
On the Complexity of Quantum ACC

Frederic Green
Department of Mathematics and Computer Science

Clark University, Worcester, MA 01610
fgreen@black.clarku.edu

Steven Homer
Computer Science Department

Boston University, Boston, MA 02215
homer@cs.bu.edu

Christopher Pollett
Department of Mathematics

University of California, Los Angeles, CA
cpollett@willow.math.ucla.edu

Abstract

For anyq > 1, let MODq be a quantum gate that deter-
mines if the number of 1’s in the input is divisible byq. We
show that for anyq, t > 1, MODq is equivalent toMODt

(up to constant depth). Based on the caseq = 2, Moore [8]
has shown that quantum analogs of AC(0), ACC[q], and

ACC, denoted QAC(0)wf , QACC[2], QACC respectively, de-
fine the same class of operators, leavingq > 2 as an open
question. Our result resolves this question, proving that
QAC(0)

wf = QACC[q] = QACC for all q. We also develop
techniques for proving upper bounds for QACC in terms of
related language classes. We define classes of languages
EQACC, NQACC and BQACCQ. We define a notion of
log-planar QACC operators and show the appropriately re-
stricted versions of EQACC and NQACC are contained in
P/poly. We also define a notion oflog-gate restricted QACC
operators and show the appropriately restricted versions of
EQACC and NQACC are contained in TC(0). To do this
last proof, we show that TC(0) can perform iterated addi-
tion and multiplication in certain field extensions. We also
introduce the notion of a polynomial-size tensor graph and
we show that families of such graphs can encode the ampli-
tudes resulting from applying an arbitrary QACC operator
to an initial state.

1. Introduction

Advances in quantum computation in the last decade
have been among the most notable in theoretical computer
science. This is due to the surprising improvements in
the efficiency of solving several fundamental combinatorial
problems using quantum mechanical methods in place of

their classical counterparts. These advances led to consid-
erable efforts in finding new efficient quantum algorithms
for classical problems and in developing a complexity the-
ory of quantum computation.

While most of the original results in quantum computa-
tion were developed using quantum Turing machines, they
can also be formulated in terms of quantum circuits, which
yield a more natural model of quantum computation. For
example, Shor [10] has shown that quantum circuits can fac-
tor integers more efficiently than any known classical algo-
rithm for factoring. And quantum circuits have been shown
(see Yao [16]) to provide a universal model for quantum
computation.

In the classical setting, small depth circuits are consid-
ered a good model for parallel computing. Constant-depth
circuits, corresponding to constant parallel time, are of cen-
tral importance. For example, constant-depth circuits of
AND, OR and NOT gates of polynomial size (called AC(0)

circuits) can add and subtract binary numbers. The class
ACC extends AC(0) by allowing modular counting gates.
The class TC(0), consisting of constant-depth threshold cir-
cuits, can compute iterated multiplication.

In studying quantum circuits, it is natural to consider
the power of small depth circuit families. Quantum cir-
cuit models analogous to the central classical circuit classes
have recently been studied by Moore and Nilsson [7] and
Moore [8]. They investigated the properties of classes of
quantum operators QAC(0)wf , QACC[q], and QNC defined to
be analogous to and to contain their classical counterparts.
This paper is a contribution to this line of research.

For example, a quantum analog of AC(0), defined by
Moore and denoted QAC(0)wf , is the class of families of oper-
ators which can be built out of products of constantly many
layers consisting of polynomial-sized tensor products of
one-qubit gates (analogous to NOT’s), Toffoli gates (anal-

ogous to AND’s and OR’s) and fan-out gates1. An analog
of ACC[q] (i.e., ACC circuit families only allowing Modq
gates) is QACC[q], defined similarly to QAC(0)wf , but replac-
ing the fan-out gates with quantumModq gates (which we
denote asMODq). QACC is the same class but we allow
MODq gates for everyq. Moore [8] proves the surpris-

ing result QAC(0)wf= QACC[2] = QACC. This is in sharp
contrast to the classical result of Smolensky [13] that says
ACC(0)[q] 6= ACC(0)[p] for any pair of distinct primesq, p,
which implies that for any primep, AC(0) ⊂ ACC(0)[p] ⊂
ACC. This result showed that parity gates are as powerful as
any other mod gates in QACC, but left open the complexity
of MODq gates forq > 2.

In [8], Moore conjectured that QACC6= QACC[q] for
oddq. In this paper, we provide the missing ingredients to
show that in fact QACC= QACC[q] for anyq ≥ 2. Moore’s
result showed that parity is as good as any otherMODq

gate; our result further shows that anyMODq gate is as
good as any other. The main technical contribution is the
application of the Quantum Fourier Transform (using com-
plexqth roots of unity), and encodings of baseq digits using
qubits.

We also develop methods for proving upper bounds for
language classes related to QACC. Our methods result in
upper bounds for restricted QACC circuits. Roughly speak-
ing, we show that QACC is no more powerful than P/Poly
provided that a layer of “wire-crossings” in the QACC op-
erator can be written as log many compositions of Kro-
necker products of controlled-not gates. We call this class
QACClog

pl , where the “pl” is for this planarity condition. We
show if one further restricts attention to the case where the
number of multi-line gates (gates whose input is more than
1 qubit) is log-bounded then the circuits are no more power-
ful than TC(0). We call this class QACCloggates. These results
hold for arbitrary complex amplitudes in the QACC circuits.

To be more precise, it is necessary to show how a class
of operators in QACC can define a language, as usually
considered in complexity theory. In this paper, we define
classes of languages EQACC, NQACC, and BQACC based
on the expectation of observing a certain state after apply-
ing the QACC operator to the input state. For example, the
class NQACC corresponds to the case wherex is in the lan-
guage if the expectation of the observed state after applying
the QACC operator is non-zero. This is analogous to the
definition of the class NQP in Fenner et al. [5].

In this paper, we show that NQACCloggatesis in TC(0) and

NQACClog
pl is in P/poly. Although the proof uses some of the

techniques developed by Yamakami and Yao [14] to show
that NQPC = co-C=P, the small depth circuit case presents
technical challenges not present in their setting. In particu-

1The subscript “wf ” in the notation denotes “with fan-out.” The idea
of fan-out in the quantum setting is subtle, as will be made clearer later in
this paper. See Moore [8] for a more in-depth discussion.

lar, given a QACC operator built out of layersM1, . . . , Mt

and an input state|x, 0p(n)〉, we must show that a TC(0) cir-
cuit can keep track of the amplitudes of each possible result-
ing state as each layer is applied. After all layers have been
applied, the TC(0) circuit then needs to be able to check
that the amplitude of one possible state is non-zero. Un-
fortunately, there could be exponentially many states with
non-zero amplitudes after applying a layer. To handle this
problem we introduce the idea of a “tensor-graph,” a new
way to represent a collection of states. We can extract from
these graphs (via TC(0) or P/poly computations) whether
the amplitude of any particular vector is non-zero.

The exponential growth in the number of states is one
of the primary obstacles to proving that all of NQACC is in
TC(0) (or even P/Poly), and thus the tensor graph formalism
represents a significant step towards such an upper bound.
The reason the bounds apply only in the restricted cases is
that although tensor graphs can represent any QACC oper-
ator, in the case of operators with layers that might do arbi-
trary permutations, the top-down approach we use to com-
pute a desired amplitude from the graph no longer seems to
work. We feel that it is likely that the amplitude of any vec-
tor in a tensor graph can be written as a polynomial product
of a polynomial sum in some extension algebra of the ones
we work with in this paper, in which case it is quite likely it
can be evaluated in TC(0).

Another important obstacle to obtaining a TC(0) upper
bound is that one needs to be able to add and multiply a
polynomial number of complex amplitudes that may appear
in a QACC computation. We solve this problem. It reduces
to adding and multiplying polynomially many elements of
a certain transcendental extension of the rational numbers.
We show that in fact TC(0) is closed under iterated addition
and multiplication of such numbers (Lemma 4.1 below).
This result is of independent interest, and our application
of tensor-graphs and these closure properties of TC(0) may
prove useful in further investigations of small-depth quan-
tum circuits.

