a TC) function. To
do this letA = {a;}1<i<m be a maximal algebraically
independent subset df. Let F' = Q(A) and letB =
{Bi}o<i<a be a basis for the field? generated by the ele-
ments in(E — A) U {1} overF. Since the size of the bases
of F' andG are less than the cardinality @ the size of
these bases is also fixed with respectto

As any sum or product of elements iis in G, it suf-
fices to come up with a canonical form for elements:in
Our representation is based on Yamakami and Yao [14]. Le
a € G. SinceB is a basisa = Z?;S A;pB; for some
A; € F. We encode amx as ad-tuple (we iterate the
pairing function from the preliminaries to makktuples)

Proof. We will abuse notation in this proof and identify
the encodingf (¢, «) with its valuea; ,. S0}, f(i,z) and
L, f(i,z) will mean the encoding 0}, a; , and]]; a; .
respectively.

(1) To do sums, the first thing we do is form the
list L1 = (f(0,z),..., f(p(|z]),z)). Then we create a
flattened listL2 from this with elements which are the
(ag kg, kmg)'s from the f(i,z)'s. L1is in TCO
using our definition of sequence from the preliminaries,
and closure under sums amdazx; to find the length of
the longestf(i,z). To flatten L1 we usemax; to find
the lengthd of the longestf (i, z) for ¢ < p(|z|). Then
tusing max twice we can find the length of the longest
(ak;_,klﬁ ..., km;). This will be the second coordinate in
the pair used to define sequent2. We then do a sum of
sized - p(|z|) over the subentries df1 to get the first coor-

(Mo, .., Ma_11) wherel\,] encodes\;. As the elements dinate of the pair used to defiie. Given L2, we make a
of A are algebralcally independent, each= s;/u; where  IStL3ofthe distinctt;'s that appear aQuy: s kg -y k)

s; andu; are of the form in some f(i,z) for somei < p(|z]). This list can be
made fromL2 using sumsgond andu.. We sum over the
Z o (ﬁ o) t < length(L2) and check if there is some < ¢ such that
L kit L ' the ¢'th element ofL2 has samé:; ast and if not add the

kirlkil<e " tth elements@ times 2 raised to the appropriate power. We

Herej. — (k;, fem;) € 2, |Ej\ is >, kij, az € Z, know what power by computing the sum of the number of
_ i smallert’ that passed this test. Usirgnd and closure un-
ande € N. In particular, any produgt,,, - 3, = >’ _ A; 3 der sums we can compute in ¥Ca function which takes a

with \; = s;/u; ands; andu; in this form. We take st |ike 2 and ak; and returns the sum of all the-'s in
)

a common denc_)mlnatcu for eIeme_nts OfE.U (B - 1} this list. So using this function and the list® and .3 we
and not justE' since the);’s associated with the,, - 5 can compute the desired encoding

might have additional factors in their denominators notin . products, since the;’s of A are algebraically in-
. =, . ’ 7

Ei Also fix ane large enough to bound thé;|'s which dependent,Z[A] is isomorphic to the polynomial ring

mlght appear in any ele_ment df or a productfé’m.- B Zlyi,...,ym]) under the natural map which takes to

This e will be cons_,tan.t wnh_respect. to. In muItlpIymg_t yj. We view our encodingsf(i, ) as m-variate poly-

layers of QACC circuit against an input, the entries in the nomials inZ[y: ym]. We describe for any’ a cir-

result will be polynomial sums and products of elements cuit that works for any T€® computablef (i, ) such that

in & U {ﬂ*{lhé\ﬁ’;}’ ?O Wi can b;)unglkﬂ for kjtls_ which [1; f(i,x) is of degree less thapi viewed as ann-variate
appear in the;’s of such an entry by - p(n). To com- o0 qmia) InTCO) we defineg(i, z) to consist of the

plete our representation of € G we encodel; as the se- sequence of polynomially many integer values which result

