
LANGUAGES TO DIAGONALIZE

AGAINST ADVICE CLASSES

Chris Pollett

Abstract. Variants of Kannan’s Theorem are given where the circuits
of the original theorem are replaced by arbitrary recursively presentable
classes of languages that use advice strings and satisfy certain mild con-
ditions. Let polyk denote those functions in O(nk). These variants im-
ply that DTIME(nk′

)NE/polyk does not contain PNE, DTIME(2nk′
)/polyk

does not contain EXP, SPACE(nk′
)/polyk does not contain PSPACE, uni-

form TC0/polyk does not contain CH, and uniform ACC/polyk does not
contain ModPH. Consequences for selective sets are also obtained. In
particular, it is shown that R

DTIME(nk)
T (NP-sel) does not contain PNE,

R
DTIME(nk)
T (P-sel) does not contain EXP, and that R

DTIME(nk)
T (L-sel) does

not contain PSPACE. Finally, a circuit size hierarchy theorem is estab-
lished.
Keywords. advice classes, EXP, NEXP, NE, CH, ModPH, p-selective
Subject classification. Categories and Subject Descriptors: F.1.3
[Theory of Computation]: Relations among complexity classes
General Terms: Theory

1. Introduction

One way to characterize nonuniform complexity classes is in terms of advice
functions. A set A is in C/F , where F is a collection of functions from N to
N, if there is an h : N → Σ∗, a f ∈ F , and a B ∈ C such that for all n, we
have |h(n)| = f(n) and we have ∀x ∈ Σ∗, x ∈ A if and only if 〈x, h(|x|)〉 ∈ B.
Languages with polynomial size circuits can be characterized as P/poly, where
poly is the class of polynomially bounded functions from N to N, and those with
p-size branching programs as L/poly. Despite many years of study it is open
whether NEXP ⊆ P/poly or even NEXP ⊆ L/poly. In this paper the advice
string characterization of nonuniform classes rather than their combinatorial
characterization is examined in more detail in an attempt to both simplify
existing proofs as well as shed some insight on these hard problems.

The starting point of the present work is Kannan (15) which exhibits sets
in NEXPNP requiring super-polynomial sized circuits. Kannan also gives sets



in Σp
2 requiring circuits of size greater than nk for any fixed k. The idea in

these results is to guess a minimal circuit of a somewhat larger size and verify
that no smaller circuit can compute it. That a circuit of this larger size works
follows by a counting argument. This counting argument is done for a specific
computational model so if one wants to transfer this result to other models,
one has to come up with a new counting argument.

Another approach to lower bounds for nonuniform classes is via Komolgorov
complexity. Using this approach, Homer and Mocas (14) show that EXP 6⊆
DTIME(2O(nc1 ))/nc2 where c1 and c2 are fixed. Here the advice string is of
length exactly nc2 rather than O(nc2). Fu (7), also by this approach, shows
that EXP is not contained in the sets reducible in deterministic time nk to a p-

selective set. Here k is fixed and this paper uses the notation R
DTIME(nk)
T (P-sel)

for this class of sets. The Komolgorov complexity notions used in these results
are based on time, so to generalize them to space, counting, or probabilistic
classes requires a reworking of the argument.

If a nonuniform class has an advice characterization, however, then the
advice strings themselves can be used as both combinatorial objects to diag-
onalize against and as a source of random, larger, hard strings. In this paper
three languages useful for diagonalizing against an advice class C/F are pre-
sented. Using these languages, two advice versions of Kannan’s Theorem are
proven. In terms of alternations, the slightly stronger variant is that C/F 6⊇ Σ2-
TIME([t(n)]O(1))C

′
where F ⊆ o(t(n)), C and C ′ are recursively presentable

classes of languages, and C ′ contains a “universal predicate” for the class C.
The proof idea comes from a constructive version of Kannan’s result in Cai and
Watanabe (5). The current paper’s result can be used to not only get the re-
sults of Homer and Mocas and Fu mentioned above, but also allows one to show
new results like DTIME(nk′

)NE/polyk 6⊇ PNE, SPACE(nk′
)/polyk 6⊇ PSPACE, and

R
DTIME(nk)
T (L-sel) 6⊇ PSPACE for fixed k, k′ > 0. Here polyk is the class of the

functions in O(nk).
A common technique for making nonuniform complexity classes uniform is

to require that some property of a combinatorial object in the nonuniform class
be of low complexity. For instance, a circuit family {Cn} is DLOGTIME uniform
if one can in DLOGTIME in the size of Cn determine if two gates in Cn are
connected, and if so, by what gate type. It is unknown whether TC0, the class of
languages computed by nonuniform constant depth threshold circuits, contains
all of the counting hierarchy CH (the union of P, PPP, PPPPP