We now discuss the organization of the rest of this paper.
In the next section we introduce the definitions and nota-
tions we use in this paper. Then in the following section we
prove QACC[q] = QACC. Finally, in the last section, we
prove the TC(0) and P/poly upper bounds for the restricted
classes discussed above.

2. Preliminaries

In this section we define the gates used as building blocks
for our quantum circuits. Classes of operators built out of
these gates are then defined. We define language classes
that can be determined by these operators and give a couple
definitions from algebra. Lastly, some closure properties of
TC(0) are described.

Definition 2.1

By a one-qubit gatewe mean an operator from the group
U(2).

Let U =
(

u00 u01

u10 u11

)
∈ U(2). ∧m(U) is defined as:

∧0(U) = U and form > 0, ∧m(U) is

∧m(U)(|~x, y〉) =
{

uy0|~x, 0〉+ uy1|~x, 1〉 if ∧m
k=1 xk = 1

|~x, y〉 otherwise

LetX =
(

0 1
1 0

)
. A Tofolli gate is a∧m(X) gate for some

m ≥ 0. A controlled-notgate is a∧1(X) gate.

An (m-)spaced controlled-not gateis an operator that maps
|y1, . . . , ym, x〉 to |x⊕ y1, y2 . . . , ym, x〉 or |y1, . . . , ym, x〉
to |x, y1 . . . , ym−1, ym ⊕ x〉
An (m-ary) fan out gateF is an operator that maps from
|y1, . . . , ym, x〉 to |x⊕ y1, . . . , x⊕ ym, x〉.
A MODq,r gate is an operator that maps|y1, . . . , ym, x〉 to
|y1, . . . , ym, x⊕ (

∑
yi mod q ≡ r)〉.

We use the following graphical notation for parity (i.e.,
MOD2) or, in the case ofn = 1, for controlled-not:

u

u
e

x1 x1

xn xn

b b⊕ x1 ⊕ ...⊕ xn

.

.

.
.
.
.

and forMODq:

u

ux1

q

xn

x1

xn

b b⊕Modq(x1, ..., xn)

.

.

.

.

.

.

As discussed in [8], the no-cloning theorem of quantum
mechanics makes it difficult to directly fan out qubits in
constant depth (although constant fan-out is no problem).
Thus it is necessary to define the operatorF as in the above
definition; refer to [8] for further details. Also, in the liter-
ature it is frequently the case that one says a given operator
M on |y1, . . . , ym〉 can be written as a tensor product of
certain gates. What is meant is that there is an permutation
operatorΠ (a map|y1, . . . , ym〉 to |yπ(1), . . . , yπ(m)〉 for
some permutationπ) such that

M |y1, . . . ym〉 = Π⊗n
j MjΠ−1|y1, . . . ym〉

where theMi’s are our base gates, i.e., those gates for
which no inherent ordering on theyi is assumeda priori.
Since it is important to keep track of such details in our
upper bounds proofs, we will always use Kronecker prod-
ucts of the form⊗n

j Mj without unspoken permutations.
Nevertheless, being able to do permutation operators (not
conjugation by a permutation) intuitively allows our cir-
cuits to simulate classical wire crossings. To handle per-
mutations, we allow our circuits to have controlled-not lay-
ers. A controlled-not layeris a gate which performs, in
one step, controlled-not’s between an arbitrary collection of
disjoint pairs of lines in its domain. That is, it performs
Π⊗n

j ∧1(X)Π−1 for some permutation operatorΠ. Moore
Nilsson [7] show that any permutation can be written as a
finite product of controlled-not layers. We say a controlled-
not layer islog-depthif it can be written as the composition
of log many matrices each of which is the Kronecker prod-
uct of identities and spaced controlled-not gates.

M⊗n is then-fold Kronecker product ofM with itself.
The next definitions are based on Moore [8].

Definition 2.2

QAC(k) is the class of families{Fn}, where Fn is in
U(2n+p(n)), p a polynomial, and eachFn is writable as
a product ofO(logk n) layers, where alayer is a Kro-
necker product of one-qubit gates and Toffoli gates or is
a controlled-not layer. Also for alln the number of distinct
types of one qubit gates used must be fixed.

QACC(k)[q] is the same as QAC(k) except we also allow
MODq gates. QACC(k) = ∪qQACC(k)[q].

QAC(k)
wf is the same as QAC(k) but we also allow fan-out

gates.

QACC is defined as QACC(0) and QACC[q] is defined as
QACC(0)[q]. QACClog

pl is QACC restricted to log-depth con-

trolled not layers. QACCloggatesis QACC restricted so that the
total number of multi-line gates in all layers is log-bounded.

If C is one of the above classes, thenCK are the families in
C with coefficients restricted toK.

Let {Fn} and{Gn}, Gn, Fn ∈ U(2n) be families of oper-
ators. We say{Fn} is QAC(0) reducibleto {Gn} if there
is a family{Rn}, Rn ∈ U(2n+p(n)) of QAC(0) operators
augmented with operators from{Gn} such that for alln,
x,y ∈ {0, 1}n, there is a setting ofz1, ..., zp(n) ∈ {0, 1}
for which 〈y|Fn|x〉 = 〈y, z|Rn|x, z〉. Operator families
areQAC(0) equivalentif they are QAC(0) reducible to each
other. IfC1 andC2 are families of QAC(0) equivalent oper-
ators, we writeC1 = C2.

We refer to thezi’s above as “auxiliary bits” (called “an-
cillae” in [8]). Note that in proving QAC(0) equivalence,
the auxiliary bits must be returned to their original values in
a computation.

It follows for any {Fn} ∈ QAC(0) that Fn is writable
as a product of finite number of layers. Moore [8] shows
QAC(0)

wf = QACC[2] = QACC. Moore [8] places no re-
striction on the number of distinct types of one-qubit gates
used in a given family of operators. We do this so that the
number of distinct amplitudes which appear in matrices in
a layer is fixed with respect ton. This restriction arises
implicitly in the quantum Turing machine case of the up-
per bounds proofs in Fenner, et al. [5] and Yamakami and
Yao [14]. Also, it seems fairly natural since in the classical
case one builds circuits using a fixed number of distinct gate
types. Our classes are, thus, more “uniform” than Moore’s.
We now define language classes based on our classes of op-
erator families.

Definition 2.3 Let C be a class of families ofU(2n+p(n))
operators wherep is a polynomial andn = |x|.

1. E·C is the class of languagesL such that for some
{Fn} ∈ C and {〈~zn|} = {〈zn,1, . . . , zn,n+p(n)|} a
family of states,m := |〈~zn|Fn|x, 0p(n)〉|2 is 1 or 0
andx ∈ L iff m = 1.

2. N·C is the class of languagesL such that for some
{Fn} ∈ C and {〈~zn|} a family of states,x ∈ L iff
|〈~zn|Fn|x, 0p(n)〉|2 > 0.

3. B·C is the class of languagesL so that for some
{Fn} ∈ C and{〈~z|}, x ∈ L if |〈~zn|Fn|x, 0p(n)〉|2 >
3/4 andx 6∈ L if |〈~zn|Fn|x, 0p(n)〉|2 < 1/4 .

It follows E·C ⊆ N·C and E·C ⊆ B·C. We frequently
will omit the ‘·’ when writing a class, so E·QACC is writ-
ten as EQACC. Let|Ψ〉 := Fn|x, 0p(n)〉. Notice that
|〈~zn|Fn|x, 0p(n)〉|2 = 〈Ψ|P|~zn〉|Ψ〉, whereP|~zn〉 is the pro-
jection matrix onto|~zn〉. We could allow in our definitions
measurements of up to polynomially many such projection
observables and not affect our results below. However, this
would shift the burden of the computation in some sense
away from the QACC operator and instead onto preparation
of the observable.