qugnce@ ((%“jvkljv -y kmj))) wherer I the power 10 oy evaluating the polynomial encoded Hyi, ) at the
which u is raised anc((a,;j,k:lj, ..., km;)) is the sequence points (i, ..., im) € N™ where0 < i, and", iy < p/.
of (ay-, kyj,. .., km;)'s that appear ins;. By our discus-  To computef (i, z) at a point involves computing a poly-

sion, the encoding of an that appears as an entry in the nomial sum of a polynomial product of integers, and so

output after applying a QACC operator to the input is of will be in 7C(®. Using closure under polynomial inte-

polynomial length and so can be manipulated if%C ger products we computej, z) := [, 8(4, (¢, z)) where
We have need of the following lemma: 0 is the sequence projection function from the preliminar-



ies. Our choice of points is what is called by Chung and Thus, the producﬂfi'f') fi,z)is
Yao [2] thep’-th order principal latticeof the m-simplex

given by the origin and the poinig from the origin in )
each coordinate axis. By Theorems 1 and 4 of that pa- Z(Z Ajwk(J,w
per (proved earlier by a harder argument in Nicolaides [9]) w=0j

the multivariate Lagrange Interpolant of deggéehrough The encoding of the products is the d-tuple given by
the pointsk (4, «) is unique. This interpolant is of the form (325 Ajok(4,0),...., 3, Aja—1k(j,d—1)) Each of its com-
Pyr,..-ym) = 22, pi(y1,- .. ym)k(j, x) where they;’'s  5oHanis s a polynomial sum of a product of two things in

are polynomials which do not depend on the funcforn F and can be computed using the first part of the lemma.
explicit formula for thesep;’s is given in Corollary 2 of

Chung and Yao [2] as a polynomial product of linear fac- For{F,} € QAC(O = QACC the vectors thak,, act
tors. Since these polynomials are all of degree less thangp, are elements of 2™ dimensional spacé, ntp(n)

p', they have only polynomial ip’ many coefficients and  gpace which is a tensor product of the 2-dimensional spaces
in PTIME these coefficients can be computed by iteratively ¢ =~ - € ntp(n)» Which in turn are each spanned Joy, |1>

multiplying the linear factors together. We can then hard We wnteE
code thesg;’s (since they don’t depend of) into our cir-
cuit and with these;’s, k(j,x), and closure under sums

we((t):)an compute the polynomial of the desired product in g4 his a directed acyclic graph with one source node of in-
TCH. degree zero, one terminal node of outdegree zero, and two
(2) We do sums first. Assumg(i,z) := Zf é NijBi- kinds of edges: horizontal edges, which are unlabeled, and
One immediate problem is that the; and ), ; might use vertical edges, which are labeled with a pair of amplitudes
different«”’s for their denominators. Since T€is closed  and a product otolorsandanticolors (The color product
under poly-sized maximum, it can find the maximum value may be the number 1.) We require that all paths from the
ro to which v is raised. Then it can define a function source to the terminal traverse the same number of verti-
gli,x) = Zj;é 7:;8; which encodes the same element of cal edges and that no vertex can have vertical edge indegree
G as f(i,x) but where the denominators of the;’s are greater than one or outdegree greater than one. For a color
nowu™. If \; wass;/u" we need to compute the encoding ¢ we write ¢ for its corresponding anticolor. Theeightof
s; - u™~" /u™. This is straightforward from (1). Now a node in a tensor graph is the number of vertical edges tra-
versed to get to it on any path from the source;hbightof
an edge is the height of its end node. Width of a tensor