, . . . ). However, it is
known from Caussinus, et al. (6) that DLOGTIME uniform TC0, uTC0, does not
contain CH. Allender (1) gives a threshold machine diagonalization proof of this
fact based on the padded diagonalization techniques used in the proof of the



nondeterministic time hierarchy theorem (21; 27). In this paper, we show our
variant of Kannan’s theorem implies uTC0/polyk 6⊇ CH. That is, one can still
separate these classes after some nonuniformity has been added back. One also
gets that the class ACC, the class of uniform, constant depth, unbounded fan-in,
AND, OR, MODm gate (for any m) circuits, where nk advice is “added back”
does not contain ModPH. Here ModPH is the generalization of the polynomial
time hierarchy which allows modular counting quantifiers. These results appear
to be the best known to date. Recently, Vinodchandran (24) has shown that
PP is not contained in circuits of size nk for any fixed k. It should be pointed
that this result does not immediately imply that uTC0/polyk 6⊇ CH as the class
uTC0 contains threshold circuits of arbitrary polynomial degree size, even if
they are uniform.

Another application of an advice based approach to separating nonuniform
classes, is the possibility of using one of the three diagonalization languages
constructed in this paper to separate advice classes from other advice classes
whose advice strings are shorter. Using this idea, size hierarchies for many com-
binatorial classes can be shown. As an example of this idea, Corollary 7 shows
for bounded fan-in, AND, OR, NOT circuits that SIZE(α(n)s(n) log2 s(n)) )
SIZE(s(n)) where α(n) is a nondecreasing unbounded function which is o(s(n)).

This paper is organized as follows: Section 2 summarizes the notations used
in this paper. Section 3 presents three classes of languages useful to diagonalize
against advice classes. It also presents advice based variants of Kannan (15).
Section 4 studies the power of languages computed by reductions to advice
based classes. Corollaries of these two sections are then given. Section 6
considers implications of earlier results to selective sets. Section 7 concerns
separating advice classes from other advice classes.

2. Preliminaries

The books by Balcázar, Dı́az, and Gabarró (2; 3), by Papadimitriou (17), by
Hemaspaandra and Ogihara (11), and by Vollmer (25) have more on advice
classes and circuit complexity. This section contains only what is needed in the
following.

For convenience sake, the alphabet of machines considered in this paper
is {0, 1}. The notation {0, 1}≤n is used to denote the strings over {0, 1} of
length less than or equal to n. Both vw and v a w will be used to indicate
concatenation of strings. The sequence of values 〈x1, . . . , xn〉 is defined to be
the string obtained by replacing 0’s and 1’s in xi’s by 00 and 10 respectively
and by inserting a 01 in between numbers. We will often use quantifiers such as



the (∃y ∈ {0, 1}≤n) or (∀z ≤ n). In the first case we view y as a string and we
typically intend it to be implemented by nondeterministically guessing its bits;
in the second case, we view z as a number and intend it to be implemented by
using a counter and cycling through values. For a number z such that |z| ≤ i,
we use the notation 0i + z to mean the string of length i which consists of a
prefix of i− |z| many zeros followed by z written as a binary string.

In this paper, sub-linear time machines operate in a slightly non-standard
manner: the input tape is treated as an oracle for both reading and writing,
and we allow an operation to quickly decompose sequences from the input. To
begin it is allowed that there may be one main input tape t0 on which the input
is initially written and several auxiliary input tapes, t1, . . . , tk. On an input
〈x1, . . . , xk〉, a machine can enter a special state and in one time step have x1

decoded from this tuple and written to tape t1, x2 decoded from this tuple and
written to tape t2, etc. This operation saves the linear time scan needed to
read out each of the xi’s. For reading an input tape, a machine computes i
on a work tape, enters a query state that specifies which tape tj to read from,
and in one time step enters one of a fixed, finite set of states according to the
symbol on the ith tape square of this tape. For writing, a machine computes a
pair 〈i, b〉 where b ∈ Σ (in the case of this paper, Σ = {0, 1}), enters a special
state for a desired tape tj, then b in one step becomes the ith symbol of the
input tape tj. This operation is useful if the machine also has access to another
oracle set A: The machine can make changes to the input and then query the
changed version of the input to A. Making queries to an oracle A other than an
input is also slightly non-standard: 〈t1, . . . tk〉, where now the ti’s can be input
or work tapes, is written and a query state is entered. The oracle A receives
〈x1, . . . , xk〉 where xi is the contents of tape ti. Based on whether this is in A,
the machine enters the appropriate state. These changes to the machine model
give at most a linear speed-up over the usual model.