Next are some variations on familiar definitions from al-
gebra.

Definition 2.4 Let k > 0. A subset{βi}1≤i≤k of C is lin-
early independentif

∑k
i=1 aiβi 6= 0 for any(a1, . . . , ak) ∈

Qk − {~0k}. A set{βi}1≤i≤k is algebraically independent
if the onlyp ∈ Q[x1, . . . , xk] with p(β1, . . . , βk) = 0 is the
zero polynomial.

We now briefly mention some closure properties of
TC(0) computable functions that are useful in proving
NQACClog

gates⊆ TC(0). For proofs of the statements in the
next lemma see [11, 12, 3].

Lemma 2.5 (1) TC(0) functions are closed under compo-
sition. (2) The following are TC(0) computable: x + y,
x .−y := x−y if x−y > 0 and0 otherwise,|x| := dlog2(x+
1)e, x ·y, bx/yc, 2min(i,p(|x|), andcond(x, y, z) := y if x >
0 andz otherwise. (3) Iff(i, x) is a TC(0) computable then∑p(|x|)

k=0 f(k, x),
∏p(|x|)

k=0 f(k, x), ∀i ≤ p(|x|)(f(i, x) = 0),
∃i ≤ p(|x|)(f(i, x) = 0), andµi ≤ p(|x|)(f(i, x) = 0) :=
the leasti such thatf(i, x) = 0 or p(x) + 1 otherwise, are
TC(0) computable.

We drop themin from the2min(i,p(|x|)) when it is obvious a
suitably largep(|x|) can be found. We definemax(x, y) :=
cond(1 .− (y .− x)), x, y) and define

maxi≤p(|x|)(f(i)) :=
(µi ≤ p(|x|))(∀j ≤ p(|x|)(f(j) .− f(i) = 0)

Using the above functions we describe a way to do sequence
coding in TC(0). Let β|t|(x,w) := b(w .− bw/2(x+1)|t|c ·
2(x+1)|t|)/2x|t|c. The functionβ|t| is useful for block cod-
ing. Roughly,β|t| first gets rid of the bits after the(x +
1)|t|th bit then chops off the low orderx|t| bits. Let
B = 2|max(x,y)|, so thatB is longer than eitherx or y.
Hence, we code pairs as〈x, y〉 := (B + y) · 2B + B + x,
and projections as(w)1 := βb 1

2 |w|c .−1(0, βb 1
2 |w|c(0, w))

and (w)2 := βb 1
2 |w|c .−1(0, βb 1

2 |w|c(1, w)). We can en-

code a poly-length, TC(0) computable sequence of num-
bers〈f(1), . . . , f(k)〉 as the pair〈∑k

i (f(i)2i·m),m〉where
m := |f(maxi(f(i)))| + 1. We then define the func-
tion which projects out theith member of a sequence as
β(i, w) := β(w)2(i, w).

We can code integers using the positive natural numbers
by letting the negative integers be the odd natural numbers
and the positive integers be the even natural numbers. TC(0)

can use the TC(0) circuits for natural numbers to compute
both the polynomial sum and polynomial product of a se-
quence of TC(0) definable integers. It can also compute the
rounded quotient of two such integers. For instance, to do
a polynomial sum of integers, compute the natural number
which is the sum of the positive numbers in the sum us-
ing cond and our natural number iterated addition circuit.
Then compute the natural number which is the sum of the
negative numbers in the sum. Use the subtraction circuit to
subtract the smaller from the larger number and multiply by
two. One is then added if the number should be negative.
For products, we compute the product of the natural num-
bers which results by dividing each integer code by two and
rounding down. We multiply the result by two. We then
sum the number of terms in our product which were nega-
tive integers. If this number is odd we add one to the product
we just calculated. Finally, division can be computed using
the Taylor expansion of1/x.

3. QACC[q]

In this section, we show QACC[q]=QACC for anyq ≥
2.

Let q ∈ N, q ≥ 2 be fixed throughout this discus-
sion. Consider quantum states labelled by digits inD =
{0, ..., q − 1}. By analogy with “qubit,” we refer to a state
of the form,

q−1∑

k=0

ck|k〉

with
∑

k |ck|2 = 1 as a “qudigit.” Direct products of the ba-
sis states will be labelled by lists of eigenvalues, e.g.,|x〉|y〉
is denoted as|x, y〉.

We define three important operations on qudigits. The
n-arymodular additionoperatorMq acts as follows:

Mq|x1, ..., xn, b〉 = |x1, ...xn, (b + x1 + ... + xn) mod q〉
The gate is represented graphically as in the following fig-
ure:

u

ux1

q

xn

x1

xn

b (b + x1 + ... + xn) mod q

.

.

.

.

.

.

SinceMq merely permutes the states, it is clear that it is
unitary. Similarly, then-ary unitarybaseq fanoutoperator
Fq acts as,

Fq|x1, ...xn, b〉 = |(x1 + b) mod q, ...(xn + b) mod q, b〉.
We writeF for F2, since it is the “standard” fan-out gate in-
troduced by Moore (see Definition 2.1). Note thatM−1

q =
Mq−1

q andF−1
q = F q−1

q .
Finally, the Quantum Fourier TransformHq (which gen-

eralizes the Hadamard transformH on qubits) acts on a sin-
gle qudigit as,

Hq|a〉 =
1√
q

q−1∑

b=0

ζab|b〉,

whereζ = e
2πi

q is a primitive complexqth root of unity. It is
easy to see thatHq is unitary, via the fact that

∑q−1
`=0 ζa` = 0

iff a 6≡ 0 mod q.
The first observation is that, analogous to parity and

fanout for Boolean inputs, the operatorsMq and Fq are
“conjugates” in the following sense.

Proposition 3.1 Mq = (H⊗(n+1)
q)−1F−1

q H
⊗(n+1)
q .

Proof. We apply the operatorsH⊗(n+1)
q , F−1

q , and

(H⊗(n+1)
q)−1 in that order to the state|x1, ..., xn, b〉, and

check that the result has the same effect asMq.

The operatorH⊗(n+1)
q simply appliesHq to each of the

n + 1 qudigits of|x1, ..., xn, b〉, which yields,

1

q
(n+1)

2

∑

y∈Dn

q−1∑
a=0

ζx·y+ab|y1, ..., yn, a〉,

wherey is a compact notation fory1, ..., yn, andx · y de-
notes

∑n
i=1 xiyi. Then applyingF−1

q to the above state
yields,

1

q
(n+1)

2

∑

y∈Dn

q−1∑
a=0

ζ x·y+ab

|(y1 −a) mod q, ..., (yn − a) mod q, a〉.

By a change of variable, the above can be re-written as,

1

q
(n+1)

2

∑

y∈Dn

q−1∑
a=0

ζ
∑n

i=1
xi(yi+a)+ab|y1, ..., yn, a〉

Finally, applying (H⊗(n+1)
q)−1 to the above undoes the

Fourier transform and puts the coefficient ofa in the ex-
ponent into the last slot of the state. The result is,

(H⊗(n+1)
q)−1F−1

q H⊗(n+1)
q |x1, ..., xn, b〉 =

|x1, ..., xn, (b + x1 + ... + xn) mod q〉,

which is exactly whatMq would yield.