;.1 for the subspace®_ ;€1 OF €1 nip(n)-
now define a succinct way to represent a set of vectors in
&1 n+p(n) Which is useful in our argument below. t&nsor

pdzl) G d— 1 () graph is maximum number of nodes of the same height. As
Z fli,z) = g(i Z si5)/u"]B;, an example of a tensor graph where our color product is the
i=1 i=1 J=0 =1 number 1, consider the following figure:
S
wheres;;’s are the numerators of thg;’s in g(i, ). From Q X
part (1) we can compute the encodingof ( f(‘fl) ;) in {1} 0,1 {1} 1,0
TC), So the desired answétrq, eg), - - -, (T, eq— 1>> is
inTC), 3 3
For products[ "1V f(i, z), we play the same trick as W% 7 1% 7
the in theZ[A] product case. We view our encodings of 5 5
elements of7 as d-variate polynomials if' (yo, - . - , Ya—1) C C
under the magl;, goes toy,. (Note that this map is not (1} 1/2,0 (1} 1/2,0
necessarily an isomorphism.) We then create a function ' '

g(i,2) which consists of the sequence of values obtained H
by evaluatingf (i, z) at polynomially many points in a lat- t

tice as in the first part of this lemma. Evaluatiri¢, =

at a point can easri)ly be done using the first pmegrlt’ o% this The rough idea of tensor graphs is that paths through the
lemma. We then use part (1) of this lemma to compute graph correspond to collections of vectordn,,. For this

the products:(j, z) = 4(j, g(i,«)). We then get the inter- partreular figure the left path from the source n_ode (s) to the
polant P(yo, .. ., ya_1) = Zj 2;(or- - ym)k(j, ). We terminal node (t) corresponds to the vectors given by

non-uniformly obtain the encoding of (3, . . . ,ﬁd 1) ex-

1 1 1
pressed as an element@f i.e., in the formzw 0 AjwbBw- e (ﬁm + EM) ® §|O>



and the right hand path corresponds to

0} (510) + =) @ 30).

1
VR

A &; ,-termin a tensor graph is a maximal induced ten-
sor subgraph between a node of height 1 and a node of
heightk. We also require that the horizontal indegree of the
node at heighi—1 be zero and that the horizontal outdegree
of the node at heighit be zero. For the graph we considered
above there are tw8, »-terms and twe&, 3-terms but only
oneé&; 3-term corresponding to the whole figure.

Colors are used to handle controlled-not layers. A celor
and its anticolof satisfy the following multiplicative prop-
erties:c-c = ¢-¢ = 1 andc-¢ = 0. Given two distinct colors
bandc we haveh-c = c-bandb-c = c-b. If ais a product of
colors and anticolors not involving the colbor b andc is
another product of colors we hau¢bc) = (ab)c. We con-

sider formal sums of products of complex numbers times

colors. We require complex numbers to commute with col-
ors and require colors and anticolors to distribute, i.e, if

b, c are colors or anticolors then- (b+c¢) =a-b+a-c
and(b+c¢)-a ="b-a+ c-a. Finally, we require addition

to work so that the above structure satisfies the axioms o
an C-algebra. Given a tensor gragh denote byAs the
C-algebra above. Since

(a-a)-a=a#0=a-(a-a)

Its amplitude in the right hand dotted path would be zero
because of the last vertical edge. However, vectors such
as|0,0, 1) would have nonzero amplitude in the right hand
dotted path. Nevertheless, the amplitude of any velatpr

in any path other than the dotted ones frerto ¢ will be

0 asb-b = 0. More formally, we define the amplitude
of an |Z) in a vertical edge as equal to the left amplitude
times the color product in the edgeifis |0) and equal to
the right amplitude times the color product in the edge if
#is 1. The amplitude of a vectors,...,z;) in a path

in a tensor graph is the product ovefrom 1 to j of the
amplitude of the vectorke,) in the vertical edge of height
k. The amplitude of a vectdr;, ..., zy) in an&; ,-term

is the sum of its amplitude in its paths. The amplitude of a
vector|xy, ..., ,e,)) in atensor graplds is defined to be
the sum of its amplitudes i6’s &; ,,(,,)-terms.