Given a predicate A(x), A(x1, . . . , xk) denotes A(〈x1, . . . , xk〉). Frequently,
the distinction between a set A and its characteristic function, which will be
written as A(x), is glossed over.

A recursive presentation of C is an effective enumeration M1, M2,· · · of
DTM’s which halt on all their inputs, and such that C = {L(Mi) | i > 0}.
The complexity classes P, NP, PP, PSPACE, etc. all have such recursive pre-
sentations. The main results about such recursive presentations are given in
Balcázar, Dı́az, and Gabarró (2). It will be assumed that each language gets
enumerated infinitely often in a recursive presentation. For the remainder of
this paper assume: (1) C, C ′ are recursively presentable, (2) F is a class of
nondecreasing functions from N to N, and (3) t = t(n) is a non-decreasing,



time constructible function on N.

Definition 1. Let C/f denote those languages of the form {x|〈x, h(|x|)〉 ∈ L},
where L is in C, h is a function from N to {0, 1}∗, and f is a nondecreasing
function from N to N such that for all n, |h(n)| = f(n). Given a class F
of nondecreasing functions from N to N, let C/F denote class of languages L
which belong to C/f for some f in F .

As an example, the notation C/nk is used when the function f in the above
definition is f(n) := nk. Some common classes of functions we will consider
are:

log := {f |f(n) ∈ O(log n)}
lin := {f |f(n) ∈ O(n)}

quadratic := {f |f(n) ∈ O(n2)}
polyk := {f |f(n) ∈ O(nk)}

Finally, poly := ∪kpolyk.
Classes of the form C/F are called advice classes. The most interesting

advice classes are P/poly and L/poly. Here P denotes polynomial time and L
denotes log-space. It is known that the class P/poly consists of the languages
recognized by p-sized circuits and the class L/poly consists of the languages
recognized by p-sized branching programs.

PRTIME(t(n)) denotes those languages decidable by a NTM in time O(t(n))
where the acceptance condition is that more than half of the paths accept when
it is in the language. PP is ∪kPRTIME(nk). This paper uses the following
standard names for complexity classes:

E := DTIME(2lin)
NE := NTIME(2lin)

EXP := DTIME(2poly)
NEXP := NTIME(2poly)

C0PRTIME(t(n)) := DTIME(t(n))

Ci+1PRTIME(t(n)) := PRTIME(t(n))CiPRTIME(t(n))

CH(t(n)) := ∪iC
iPRTIME(t(n))

CiP := CiPRTIME(poly)
CH := CH(poly)

Let Σk (Πk) -TIME(t(n)) denote those languages recognized by any alternat-
ing TM with at most k alternations the outermost being existential (universal)
running in time O(t). Write ∆k-TIME(t(n)) for DTIME(t(n))Σk−TIME(t(n)). The
shorter notations Σp

k, Πp
k, and ∆p

k are used when the time bound is polynomial.



In this case, if an oracle set A is also in use then Σp
k(A), Πp

k(A), and ∆p
k(A) are

written to avoid subscripts and superscripts. Finally, co-C denotes the class
{L̄ |L ∈ C}.

The next definitions are needed for the main results.

Definition 2. C ′ is universal (co-universal) for C if for some fixed enumeration
of C, U := {〈e, x〉 | the language of e in the enumeration of C contains x} ∈ C ′
(U ∈ co-C). C ′ is versal if it is either universal or co-universal.

The word versal was invented for this paper as a convenient way to write
either universal or co-universal. The reader can check that NEXP is co-universal
for co-NE, PSPACE is universal and co-universal for L. One common place
where the distinction between a set and its predicate will be ignored is for this
universal set U ; the notation U(e, x) will frequently be used for the predicate
corresponding to this set. The next remark shows how to go from a U which
shows versality to a recursive presentation of C.