We now describe how the operatorsMq, Fq and Hq

can be modified to operate on registers consisting of qubits
rather than qudigits. Firstly, we encode each digit using
dlog qe bits. Thus, for example, whenq = 3, the basis
states|0〉, |1〉 and|2〉 are represented by the two-qubit reg-
isters|00〉, |01〉 and |10〉, respectively. Note that there re-
mains one state (in the example,|11〉) which does not cor-
respond to any of the qudigits. In general, there will be
2dlog qe − q such “non-qudigit” states.Mq, Fq andHq can
now be defined to act on qubit registers, as follows. Con-
sider a state|x〉 wherex is a number represented asm bits
(i.e., anm-qubit register). Ifm < dlog qe, thenHq leaves
|x〉 unaffected. If0 ≤ x ≤ q− 1 (where here we are identi-
fying x with the number it represents), thenHq acts exactly
as one expects, namely,Hq|x〉 = (1/

√
q)

∑q−1
y=0 ζxy|y〉. If

x ≥ q, againHq leaves|x〉 unchanged. Since the resulting
transformation is a direct sum of unit matrices and matrices
of the form ofHq as it was originally set down, the result
is a unitary transformation.Mq andFq can be defined to
operate similarly onm-qubit registers for anym: Break up

them bits into blocks ofdlog qe bits. If m is not divisible
by dlog qe, thenMq andFq do not affect the “remainder”
block that contains fewer thandlog qe bits. Likewise, in a
quantum register|x1, ..., xn〉 where each of thexi’s (with
the possible exception ofxn) aredlog qe-bit numbers,Mq

andFq operate on the blocks of bitsx1, ..., xn exactly as
expected, except that there is no affect on the “non-qudigit”
blocks (in whichxi ≥ q), or on the (possibly) one remain-
der block for which|xn| < dlog qe. SinceMq andFq op-
erate exactly as they did originally on blocks representing
qudigits, and like unity for non-qudigit or remainder blocks,
it is clear that they remain unitary.

Henceforth,Mq, Fq, andHq should be understood to act
on qubit registers as described above. Nevertheless, it will
usually be convenient to think of them as acting on qudigit
registers consisting ofdlog qe qubits in each.

Lemma 3.2 Fq andMq are QAC(0)-equivalent.

Proof. By Barenco et al. [1], any fixed dimension unitary
matrix can be computed in fixed depth using one-qubit gates
and controlled nots. HenceHq can be computed in QAC(0),

as canH⊗(n+1)
q . The result now follows immediately from

Proposition 3.1.

The classical BooleanModq-function onn bits is de-
fined so thatModq(x1, ..., xn) = 1 iff

∑n
i=1 xi ≡ 0

(mod q). (The more common definition sets it to 1 if∑n
i=1 xi is not divisible by q, but this convention is less

convenient in this setting, and is not important technically
either.) We also defineModq,r(x1, ..., xn) to output 1 iff∑n

i=1 xi ≡ r (mod q). Note thatModq = Modq,0. Re-
versible, quantum versions of these functions can also be
defined. The operatorMODq,r onn + 1 qubits has the fol-
lowing effect:

|x1, ..., xn, b〉 7→ |x1, ..., xn, b⊕Modq,r(x1, ..., xn)〉.

We write MODq,0 as MODq. Since negation is built
into the output (via the exclusive OR), it is easy to simulate
negations usingMODq,r gates. For example, by settingb =
1, we can compute¬Modq,r. More generally, using one
auxiliary bit, it is possible to simulate “¬MODq,r,” defined
so that,

|x1, ..., xn, b〉 7→ |x1, ..., xn, b⊕ (¬Modq,r(x1, ..., xn))〉,

using just MODq,r and a controlled-NOT gate. Thus
MODq,r and¬MODq,r are QAC(0)-equivalent. Moore’s
version ofMODq is our¬MODq. Observe thatMOD−1

q,r =
MODq,r.

Lemma 3.3 MODq andMq are QAC(0)-equivalent.

Proof. First note thatMODq andMODq,r are equivalent,
since aMODq,r gate can be simulated by aMODq gate
with q − r extra inputs set to the constant 1. Hence we can
freely useMODq,r gates in place ofMODq gates.

It is easy to see that, given anMq gate, we can simulate
aMODq gate. ApplyingMq to n + 1 digits (represented as
bits, but each digit only taking on the values 0 or 1) trans-
forms,

|x1, ..., xn, 0〉 7→ |x1, ..., xn, (
∑

i

xi) mod q〉.

Now send the bits of the last block (
∑

i xi mod q) to a Tof-
foli gate with all inputs negated and control bitb. The re-
sulting output is exactlyb ⊕Modq(x1, ..., xn). The bits in
the last block can be erased by re-negating them and revers-
ing theMq gate. This leaves onlyx1, ..., xn, O(n) auxiliary
bits, and the outputb⊕Modq(x1, ..., xn).

The converse (simulatingMq given MODq) requires
some more work. The first step is to show thatMODq

can also determine if a sum ofdigits is divisible byq. Let
x1, ..., xn ∈ D be a set of digits represented asdlog qe
bits each. For eachi, let x

(k)
i (0 ≤ k ≤ dlog qe − 1)

denote the bits ofxi. Since the numerical value ofxi is∑dlog qe−1
k=0 x

(k)
i 2k, it follows that

n∑

i=1

xi =
dlog qe−1∑

k=0

n∑

i=1

x
(k)
i 2k.

The idea is to express this last sum in terms of a set
of Boolean inputs that are fed into aMODq gate. To

account for the factors2k, eachx
(k)
i is fanned out2k

times before plugging it into theMODq gate. Since
k < dlog qe, this requires only constant depth andO(n)
auxiliary bits (which of course are set back to 0 in the
end by reversing the fanout). Thus, just usingMODq

and constant fanout, we can determine if
∑n

i=1 xi ≡ 0
(mod q). More generally, we can determine if

∑n
i=1 xi ≡

r (mod q) using just aMODq,r gate and constant fanout.
Let M̂ODq,r(x1, ..., xn) denote the resulting circuit, that
determines if a sum of digits is congruent tor modq. The
construction ofM̂ODq,r(x1, ..., xn) is illustrated in the fig-
ure below for the case ofq = 3. In the figure,mod(x)
denotesMod3,r(x1, ..., xn). The notation on the right will
be used as a shorthand for this circuit:

u
u

u
u

q̂, r

≡

u
u
u

u
u
u
q

e e

e e

.

.

.

.

.

.

x
(0)
1

x
(1)
1

x
(0)
n

0

x
(1)
n

0

b

x
(0)
1

x
(1)
1

0

x
(0)
n

x
(1)
n

0

b⊕mod(x)

u u

u u

We can get the bits in the value of the sum
∑n

i=1 xi mod
q usingM̂ODq,r circuits. This is done, essentially, by im-
plementing the relationx mod q =

∑q−1
r=0 r · Modq,r(x).

For eachr, 0 ≤ r ≤ q− 1, we computeModq,r(x1, ..., xn)
(where now thexi’s are digits). This can be done by apply-
ing theM̂ODq,r circuits in series (for eachr) to the same
inputs, introducing an auxiliary 0-bit for each application,
as illustrated here.

u

u

u

u

u

u

q̂, 0
q̂, 1

q̂, 2

Modq,0(x1, ..., xn)
Modq,1(x1, ..., xn)
Modq,2(x1, ..., xn)

0
0
0

x1 x1

xn xn

.

.

.

.

.

.

Let rk denote thekth bit of r. For eachr and for each
k, we take the AND of the output of thêMODq,r with rk

(again by applying the AND’s in series, which is still con-
stant depth, but introducesq extra auxiliary inputs). Letak,r

denote the output of one of these AND’s. For eachk, we OR
together all theak,r ’s, that is, compute∨q−1

r=0ak,r, again in-
troducing a constant number of auxiliary bits. Since only
one of ther’s will give a non-zero output fromM̂ODq,r,
this collection of OR gates outputs exactly the bits in the
value of

∑n
i=1 xi mod q. Call the resulting circuitC, and

the sum it outputsS.
Finally, to simulateMq, we need to include the input

digit b ∈ D. To do this, we apply a unitary transforma-
tion T to |S, b〉 that transforms it to|S, (b + S) mod q〉. By
Barenco, et al. [1] (as in the proof of Lemma 3.2),T can
be computed in fixed depth using one-qubit gates and con-
trolled NOT gates. Now usingS and all the other auxiliary
inputs, we reverse the computation of the circuitC, thus

clearing the auxiliary inputs. This is illustrated in this fig-
ure:

x1

xn

x1

xn

.

.

.
.
.
.

.

.

.
.
.
.