As we will be interested in families of tensor graphs
{G}, corresponding to our circuit families we want to look
at those families with a certain degree of uniformity. We
say a family of tensor graph=,,} is color consistentf:

(1) the number of colors for edges of the same height is
bounded by a constarit with respect ton, (2) the num-
fber of heights in which a given color/anticolor can appear
is exactly two (colors and their anticolors must appear on
the same heights), (3) each color product at the same height
is of the form]‘[f’:O l; wherel; must be either a colar; or

¢ (it follows there are2* possible color products for edges

at a given height). We say that a color/anticoloaive

this algebra is not associative. However, in the sums we will at a given height if the height is at or after the first height
consider the terms will never have more than two positions at which the color/anticolor occurs and is below the height
where a color or its anticolor can occur, so the products we of its second occurrence. The family is further said to be
will consider are associative. Using our our earlier encod- log-color depthif the number of active colors/anticolors of
ing for the elements o€ which could appear in @ ACC a given height is log-bounded.

computation, it is straightforward to use sequence coding to

get a TG? encodings of the relevant elements.4;. As Theorem 4.1 Let {F,,} be a family of QACC operators
an example of how colors affect amplitudes, consider the gnd let {(z,|} a family of observables. (1) There is
following picture: a color-consistent family of tensor graphs of width"

and polynomial size representing the output amplitudes of
Ui --- Ui Z,) whereU; are the layers of,,. (2) If {F,} is

in QACC;,‘;gthen the family of tensor graphs will be of log-
color depth. (3) If{ F}, } isin QACC%Og then the number of

ates

paths from the source to the terminal node is polynomially
bounded.

Proof. The proof is by induction on. In the base case,

t = 0, we do not multiply any layers, and we can eas-
ily represent this as a tensor graph of width 1. Assume
for j < t thatU;--- U, |, 0P(™) can be written as color
consistent tensor graph of widfR”" and polynomial size.
There are two cases to consider: In the first case the layer
is a tensor product of matriced; ® --- ® M, where the
M;,'s are Toffoli gates, one qubit gates, or fan-out gates

The amplitude of1, 0,0) in the left hand dotted path is-

—1 —1 — i Wi 2
S l-mb1= 1/2 using commutativity and



(since QA(ﬁwO} =QACCQC); in the second case the layer is
a controlled-not layer.

For the first case we “multiplyU; against our current
graph by “multiplying” eachi/; in parallel against the
terms in our sum correspondingAd;’s domain, say ;/ 5.

with domain&;, is a one-qubit gate,
U10 U11 ’

Cj,a;,v; be its color product and two amplitudes. In the
new graph we multiply: times the color product of; and

e; and change the amplitude of to «;, 0. We then add a
horizontal edge going out from the starting nodegffol-
lowed by a vertical edge with valu&s; - ¢,0,~; followed

by a horizontal edge into the terminal nodeepf In turn,

we add a horizontal edge going out of the starting node of

then we multiply the two amplitudes in each vertical edge e¢;, followed by a vertical edge with values; - ¢, v;, a;

of heightj’ in our tensor graph by;. This does not effect
the width, size, or number of paths through the grapf/)f
is a Toffoli gate, then for each ter$iin £;/ ;. in our ten-

followed by a horizontal edge into the terminal node:pf
We handle all other controlled gates in this layer in a simi-
lar fashion (recall they must go to disjoint lines). We add at

sor graph we add one new term to the resulting graph. Thismost a new vertex of a given height for every existing vertex
term is added by adding a horizontal edge going out from of a given height. So the total width is at most doubled by

the source node of followed by the newf . ,/-term fol-
lowed by a horizontal edge into the terminal node&ofThe
new term is obtained from the old one by setting tbe left
hand amplitudes of all edges hof height between’ and

k' — 1 and then ife, v is the amplitude of an edge of height
k' in the new term we change it tp— «, « — . This new
term adjusts the amplitude for the case g '~/ ~!)
vector in€ ;s ,-_1 tensored with either @) or |1). This op-

this operation an@ - 22" < 22", In the QACGcase,
simulating a layer which is a Kronecker product of spaced
controlled-not gates and identity matrices, notice we would
at most add one to the color depth at any place. So if a
controlled-not layer is a composition 6f(log) many such
layers it will increase the color depth by(log). In the
QACC®__case, notice that simulating a single controlled-