Remark 1. Notice if C ′ is recursively presentable and versal for C by predicate
U(e, x) then C is recursively presentable. This is because a machine MU for U
must appear at some point in the enumeration of C ′. This machine MU stops
on all of its inputs. So in the case where C ′ is universal, C can be presented by
listing out the machines Me based on MU where the value of e has been hard
coded. If C ′ is co-universal then a presentation is obtained from these Me’s by
interchanging the accept and reject states.

Definition 3. Suppose |z| ≤ |xi|. The class C is clearable if P (x1, . . . , xn)
being a predicate in C implies that P (x1, . . . , 0

|xi|+z, . . . , xn) is also a predicate
in C.

To see the class P is clearable, consider a predicate P (x1, . . . , xi, . . . , xn)
in P. Given an input string 〈x1, . . . , xi, . . . , xn, z〉 where |z| ≤ |x| we can in
linear time compute the string 〈x1, . . . , 0

|xi| + z, . . . , xn〉 and then compute
the predicate P using this string. For sub-linear time machines the operation
0|xi| + z might be hard to do. As we will sometimes want to consider such
machines with access to an oracle, such as in Lemma 3 below, we want to
“push” this operation into the oracle itself so that the sub-linear time machine
does not need to worry about this operation. If the class of oracles we are
considering is clearable then we can do this without going out of this class.



3. Main Result

Three ways to diagonalize against advice classes are now explored. The first
technique comes from Schöning’s proof (20) of the result of Kannan (15) that
EXPSPACE 6⊆ P/poly. The basic idea of this proof is to enumerate polynomial
time machines. Stage i diagonalizes against the machine Mi and advice strings
of length less than ilog i. This is done in substeps the first of which is to run
Mi on the input 0i for each advice string of less than this length. The string 0i

is put into the language iff the majority of the time Mi rejects. The process is
then repeated on the input 0i+1 and the advice strings that answered correctly
in the first substep. Taking the majority again at least halves the number of
remaining correctly answering advice strings. After ilog i +1 substeps no advice
strings that answer correctly are left and the diagonalization against Mi is
complete. The idea of this argument is now abstracted so that a general result
can be obtained.

Definition 4. Let accM(x, A) (rejM(x, A)) denote the set of strings y ∈ A
such that M on input 〈x, y〉 accepts (resp. rejects).

Recall we are assuming t is a non-decreasing, time constructible function
on N. In order to define a language, L(C, t), which is hard for C using the
idea above, we first define auxiliary languages, Aux (C, t)i,j. These languages
capture the process of producing the language that diagonalizes against Mi,
the machine for the ith language in C according to some fixed enumeration.
We define:

Aux (C, t)i,−1 := {0, 1}≤t(i), and for j ≥ 0,

Aux (C, t)i,j :=


accMi

(0i + j, Aux(C, t)i,j−1),
if accMi

(0i + j,Aux (C, t)i,j−1) has fewer
elements than rejMi

(0i + j,Aux (C, t)i,j−1);

rej Mi
(0i + j,Aux (C, t)i,j−1), otherwise.

From these sets define:

L(C, t)i,−1 := ∅, and for j ≥ 0,

L(C, t)i,j :=


L(C, t)i,j−1 ∪ {0i + j},

if Aux (C, t)i,j = accMi
(0i + j,Aux (C, t)i,j−1);

L(C, t)i,j−1, otherwise.

Finally, define L(C, t) as ∪i ∪j L(C, t)i,j.



Lemma 1. Assume F ⊆ o(t(n)) and t(n) < 2n. Then C/F does not contain
L(C, t).

Proof. Suppose L(C, t) were in C/F . Then L(C, t) = L(Mi)/f for some
machine Mi in the enumeration of C and for some f in F . As from the pre-
liminaries it is assumed that in a presentation a machine accepting the same
language as Mi is enumerated infinitely often, we can assume i is such that
t(i) > f(i), since F ⊆ o(t). There are at most 1 + 2 + · · · + 2t(i) = 2t(i)+1 − 1
advice strings of length less than or equal to t(i). One of these strings, say w, of
length f(i) must be the string used to show L(C, t) = L(Mi)/f . Now consider
which of the strings 0i, 0i + 1, 0i + 2, . . ., 0i + t(i) are in L(C, t). As t(i) < 2i,
each of these strings has length i, so for each of them Mi would receive the
same advice string f(i). Making use of w, Mi must answer correctly for each
of these strings whether or not it is in L(C, t). However, given the definition
of L(C, t)i,0 at least 1/2 of all advice strings of length less than or equal to t(i)
answer incorrectly on 0i, so w cannot be among these. Of those that answer
correctly at least half answer incorrectly on 0i + 1, and so on. After t(i) + 1
iterations there are no advice strings left that can successfully decide each of
the strings 0i, 0i + 1, 0i + 2, . . ., 0i + t(i). Therefore, L(C, t) 6= L(Mi)/f . �

Let wi be the string of length t(i) + 1 which has a 1 in bit position j if and
only if 0i + j ∈ L(C, t). Lemma 1 shows that Mi on the inputs 0i, 0i +1, 0i +2,
. . ., 0i + t(i) together with any fixed advice w′ of length less than or equal to
t(i) differs in at least one position from wi. Such a wi is called a hard string.

Checking that Mi accepts or rejects an input for a majority of advice strings
is a probabilistic rather than bounded error probabilistic operation. One might
try to show that L(C, t) could be recognized by a deterministic time t(n) re-
duction to an appropriate probabilistic class able to carry out the above con-
struction. However, as probabilistic operations are powerful as evidenced by
the fact (23) that PH ⊆ PPP, a stronger result will be sought after. The next
goal, instead, is an advice version of Kannan (15).

Define fM(n, w′, s) on input n, w′, and s to output b0 · · · bs where bj is
either 1 (resp. 0) depending on whether M on the jth string lexicographically
of length n using advice w′ accepts (resp. rejects). Define µM(n, t) to be the
lexicographically least string w of length t(n) + 1 such that w is not equal to
fM(n,w′, t(n)) for any string w′ of length less than or equal to t(n). The set of
strings of length t(n) + 1 that are being minimized over is non-empty by the
argument in the proof of Lemma 1.

Let BIT (j, w) be the function which returns the jth bit of w. Given w :=
µMi

(n, t), we could diagonalize against Mi by letting 0i + j for 0 ≤ j ≤ t(i) be



in the language if and only if BIT (j, w) = 1. In general, checking if a string is
of the form 0i + j for 0 ≤ j ≤ t(i) is computationally prohibitive for sub-linear
time classes. Nevertheless, we would like to construct hard languages that are
contained in sub-linear time classes. To do this given x, let j be the number
corresponding to the |t(i)| least significant bits of x. We still let w := µMi

(n, t),
but now say x is in the language if BIT (j, w) = 1 for this j obtained from x.
This discussion motivates the next definition.

Definition 5. Let Lµ(C, t) := ∪iLµ(C, t)i, where Lµ(C, t)i is defined as:{
x

∣∣∣∣ |x| = i, x = wj, where |j| = |t(i)|
and BIT (j, µMi

(i, t)) = 1

}
.

The next lemma should be clear.

Lemma 2. Assume F ⊆ o(t(n)) and t(n) < 2n. Then C/F does not contain
Lµ(C, t).

The condition that t(n) < 2n is for the same reason as in Lemma 1. An
upper bound on the complexity of Lµ(C, t) is next calculated. Notice our def-
inition of Lµ(C, t) depends implicitly on what enumeration is being used for
C. For the remainder, it is assumed that this enumeration is given by some U
which establishes versality via Remark 1.

Lemma 3. Let t(n) ∈ Ω(log n) and t(n) < 2n. Assume C ′ is versal for C and
clearable. Then Lµ(C, t) is in ∆3-TIME(t(n))C

′
.

Proof. Let U(e, x) show C ′ is versal for C. For the remainder, assume
e = |x|. This |x| can be found from x in O(log |x|) time: One starts by writing
1, 10, 100, etc. on a work tape and querying the auxiliary input tape with x on
it until one finds the first blank symbol. Then one deletes the last 0 and moves
the work tape back to the left hand side. Thereafter, one moves to the right
again changing 0’s to 1’s and querying the input for a blank. If it is a blank,
one changes the 1 back to 0; otherwise, one leaves it a 1. When one has arrived
at the right end of the work tape again the length in binary will be written.

Consider now the co-NTIME(t(|x|))C′ predicate SOMEDIFF (x, w):

(∀y ∈ {0, 1}≤t(|x|))[(∃z ≤ t(|x|))(¬(U(e, 0|x| + z, y) ⇔ BIT (z, w) = 1))].