0

0

0

0
S S

T

C C−1

b (b + S) mod q

The result is an output consisting ofx1, ..., xn, O(n)
auxiliary bits, and(b+

∑n
i=1 xi) mod q, which is the output

of anMq gate.

It is clear that we can fan out digits, and therefore bits,
using anFq gate (settingxi = 0 for 1 ≤ i ≤ n fans out
n copies ofb). It is slightly less obvious (but still straight-
forward) that, given anFq gate, we can fully simulate anF
gate.

Lemma 3.4 For any q > 2, F and Fq are QAC(0)-
equivalent.

Proof. By the preceeding lemmas,Fq and MODq are
QAC(0)-equivalent. By Moore’s result,MODq is QAC(0)-
reducible toF . HenceFq is QAC(0)-reducible toF .

Conversely, arrange each block ofdlog qe input bits to
anFq gate as follows. For the control-bit block (which con-
tains the bit we want to fan out), set all but the last bit to
zero, and call the last bitb. Set all bits in theith input-bit
block to 0. Now theith output of theFq circuit is b, rep-
resented asdlog qe bits with only one possibly nonzero bit.
Send this last output bitb and the input bitxi to a controlled-
NOT gate. The outputs of that gate areb andb ⊕ xi. Now
applyF−1

q to the bits that were the outputs of theFq gate
(which are all left unchanged by the controlled-not’s). This
returns all theb’s to 0 except for the control bit which is
always unchanged. The outputs of the controlled-not’s give
the desiredb ⊕ xi. Thus the resulting circuit simulatesF ,
with O(n) auxiliary bits.

Theorem 3.5 For anyq ∈ N, q 6= 1, QACC= QACC[q].

Proof. By the preceeding lemmas, fanout of bits is equiv-
alent to theMODq function. By Moore’s result, we can do
MODq if we can do fanout in constant depth. By our result,
we can do fanout, and henceMOD2, if we can doMODq.
Hence QACC= QACC[2] ⊆ QACC[q].

4. Upper Bounds

In this section, we prove the following upper bounds
results NQACCloggates⊆ TC(0), BQACClog

Q,gates⊆ TC(0),

NQACClog
pl ⊆ P/poly, and BQACClogQ,pl⊆ P/poly.

Suppose{Fn} and {zn} determine a languageL in
NQACC. Let Fn be the product of the layersU1, . . . , Ut

and E be the distinct entries of the matrices used in the
Uj ’s. By our definition of QACC, the size ofE is fixed
with respect ton. We need a canonical way to write
sums and products of elements inE to be able to check
|〈~z|U1 · · ·Ut|x, 0p(n)〉|2 > 0 with a TC(0) function. To
do this letA = {αi}1≤i≤m be a maximal algebraically
independent subset ofE. Let F = Q(A) and letB =
{βi}0≤i<d be a basis for the fieldG generated by the ele-
ments in(E −A)∪ {1} overF . Since the size of the bases
of F andG are less than the cardinality ofE the size of
these bases is also fixed with respect ton.

As any sum or product of elements inE is in G, it suf-
fices to come up with a canonical form for elements inG.
Our representation is based on Yamakami and Yao [14]. Let
α ∈ G. SinceB is a basis,α =

∑d−1
j=0 λjβj for some

λj ∈ F . We encode anα as ad-tuple (we iterate the
pairing function from the preliminaries to maked-tuples)
〈dλ0

e, . . . , dλd−1
e〉 wheredλj

e encodesλj . As the elements
of A are algebraically independent, eachλj = sj/uj where
sj anduj are of the form

∑

~kj ,|~kj |≤e

a~kj
(

m∏

i=1

α
kij

i).

Here~kj = (k1j , . . . , kmj) ∈ Zm, |~kj | is
∑

i kij , a~kj
∈ Z,

ande ∈ N. In particular, any productβm ·βl =
∑d−1

j=0 λjβj

with λj = sj/uj and sj and uj in this form. We take
a common denominatoru for elements ofE ∪ {βm · βl}
and not justE since theλj ’s associated with theβm · βl

might have additional factors in their denominators not in
E. Also fix an e large enough to bound the|~kj |’s which
might appear in any element ofE or a productβm · βl.
This e will be constant with respect ton. In multiplying t
layers of QACC circuit against an input, the entries in the
result will be polynomial sums and products of elements
in E ∪ {βm · βl}, so we can bound|~kj | for ~kj ’s which
appear in theλj ’s of such an entry bye · p(n). To com-
plete our representation ofα ∈ G we encodeλj as the se-
quence〈r, 〈〈a ~kj

, k1j , . . . , kmj〉〉〉 wherer is the power to
whichu is raised and〈〈a ~kj

, k1j , . . . , kmj〉〉 is the sequence
of 〈a ~kj

, k1j , . . . , kmj〉’s that appear insj . By our discus-
sion, the encoding of anα that appears as an entry in the
output after applying a QACC operator to the input is of
polynomial length and so can be manipulated in TC(0).

We have need of the following lemma:

Lemma 4.1 Letp be a polynomial. (1) Letf(i, x) ∈ TC(0)

output encodings ofai,x ∈ Z[A]. ThenZ[A] encodings of∑p(|x|)
i=1 ai,x and

∏p(|x|)
i=1 ai,x are TC(0) computable. (2) Let

f(i, x) ∈ TC(0) output encodings ofai,x ∈ G. ThenG

encodings of
∑p(|x|)

i=1 ai,x and
∏p(|x|)

i=1 ai,x are TC(0) com-
putable.

Proof. We will abuse notation in this proof and identify
the encodingf(i, x) with its valueai,x. So

∑
i f(i, x) and∏

i f(i, x) will mean the encoding of
∑

i ai,x and
∏

i ai,x

respectively.
(1) To do sums, the first thing we do is form the

list L1 = 〈f(0, x), . . . , f(p(|x|), x)〉. Then we create a
flattened listL2 from this with elements which are the
〈a ~kj

, k1j , . . . , kmj〉’s from the f(i, x)’s. L1 is in TC(0)

using our definition of sequence from the preliminaries,
and closure under sums andmaxi to find the length of
the longestf(i, x). To flattenL1 we usemaxi to find
the lengthd of the longestf(i, x) for i ≤ p(|x|). Then
using max twice we can find the length of the longest
〈a ~kj

, k1j , . . . , kmj〉. This will be the second coordinate in
the pair used to define sequenceL2. We then do a sum of
sized · p(|x|) over the subentries ofL1 to get the first coor-
dinate of the pair used to defineL2. GivenL2, we make a
list L3 of the distinct~kj ’s that appear as〈a ~kj

, k1j , . . . , kmj〉
in somef(i, x) for some i ≤ p(|x|). This list can be
made fromL2 using sums,cond andµ. We sum over the
t ≤ length(L2) and check if there is somet′ < t such that
the t′th element ofL2 has same~kj ast and if not add the
tth elements~kj times 2 raised to the appropriate power. We
know what power by computing the sum of the number of
smallert′ that passed this test. Usingcond and closure un-
der sums we can compute in TC(0) a function which takes a
list like L2 and a~kj and returns the sum of all thea ~kj

’s in
this list. So using this function and the listsL2 andL3 we
can compute the desired encoding.

For products, since theαi’s of A are algebraically in-
dependent,Z[A] is isomorphic to the polynomial ring
Z[y1, . . . , ym] under the natural map which takesαj to
yj . We view our encodingsf(i, x) as m-variate poly-
nomials inZ[y1, . . . , ym]. We describe for anyp′ a cir-
cuit that works for any TC(0) computablef(i, x) such that∏

i f(i, x) is of degree less thanp′ viewed as anm-variate
polynomial. InTC(0) we defineg(i, x) to consist of the
sequence of polynomially many integer values which result
from evaluating the polynomial encoded byf(i, x) at the
points(i1, . . . , im) ∈ Nm where0 ≤ is and

∑
s is ≤ p′.