‘gates

not we add one new path for each existing path through the

eration increases the width of the new tensor graph by thegraph at each of the two heights affected. This gives three

width of the £ i/ -term for eachf . j/-term in the graph.
Since the original graph has wid?8”“ ™" there are at most

new paths on the whole subspace for each old one.
Since we have handled the two possible layer cases and

this many starting and ending vertices for such terms. Sothe changes we needed to make only increase the resulting

there at most22”“~")2 such terms. Each of these terms
has width at mos2>”“ " . Thus, the new width is at most

222@—1) " (222(t—1))2 . 222(t—1) < 222t

Notice this action adds one new path through&he. part
of the graph for every existing one.

Now supposél/; is a fan-out gate, lef be a;/ ,/-term
in our tensor graph and letbe any vertical edge ¥ in
Er. Suppose: has amplitudex for |0) and amplitudey
for |1). In the new graph we change the amplitude: ¢b

«, 0. We then add a horizontal edge out of the source node

of S followed by a newt ;, ;- -term followed by a horizontal
edge into the terminal node 6f The new term is obtained
from S by changing the amplitude for edges dp, with
amplitudesy, v in S to 0, v. The amplitudes of the nof

edges in this term are the reverse of the corresponding edg

in S, i.e., if the edge inS had amplitude, ¢ then the new
term edge would have amplituded. The same argument

as in the Toffoli case shows the new width is bounded by Proof.

22”" and that this action adds one new path througl€the
part of the graph for every existing one.

tensor graph polynomially, we thus have established the in-
duction step and (1) and (2) of the theorem. For (3), observe
for each multi-line gate we handle in adding a layer we at
most quadruple the number of paths through the subspace
where that gate applies. Since there are at most logarith-
mically many such gates, the number of paths through the
graph increases polynomially. |

Theorem 4.2 Let {G,,} be a family of constant width
color-consistent tensor graphs of vectorgin,, ). Assume
the coefficients of amplitudes in thé&r,,} can be encoded
in TC'©) using our encoding scheme described earlier and
that {G,,} has log-color depth. Then the amplitude of any
basis vector o€ ,,,,) in G, is P/poly computable. If the
number of paths through the graph from the source to the
terminal node is polynomially bounded then the amplitude

Bf any basis vector is T® computable.

Let G,, be a particular graph in the family and let
|7,) be the vector whose amplitude we want to compute.
Assume that all graphs in our family have fewer thatol-

For the case of a controlled-not layer, suppose we haveors in any color product and have a width bounded/byVe

a controlled-not going from liné onto linej. Letc, ¢ be a

will proceed from the source to the terminal node one height

new color, anti-color pair not yet appearing in the graph. Let at a time to compute the amplitude. Since the width the

e; be avertical edge of heighin the graph and lef’;, «;, v;

be respectively its color product and two amplitudes. Sim- have width at mostv. Letay q,..

ilarly, let e; be a vertical edge of heigtjtin the graph and

number of&;-terms is at mostv and each of these must
., 014 (SOme of which
may be zero) denote the amplitudesdn, of |z, 1) in each



of these terms. The; ; are each sums of at mostampli-
tudes times the color products of at méstolors and anti-
colors, so the encoding of theseamplitudes is T¢ com-
putable. Because of the restriction on the widtlizgfthere
are at mostv many¢&; ;-terms,w? many¢€; ;. 1-terms, and
w many&; ;j11-terms. Fixing some ordering on the nodes
of heightj andj + 1 let+y, ; » be the amplitude offx,, j1+1)
in the &, ;1 -term with source théth node of heigh}j and
with terminal node théith node of heighy + 1. The am-
plitude is zero if there is no such; ;i-term. Then the
amplitudescjyq1, ..., ;41,0 Of the &y 4 -terms can be
computed from the amplitudes; 1, ..., «; ., Of the &y ;-
terms using the formula