In English, for SOMEDIFF (x, w) to hold it must be the case that for any
advice y of length less than or equal to t(|x|), the zth bit of w disagrees with



Me on 〈0|x| + z, y〉 for at least one z ≤ t(|x|). Following our convention from
the preliminaries, U(e, 0|x| + z, y) is U(〈e, 0|x| + z, y〉), so the effect is that U
computes what Me would upon receiving the arguments 〈0|x|+z, y〉. As e = |x|,
e is not treated as a free variable in the above. The predicate SOMEDIFF (x, w)
is in co-NTIME(t(|x|))C′ as guessing y is in co-NTIME(t(|x|)) and as searching
over the z ≤ t(|x|) is in DTIME(t(|x|))C′ . Notice we are using that C ′ is clearable
here so that U ′(e, x, z, y) := U(e, 0|x| + z, y) will be a predicate in C ′. This is
needed for sub-linear time classes, as one would not expect to be able to have
the time to write the |x| many bits of clear(x, z) needed to prepare the input
if we used U itself as the oracle. Observe also that in the sub-linear case we
are using the fact that our machine model allows the encoding of tuples to be
decomposed in one time step onto auxiliary tapes so that we can quickly figure
out what is x and what is w from the input tuple 〈x, w〉 to SOMEDIFF (x, w).
Finally, one should also pay attention to the fact that the querying of U ′ for
different values of z is making use of our machine’s ability to write a sequence
of tape numbers, enter a query state, and have the contents of those tapes
converted to a tuple which is passed to the oracle.

Given SOMEDIFF (x, w), to compute Lµ(C, t) it suffices to find a least
w such that SOMEDIFF (x, w) holds. Let EXISTSDIFF (x, v) be the Σ2-
TIME(t(|x|))C′ predicates:

(∃y ∈ {0, 1}≤t(|x|)+1)[|vy| = t(|x|) + 1 ∧ SOMEDIFF (x, vy)].

Now let M compute Lµ(C, t) by checking if EXISTSDIFF (x, 0) holds and if
so continuing to compute additional bits. If not, M changes the 0 to 1 and
computes additional bits. M continues until it gets all t(|x|) + 1 bits of w.
Finally, M accepts if and only if BIT (z, w) = 1 holds. �

Taking Lemma 2 and Lemma 3 together gives:

Theorem 1. Let t ∈ Ω(log n) and t(n) < 2n. Assume C ′ is versal for C and
clearable. Assume F ⊆ o(t(n)). Then C/F 6⊇ ∆3-TIME(t(n))C

′
.

To go from the ∆3-TIME(t(n))C
′
to the Σ2-TIME(t(n)O(1))C

′
result, the idea

of the proof in Cai and Watanabe (5), that there is a Σp
2 -set that requires

circuits of size nk, will be used. We will again want to define a predicate which
diagonalizes against machines Me for each machine e in our enumeration. As in
the case of the proof of Lemma 3, we will define a predicate whose computation
on an input x is hard for a machine Me where e is some slow growing but
unbounded function of x. Let (w)i return the ith block of t(|x|) + 1 bits from
a string w. To begin, consider the following Σ3-TIME(t(n)O(1))C

′
variant of the

algorithm used in Lemma 3 to give a language not in C/F . SIG3MU (x):



1. Guess a string w of length at most (t(|x|) + 1)2.

2. For each i ≤ t(|x|) + 1 check that:

(a) The first i bits, u, of (w)i satisfies EXISTSDIFF (x, u).

(b) The first i bits of (w)i and of (w)i+1 are the same.

(c) For all strings v of length t(|x|)+1 with the same initial i−1 bits as
(w)i, if the ith bit of v is 0 and of (w)i is 1, then ¬SOMEDIFF (x, v).

Recall EXISTSDIFF (x, u) and SOMEDIFF (x, u) in the proof of Lemma 3
are used to diagonalize against the machine Me where e is written in their
defining formulas, but where we said e = |x|. In what follows we will assume
e is actually a even slower growing function of x. To simplify the discussion,
let PREEQUAL(j, v, v′) hold if the first j bits of v and v′ are the same. To
make SIG3MU into a Σ2-TIME(tO(1))C

′
predicate, SIG2MU(x), the implicit

existential quantifier in ¬SOMEDIFF (x, v) needs to be eliminated. So after
guessing w, in SIG2MU , an advice string y is also guessed of length t(2(n +
2t(n)+ |t(n)|+4)) (the reason for this size is described below) and it is assumed
that t(2(n + 2t(n) + |t(n)| + 4)) is less than t(n)k for some fixed k. Provided
t is monotone, this assumption implies that t(n) must be in O(nO(1)), since
if t(n) grows faster than this then t(2(n + 2t(n) + |t(n)| + 4)) > t(t(n)) will
grow faster than t(n)k for any fixed k. Now it might be possible that with this
advice y the versal predicate U(e, x, j, u, v, y) holds if and only if u extends to a
length j string v witnessing ¬SOMEDIFF (x, v). More formally, one wants an
advice y such that U(e, x, j, u, v, y) holds if and only if the following predicate
PREFIXNOT (j, u, x, v) holds:

(∃u′ ≤ {0, 1}j)[PREEQUAL(|u|, u, u′) ∧
(∀z ≤ t(|x|) + 1)(U(e, 0|x| + z, u′) ⇔ BIT (z, v) = 1)].

For our definition of SIG2MU , it will be assumed such a y exists. The final
language that will eventually be constructed will be the union of SIG2MU and
another language handling hardness for when such a y does not exist at a given
length. Again, the convention that U(e, x, j, u, v, y) means U(〈e, x, j, u, v, y〉) is
being used. As we have said above, in the current setting e is a different function
of x then in Lemma 3 and is fixed at the end of the proof. If such a y exists
then ¬SOMEDIFF (x, v) is replaceable by the DTIME(t(|x|))C′-predicate (∃j ≤
t(|x|))U(e, x, j, ε, v, y). For correctness, checks must be added in SIG2MU (x) to
ensure U(e, x, j, u, v, y) indeed calculates PREFIXNOT (j, u, x, v). One check



is that:

(∀u ∈ {0, 1}≤t(|x|))(∀v ∈ {0, 1}≤t(|x|)+1)(∀j ≤ t(|x|))[
PREFIXNOT (j, u, x, v) → U(e, x, j, u, v, y)].

This is in co-NTIME([t(n)]O(1))C
′
and guarantees that PREFIXNOT (j, u, x, v)

implies U(e, x, j, u, v, y). For the other direction, to ensure that U(e, x, j, u, v, y)
implies PREFIXNOT (j, u, x, v), one checks that (1)

(∀j ≤ t(n))(∀u ∈ {0, 1}j)(∀v ∈ {0, 1}≤t(n)+1)[U(e, x, j, u, v, y) →
(∀z ≤ t(n) + 1)(U(e, 0|x| + z, u) ⇔ BIT (z, v) = 1)]

and that (2)

(∀j ≤ t(n))(∀u ∈ {0, 1}≤j−1)(∀v ∈ {0, 1}≤t(n)+1)[

U(e, x, j, u, v, y) → U(e, x, j, u a 0, v, y) ∨ U(e, x, j, u a 1, v, y)]

both hold where, again, n = |x|. The j = 0 case of (2) we view as trivially
satisfied as the quantification over u is checking if u is in {0, 1}−1 which we view
as the empty set. Both (1) and (2) are co-NTIME(t(n))C

′
checks, so SIG2MU (x)

is a Σ2-TIME([t(n)]O(1))C
′
predicate that is hard for e on advice of length less

than or equal to t(n) provided y exists. However, if y does not exist, then
PREFIXNOT (j, u, x, v) itself is hard for e and advice of length less than or
equal to t(2(n + 2t(n) + |t(n)| + 4)). The expression 2(n + 2t(n) + |t(n)| + 4)
bounds the maximum length of the string coding the tuple 〈j, u, x, v〉 ( |j| ≤
|t(n)|, n = |x|, |v| ≤ t(n) + 1, |u| ≤ t(n), and one has three commas in the
code). That is, if PREFIXNOT (w) is considered where w codes 〈j, u, x, v〉,
then PREFIXNOT (w) is hard for e for advice of length less than or equal to
t(|w|). If t ∈ Ω(log n) and t(n) < 2n (which it will be for all but finitely many
n if t(n) ∈ O(nO(1))), then log∗ t(2(n + 2t(n) + |t(n)|+ 4)) and log∗ n differ by
at most 2, as [log∗(log n)] + 2 = log∗(2n). So if e is set to log∗(|x|), then in the
PREFIXNOT (w) case a fixed adjusting factor can be used to calculate e from
w. Let L := {y a 0 | SIG2MU (y)} ∪ {y a 1 | PREFIXNOT (y)}. Note by the
above construction L is in Σ2-TIME([t(n)]O(1))C

′
and not in C/F . It will be in

Σ2-TIME([t(n)]O(1))C
′
for sub-linear time t’s by essentially the same arguments

as in Lemma 3. This discussion establishes the next result:

Theorem 2. Let t ∈ Ω(log n) be monotone. Assume that t(n) ∈ O(nO(1))
and that C ′ is versal for C and clearable. Further, assume F ⊆ o(t(n)). Then
C/F 6⊇ Σ2-TIME([t(n)]O(1))C

′
.