To computef(i, x) at a point involves computing a poly-
nomial sum of a polynomial product of integers, and so
will be in TC(0). Using closure under polynomial inte-
ger products we computek(j, x) :=

∏
i β(j, g(i, x)) where

β is the sequence projection function from the preliminar-

ies. Our choice of points is what is called by Chung and
Yao [2] thep′-th order principal latticeof the m-simplex
given by the origin and the pointsp′ from the origin in
each coordinate axis. By Theorems 1 and 4 of that pa-
per (proved earlier by a harder argument in Nicolaides [9])
the multivariate Lagrange Interpolant of degreep′ through
the pointsk(j, x) is unique. This interpolant is of the form
P (y1, . . . , ym) =

∑
j pj(y1, . . . , ym)k(j, x) where thepj ’s

are polynomials which do not depend on the functionf . An
explicit formula for thesepj ’s is given in Corollary 2 of
Chung and Yao [2] as a polynomial product of linear fac-
tors. Since these polynomials are all of degree less than
p′, they have only polynomial inp′ many coefficients and
in PTIME these coefficients can be computed by iteratively
multiplying the linear factors together. We can then hard
code thesepj ’s (since they don’t depend onf) into our cir-
cuit and with thesepj ’s, k(j, x), and closure under sums
we can compute the polynomial of the desired product in
TC(0).

(2) We do sums first. Assumef(i, x) :=
∑d−1

j=0 λijβj .
One immediate problem is that theλij andλi′j might use
differentur ’s for their denominators. Since TC(0) is closed
under poly-sized maximum, it can find the maximum value
r0 to which u is raised. Then it can define a function
g(i, x) =

∑d−1
j=0 γijβj which encodes the same element of

G as f(i, x) but where the denominators of theγij ’s are
nowur0 . If λj wassj/ur we need to compute the encoding
sj · ur0−r/ur0 . This is straightforward from (1). Now

p(|x|)∑

i=1

f(i, x) =
p(|x|)∑

i=1

g(i, x) =
d−1∑

j=0

[(
p(|x|)∑

i=1

sij)/ur0]βj ,

wheresij ’s are the numerators of theγij ’s in g(i, x). From

part (1) we can compute the encodingej of (
∑p(|x|)

i=1 sij) in
TC(0). So the desired answer〈〈r0, e0〉, · · · , 〈r0, ed−1〉〉 is
in TC(0).

For products
∏p(|x|)

i=1 f(i, x), we play the same trick as
the in theZ[A] product case. We view our encodings of
elements ofG as d-variate polynomials inF (y0, . . . , yd−1)
under the mapβk goes toyk. (Note that this map is not
necessarily an isomorphism.) We then create a function
g(i, x) which consists of the sequence of values obtained
by evaluatingf(i, x) at polynomially many points in a lat-
tice as in the first part of this lemma. Evaluatingf(i, x)
at a point can easily be done using the first part of this
lemma. We then use part (1) of this lemma to compute
the productsk(j, x) = β(j, g(i, x)). We then get the inter-
polantP (y0, . . . , yd−1) =

∑
j pj(y0, . . . , ym)k(j, x). We

non-uniformly obtain the encoding ofpj(β0, . . . , βd−1) ex-
pressed as an element ofG. i.e., in the form

∑d−1
w=0 λjwβw.

Thus, the product
∏p(|x|)

i=1 f(i, x) is

d−1∑
w=0

(
∑

j

λjwk(j, w))βw

The encoding of the products is the d-tuple given by
〈∑j λj0k(j, 0), . . . ,

∑
j λjd−1k(j, d−1)〉 Each of its com-

ponents is a polynomial sum of a product of two things in
F and can be computed using the first part of the lemma.

For {Fn} ∈ QAC(0)
wf = QACC, the vectors thatFn act

on are elements of a2n+p(n) dimensional spaceE1,n+p(n)

space which is a tensor product of the 2-dimensional spaces
E1, . . . En+p(n), which in turn are each spanned by|0〉, |1〉.
We write Ej,k for the subspace⊗k

i=jE i of E1,n+p(n). We
now define a succinct way to represent a set of vectors in
E1,n+p(n) which is useful in our argument below. Atensor
graphis a directed acyclic graph with one source node of in-
degree zero, one terminal node of outdegree zero, and two
kinds of edges: horizontal edges, which are unlabeled, and
vertical edges, which are labeled with a pair of amplitudes
and a product ofcolorsandanticolors. (The color product
may be the number 1.) We require that all paths from the
source to the terminal traverse the same number of verti-
cal edges and that no vertex can have vertical edge indegree
greater than one or outdegree greater than one. For a color
c we write c̃ for its corresponding anticolor. Theheightof
a node in a tensor graph is the number of vertical edges tra-
versed to get to it on any path from the source; theheightof
an edge is the height of its end node. Thewidth of a tensor
graph is maximum number of nodes of the same height. As
an example of a tensor graph where our color product is the
number 1, consider the following figure:

h

h

h

h

h

h

h

h

........................
..

..........................

........................
..

........................
..

........................
..

........................
..

........................
..

...........
............
...

s

t

{1} 0,1

{1} 1√
2
, 1√

2

{1} 1/2,0

{1} 1,0

{1} 1√
2
, −1√

2

{1} 1/2,0

The rough idea of tensor graphs is that paths through the
graph correspond to collections of vector inE1,n. For this
particular figure the left path from the source node (s) to the
terminal node (t) corresponds to the vectors given by

|1〉 ⊗ (
1√
2
|0〉+

1√
2
|1〉)⊗ 1

2
|0〉

and the right hand path corresponds to

|0〉 ⊗ (
1√
2
|0〉+

−1√
2
|1〉)⊗ 1

2
|0〉.

A Ej,k-term in a tensor graph is a maximal induced ten-
sor subgraph between a node of heightj − 1 and a node of
heightk. We also require that the horizontal indegree of the
node at heightj−1 be zero and that the horizontal outdegree
of the node at heightk be zero. For the graph we considered
above there are twoE1,2-terms and twoE2,3-terms but only
oneE1,3-term corresponding to the whole figure.

Colors are used to handle controlled-not layers. A colorc
and its anticolor̃c satisfy the following multiplicative prop-
erties:c·c = c̃·c̃ = 1 andc·c̃ = 0. Given two distinct colors
b andc we haveb·c = c·b andb̃·c = c·b̃. If a is a product of
colors and anticolors not involving the colorb or b̃ andc is
another product of colors we havea(bc) = (ab)c. We con-
sider formal sums of products of complex numbers times
colors. We require complex numbers to commute with col-
ors and require colors and anticolors to distribute, i.e., ifa,
b, c are colors or anticolors thena · (b + c) = a · b + a · c
and(b + c) · a = b · a + c · a. Finally, we require addition
to work so that the above structure satisfies the axioms of
an C-algebra. Given a tensor graphG denote byAG the
C-algebra above. Since

(a · a) · ã = ã 6= 0 = a · (a · ã)

this algebra is not associative. However, in the sums we will
consider the terms will never have more than two positions
where a color or its anticolor can occur, so the products we
will consider are associative. Using our our earlier encod-
ing for the elements ofC which could appear in aQACC
computation, it is straightforward to use sequence coding to
get a TC(0) encodings of the relevant elements ofAG. As
an example of how colors affect amplitudes, consider the
following picture:

h

h

h

h

h

h

h

h

` ` `
`
`

`
` ```

` `

`
`
`
`
`
`
`
`

``
`
`

`
` ` `

........................
..

..........................

........................
..

........................
..

........................
..

..

...........
............
...

...........
............
...

..........................

s

t

{b}−1√
2
, −1√

2

{1}−1√
2
, 1√

2

{b} 1, 0

{b̃} 1√
2
, −1√

2

{b̃} 0,1

The amplitude of|1, 0, 0〉 in the left hand dotted path isb ·
−1√

2
· 1 · −1√

2
· b · 1 = 1/2 using commutativity andb2 = 1.