A1k = Zaj,i *Yiik-
i=1

Thus ;41 , can be computed from the; ; using a poly-
nomial sized circuit to do these adds and multiplies. Sim-
ilarly, eache; ;, can be computed by polynomial sized cir-
cuits from theo;_; ;'s and so on. Since we have log-color
depth the number of terms consisting of elements in our
field times color products in a; ;, will be polynomial. So
the size of they; ,'s j < p(n), k < w will be polynomial in
the input?,,. So the size of the circuits for eaal) ;, where
j < p(n) andk < w will be polynomial size. There is only
one&y ,m-terminG,, and its amplitude is that df,,), so
this shows it has polynomial sized circuits.

For the TGY result, if the number of paths is polynomi-
ally bounded, then the amplitude can be written as the poly-
nomial sum of the amplitudes in each path. The amplitude
in a path can in turn be calculated as a polynomial product
of the amplitudes times the colors on the vertical edges in
the path. Our condition on every color appearing at exactly
two heights guarantees the color product along the whole
path will be 1 or 0, and will be zero iff we get a color and
its anticolor on the path. This is straightforward to check
in TC(9, so this sum of products can thus be computed in
TC© using Lemma 4.1. O

Corollary 4.3

(1) EQACG;*CNQACG;*CP/Poly, and BQACE?,,
CP/poly.

(2) EQACG.s
BQACGCS?, 41, STC.

cTC®, and

ates

CNQACG,

Proof. Given a a family{ £, } of QACC ;®operators and a
family {(Z,,|} of states we can use Theorem 4.1 to get a fam-
ily {G,} of log color depth, color-consistent tensor graphs
representing the amplitudes &f, 1|z,). Note {F, '} is
also a family of QAC(;}goperators since Toffoli and fan-

gate is also a one qubit gate (albeit usually a different one),
and finally a controlled-not layer is its own inverse. Theo-
rem 4.2 shows there is a P/poly circuit computing the am-
plitude of any vectoiZ,,) in this graph. This amounts to
calculating

<fn|F7?1‘Z_';L> = <Zn‘Fn|fn>

If this is nonzero, then(z,|F,|Z,)|> > 0, and we know

Z is in the language. In the BQAGgEcase everything is a
rational so P/poly can explicitly compute the magnitude of
the amplitude and check if it is greater thaht. The TG?
result follows similarly from the T€) part of Theorem 4.1.

UJ

5. Discussion and Open Problems

A number of questions are suggested by our work.

e Is all of NQACC in TG or even P/Poly? We conjec-
ture that NQACC is in T€). As mentioned in the in-
troduction, we have developed techniques that remove
some of the important obstacles to proving this.

e Are there any natural problems in NQACC that are not
known to be in ACC?

e What exactly is the complexity of the languages in
EQACC, NQACC and BQACGQ? We entertain two
extreme possibilities. Recall that the class ACC can be
computed by quasipolynomial size depth 3 threshold
circuits [15]. It would be quite remarkable if EQACC
could also be simulated in that manner. However, it is
far from clear if any of the techniques used in the sim-
ulations of ACC (the Valiant-Vazirani lemma, compo-
sition of low-degree polynomials, modulus amplifica-
tion via the Toda polynomials, etc.), which seem to be
inherently irreversible, can be applied in the quantum
setting. At the other extreme, it would be equally re-
markable if NQACC and NQT® (or BQACCq and
NQTC®) coincide. Unfortunately, an optimal char-
acterization of QACC language classes anywhere be-
tween those two extremes would probably require new
(and probably difficult) proof techniques.

How hard are the fixed levels of QACC? While lower
bounds for QACC itself seem impossible at present, it
might be fruitful to study the limitations of small depth
QACC circuits (depth 2, for example).
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