Its amplitude in the right hand dotted path would be zero
because of the last vertical edge. However, vectors such
as|0, 0, 1〉 would have nonzero amplitude in the right hand
dotted path. Nevertheless, the amplitude of any vector|~x〉
in any path other than the dotted ones froms to t will be
0 as b · b̃ = 0. More formally, we define the amplitude
of an |~x〉 in a vertical edge as equal to the left amplitude
times the color product in the edge if~x is |0〉 and equal to
the right amplitude times the color product in the edge if
~x is ~1. The amplitude of a vector|x1, . . . , xj〉 in a path
in a tensor graph is the product overk from 1 to j of the
amplitude of the vectors|xk〉 in the vertical edge of height
k. The amplitude of a vector|xj , . . . , xk〉 in an Ej,k-term
is the sum of its amplitude in its paths. The amplitude of a
vector |x1, . . . , xp(n)〉 in a tensor graphG is defined to be
the sum of its amplitudes inG’s E1,p(n)-terms.

As we will be interested in families of tensor graphs
{Gn}, corresponding to our circuit families we want to look
at those families with a certain degree of uniformity. We
say a family of tensor graphs{Gn} is color consistentif:
(1) the number of colors for edges of the same height is
bounded by a constantk with respect ton, (2) the num-
ber of heights in which a given color/anticolor can appear
is exactly two (colors and their anticolors must appear on
the same heights), (3) each color product at the same height
is of the form

∏k
i=0 li whereli must be either a colorci or

c̃i (it follows there are2k possible color products for edges
at a given height). We say that a color/anticolor isactive
at a given height if the height is at or after the first height
at which the color/anticolor occurs and is below the height
of its second occurrence. The family is further said to be
log-color depth if the number of active colors/anticolors of
a given height is log-bounded.

Theorem 4.1 Let {Fn} be a family of QACC operators
and let {〈~zn|} a family of observables. (1) There is
a color-consistent family of tensor graphs of width222t

and polynomial size representing the output amplitudes of
U1 · · ·Ut|~zn〉 whereUi are the layers ofFn. (2) If {Fn} is
in QACClog

pl then the family of tensor graphs will be of log-

color depth. (3) If{Fn} is in QACClog
gatesthen the number of

paths from the source to the terminal node is polynomially
bounded.

Proof. The proof is by induction ont. In the base case,
t = 0, we do not multiply any layers, and we can eas-
ily represent this as a tensor graph of width 1. Assume
for j < t that Uj · · ·U1|~x, 0p(n)〉 can be written as color
consistent tensor graph of width222t

and polynomial size.
There are two cases to consider: In the first case the layer
is a tensor product of matricesM1 ⊗ · · · ⊗ Mν where the
Mk ’s are Toffoli gates, one qubit gates, or fan-out gates

(since QAC(0)wf =QACC); in the second case the layer is
a controlled-not layer.

For the first case we “multiply”Ut against our current
graph by “multiplying” eachMj in parallel against the
terms in our sum corresponding toMj ’s domain, sayEj′,k′ .

If Mj =
(

u00 u01

u10 u11

)
with domainEj′ is a one-qubit gate,

then we multiply the two amplitudes in each vertical edge
of heightj′ in our tensor graph byMj . This does not effect
the width, size, or number of paths through the graph. IfMj

is a Toffoli gate, then for each termS in Ej′,k′ in our ten-
sor graph we add one new term to the resulting graph. This
term is added by adding a horizontal edge going out from
the source node ofS followed by the newEj′,k′-term fol-
lowed by a horizontal edge into the terminal node ofS. The
new term is obtained from the old one by setting to0 the left
hand amplitudes of all edges inS of height betweenj′ and
k′ − 1 and then ifα, γ is the amplitude of an edge of height
k′ in the new term we change it toγ − α, α − γ. This new

term adjusts the amplitude for the case of a|1〉⊗(k′−j′−1)

vector inEj′,k′−1 tensored with either a|0〉 or |1〉. This op-
eration increases the width of the new tensor graph by the
width of theEj′,k′-term for eachEj′,k′ -term in the graph.

Since the original graph has width222(t−1)
there are at most

this many starting and ending vertices for such terms. So
there at most(222(t−1)

)2 such terms. Each of these terms
has width at most222(t−1)

. Thus, the new width is at most

222(t−1)
+ (222(t−1)

)2 · 222(t−1)
< 222t

.

Notice this action adds one new path through theEj′,k′ part
of the graph for every existing one.

Now supposeMj is a fan-out gate, letS be aEj′,k′-term
in our tensor graph and lete be any vertical edge inS in
Ek′ . Supposee has amplitudeα for |0〉 and amplitudeγ
for |1〉. In the new graph we change the amplitude ofe to
α, 0. We then add a horizontal edge out of the source node
of S followed by a newEj′,k′-term followed by a horizontal
edge into the terminal node ofS. The new term is obtained
from S by changing the amplitude for edges inEk′ with
amplitudesα, γ in S to 0, γ. The amplitudes of the non-Ek′

edges in this term are the reverse of the corresponding edge
in S, i.e., if the edge inS had amplitudeδ, ζ then the new
term edge would have amplitudeζ, δ. The same argument
as in the Toffoli case shows the new width is bounded by
222t

and that this action adds one new path through theEj′,k′

part of the graph for every existing one.
For the case of a controlled-not layer, suppose we have

a controlled-not going from linei onto linej. Let c, c̄ be a
new color, anti-color pair not yet appearing in the graph. Let
ei be a vertical edge of heighti in the graph and letCi, αi, γi

be respectively its color product and two amplitudes. Sim-
ilarly, let ej be a vertical edge of heightj in the graph and

Cj , αj , γj be its color product and two amplitudes. In the
new graph we multiplyc times the color product ofei and
ej and change the amplitude ofei to αi, 0. We then add a
horizontal edge going out from the starting node ofei, fol-
lowed by a vertical edge with valuesCi · c̃, 0, γi followed
by a horizontal edge into the terminal node ofei. In turn,
we add a horizontal edge going out of the starting node of
ej , followed by a vertical edge with valuesCj · c̃, γi, αj

followed by a horizontal edge into the terminal node ofej .
We handle all other controlled gates in this layer in a simi-
lar fashion (recall they must go to disjoint lines). We add at
most a new vertex of a given height for every existing vertex
of a given height. So the total width is at most doubled by
this operation and2 · 222(t−1)

< 222t

. In the QACClog
pl case,

simulating a layer which is a Kronecker product of spaced
controlled-not gates and identity matrices, notice we would
at most add one to the color depth at any place. So if a
controlled-not layer is a composition ofO(log) many such
layers it will increase the color depth byO(log). In the
QACClog

gates case, notice that simulating a single controlled-
not we add one new path for each existing path through the
graph at each of the two heights affected. This gives three
new paths on the whole subspace for each old one.

Since we have handled the two possible layer cases and
the changes we needed to make only increase the resulting
tensor graph polynomially, we thus have established the in-
duction step and (1) and (2) of the theorem. For (3), observe
for each multi-line gate we handle in adding a layer we at
most quadruple the number of paths through the subspace
where that gate applies. Since there are at most logarith-
mically many such gates, the number of paths through the
graph increases polynomially.

Theorem 4.2 Let {Gn} be a family of constant width
color-consistent tensor graphs of vectors inE1,p(n). Assume
the coefficients of amplitudes in the{Gn} can be encoded
in TC(0) using our encoding scheme described earlier and
that {Gn} has log-color depth. Then the amplitude of any
basis vector ofE1,p(n) in Gn is P/poly computable. If the
number of paths through the graph from the source to the
terminal node is polynomially bounded then the amplitude
of any basis vector is TC(0) computable.

Proof. Let Gn be a particular graph in the family and let
| ~xn〉 be the vector whose amplitude we want to compute.
Assume that all graphs in our family have fewer thank col-
ors in any color product and have a width bounded byw. We
will proceed from the source to the terminal node one height
at a time to compute the amplitude. Since the width isw the
number ofE1-terms is at mostw and each of these must
have width at mostw. Let α1,1, . . . , α1,w (some of which
may be zero) denote the amplitudes inAGn of |xn,1〉 in each

of these terms. Theα1,i are each sums of at mostw ampli-
tudes times the color products of at mostk colors and anti-
colors, so the encoding of thesew amplitudes is TC(0) com-
putable. Because of the restriction on the width ofGn there
are at mostw manyE1,j-terms,w2 manyEj,j+1-terms, and
w manyE1,j+1-terms. Fixing some ordering on the nodes
of heightj andj + 1 let γj,i,k be the amplitude of|xn,j+1〉
in theEj,j+1-term with source theith node of heightj and
with terminal node thekth node of heightj + 1. The am-
plitude is zero if there is no suchEj,j+1-term. Then the
amplitudesαj+1,1, . . . , αj+1,w of theE1,j+1-terms can be
computed from the amplitudesαj,1, . . . , αj,w of the E1,j-
terms using the formula

αj+1,k =
w∑

i=1

αj,i · γj,i,k.

Thusαj+1,k can be computed from theαj,i using a poly-
nomial sized circuit to do these adds and multiplies. Sim-
ilarly, eachαj,k can be computed by polynomial sized cir-
cuits from theαj−1,k ’s and so on. Since we have log-color
depth the number of terms consisting of elements in our
field times color products in aαj,k will be polynomial. So
the size of theαj,k ’s j ≤ p(n), k ≤ w will be polynomial in
the input~xn. So the size of the circuits for eachαj,k where
j ≤ p(n) andk ≤ w will be polynomial size. There is only
oneE1,p(n)-term inGn and its amplitude is that of|~xn〉, so
this shows it has polynomial sized circuits.

For the TC(0) result, if the number of paths is polynomi-
ally bounded, then the amplitude can be written as the poly-
nomial sum of the amplitudes in each path. The amplitude
in a path can in turn be calculated as a polynomial product
of the amplitudes times the colors on the vertical edges in
the path. Our condition on every color appearing at exactly
two heights guarantees the color product along the whole
path will be 1 or 0, and will be zero iff we get a color and
its anticolor on the path. This is straightforward to check
in TC(0), so this sum of products can thus be computed in
TC(0) using Lemma 4.1.

Corollary 4.3

(1) EQACClogpl ⊆NQACClog
pl ⊆P/Poly, and BQACClogQ,pl

⊆P/poly.

(2) EQACCloggates⊆NQACClog
gates⊆TC(0), and

BQACClog
Q,gates⊆TC(0).

Proof. Given a a family{Fn} of QACClog
pl operators and a

family {〈~zn|} of states we can use Theorem 4.1 to get a fam-
ily {Gn} of log color depth, color-consistent tensor graphs
representing the amplitudes ofF−1

n |~zn〉. Note {F−1
n } is

also a family of QACClogpl operators since Toffoli and fan-
out gates are their own inverses, the inverse of any one qubit

gate is also a one qubit gate (albeit usually a different one),
and finally a controlled-not layer is its own inverse. Theo-
rem 4.2 shows there is a P/poly circuit computing the am-
plitude of any vector|~xn〉 in this graph. This amounts to
calculating

〈~xn|F−1
n |~zn〉 = 〈~zn|Fn|~xn〉

If this is nonzero, then|〈~zn|Fn|~xn〉|2 > 0, and we know
~x is in the language. In the BQACCQ case everything is a
rational so P/poly can explicitly compute the magnitude of
the amplitude and check if it is greater than3/4. The TC(0)

result follows similarly from the TC(0) part of Theorem 4.1.

5. Discussion and Open Problems

A number of questions are suggested by our work.

• Is all of NQACC in TC(0) or even P/Poly? We conjec-
ture that NQACC is in TC(0). As mentioned in the in-
troduction, we have developed techniques that remove
some of the important obstacles to proving this.

• Are there any natural problems in NQACC that are not
known to be in ACC?

• What exactly is the complexity of the languages in
EQACC, NQACC and BQACCQ? We entertain two
extreme possibilities. Recall that the class ACC can be
computed by quasipolynomial size depth 3 threshold
circuits [15]. It would be quite remarkable if EQACC
could also be simulated in that manner. However, it is
far from clear if any of the techniques used in the sim-
ulations of ACC (the Valiant-Vazirani lemma, compo-
sition of low-degree polynomials, modulus amplifica-
tion via the Toda polynomials, etc.), which seem to be
inherently irreversible, can be applied in the quantum
setting. At the other extreme, it would be equally re-
markable if NQACC and NQTC(0) (or BQACCQ and
NQTC(0)) coincide. Unfortunately, an optimal char-
acterization of QACC language classes anywhere be-
tween those two extremes would probably require new
(and probably difficult) proof techniques.

• How hard are the fixed levels of QACC? While lower
bounds for QACC itself seem impossible at present, it
might be fruitful to study the limitations of small depth
QACC circuits (depth 2, for example).

Acknowledgments: We thank Cris Moore for pointing out
an error in an earlier version of Theorem 4.1, and Bill
Gasarch for helpful comments and suggestions.

References

[1] A. Barenco, C. Bennett, R. Cleve, D.P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and H.
Weifurter. Elementary gates for quantum computation.
Phys. Rev. A52, pages 3457–3467, 1995.

[2] K. C. Chung and T. H. Yao. On Lattices Admitting
Unique Lagrange Interpolations . Siam Journal of Nu-
merical Analysis14, pages 735–743, 1977.

[3] P. Clote. On polynomial Size Frege Proofs of Certain
Combinatorial Principles. In P. Clote and J. Krajicek,
editors,Arithmetic, Proof Theory, and Computational
Complexity, pages 164–184. Oxford, 1993.

[4] L. Fortnow and J. Rogers. Complexity Limitations
on Quantum Computation.Proceedings of 13th IEEE
Conference on Computational Complexity, pages 202–
209, 1998.

[5] S. Fenner, F. Green, S. Homer, and R. Pruim. Quantum
NP is hard for PH. Proceedings of 6th Italian Con-
ference on theoretical Computer Science, World Scien-
tific, Singapore, pages 241–252, 1998.

[6] Alexis Maciel and Denis Therien. Threshold Circuits of
Small Majority-Depth. Information and Computation
146. 55–83, 1998.

[7] Cristopher Moore and Martin Nilsson. Parallel Quan-
tum Computation and Quantum Codes In Los Alamos
Preprint archives (1998), quant-ph/9808027.

[8] Cristopher Moore. Quantum Circuits: Fanout, Parity,
and Counting. In Los Alamos Preprint archives (1999),
quant-ph/9903046.

[9] R. A. Nicolaides. On a class of finite elements gener-
ated by Lagrange interpolation. Siam Journal of Nu-
merical Analysis9, pages 177–199, 1972.

[10] P. W. Shor. Polynomial-time algorithms for prime
number factorization and discrete logarithms on a quan-
tum computer.SIAM J. Comp., 26:1484–1509, 1997.

[11] K.-Y. Siu and V Rowchowdhury. On optimal depth
threshold circuits for multiplication and related prob-
lems.SIAM J. Discrete Math.7. 284–292, 1994.

[12] K.-Y. Siu and J Bruck. On the power of threshold
circuits with small weightsSIAM J. Discrete Math.4.
423–435, 1991.

[13] R. Smolensky. Algebraic methods in the theory of
lower bounds for Boolean circuit complexity.Proceed-
ings of the 19th Annual ACM Symposium on Theory of
Computing.77-82, 1987.

[14] T. Yamakami and A.C. Yao.NQPC = co-C=P . To
appear inInformation Processing Letters.

[15] A. C.-C. Yao. On ACC and threshold circuits. In
Proceedings of the 31st Symposium on Foundations of
Computer Science, (1990), 619-627.

[16] A. C.-C. Yao. Quantum circuit complexity. InPro-
ceedings of the 34th IEEE Symposium on Foundations
of Computer Science, pages 352–361, 1993.