Although Theorem 2 has a lower number of alternations in its conclusion,
it requires more prerequisites and the time class is greater than Theorem 1.
Thus, both results are of interest and not strictly comparable.

4. Reductions to advice classes

Let RFC
T (C ′) denote those languages Turing reducible to a language in C ′ where

the reduction was computed by a function in FC. The next result applies the
theorems of the last section to get results about reductions.

Theorem 3. Let t ∈ Ω(log n) and t(n) < 2n. Let s(n), s′(n) ∈ Ω(n) and
s(n) log s(n) ∈ o(s′(n)). Assume C ′ is versal for C and clearable and that
F ⊆ o(t(n)). Then the following relationships hold:

(1) DTIME(s(n))C/F 6⊇ ∆3-TIME(t(n) · s′(n))C
′
.

(2) R
DTIME(s(n))
T (C/F) 6⊇ ∆3-TIME(t(n) · s′(n))C

′
.

(3) DTIME(s(n))C/F 6⊇ Σ2-TIME([t(n) · s′(n)]O(1))C
′
.

(4) R
DTIME(s(n))
T (C/F) 6⊇ Σ2-TIME([t(n) · s′(n)]O(1))C

′
.

For (3) and (4), we assume additionally that t(n) is monotone and t(n) ∈
O(nO(1)).

Proof. (3) and (4) follow by the proofs of (1) and (2), but using Theorem 2.
(1) implies (2) since in (1) the DTIME(s(n)) can both use the advice string as
well as send it along to the oracle from C when it makes a query. For (1) note
that the condition s(n) log s(n) ∈ o(s′(n)) guarantees DTIME(s′(n))C

′
is versal

for DTIME(s(n))C. Applying Theorem 1 then gives DTIME(s(n))C/F 6⊇ ∆3-

TIME(t(n))DTIME(s′(n))C
′
from which (1) follows. �

5. Time, Space, and Counting Implications

Corollaries of the results of the last two sections are now given.

Corollary 1. For each k ∈ N, there is a Σp
2-set that requires circuits larger

than size nk.



Proof. It is known (see Vollmer (25)) that SIZE(s(n)) is contained in the
class DTIME([s(n)]2)/O(s(n) log s(n)), and that for t(n) ≥ n, DTIME(t(n)) ⊆
SIZE(t(n) log t(n)). So SIZE(nk) ⊆ DTIME(n2k)/O(nk log n). From the proof
of the time hierarchy theorem, DTIME(n2k+1) will be versal for DTIME(n2k).
As O(nk log n) ⊆ o(nk+1) and nk+1 is in O(nO(1)), from Theorem 2, it follows
Σp

2(DTIME(n2k+1)) contains a language L not in SIZE(nk). But a DTIME(n2k+1)
oracle adds no power to a Σp

2 machine, so L is also in Σp
2. �

Corollary 2. For each k, k′ ∈ N, the following relationships between com-
plexity classes can be established:

(1) Neither R
DTIME(nk′ )
T (NE/polyk) nor DTIME(nk′

)NE/polyk, contains PNE.

(2) Neither R
DTIME(nk′ )
T (E/polyk) nor DTIME(2nk′

)/polyk contains EXP.

(3) SPACE(nk′
)/polyk ⊇ L/polyk does not contain PSPACE.

(4) For i ≥ 1, CiPRTIME(nk′
)/polyk does not contain CH.

Proof. As argued in the previous section, if C is either NE or E then

R
DTIME(nk′ )
T (C/polyk) ⊆ DTIME(nk′

)C/polyk, so only the latter class result needs
to be considered. For (1), note then that nk′

log n ∈ o(nk′+1), so by Theorem 3,
DTIME(nk′

)NE/polyk does not contain Σp
2(NEXP). By the collapse of the strong

exponential hierarchy (9), this latter class is PNE. The remaining parts (2), (3),
and (4), each essentially follow from Theorem 2, as this theorem implies that
the given advice class does not contain Σp

2(C ′), where C′ is EXP, PSPACE, or
CH. For each of these classes, though, Σp

2(C ′) = C ′. �

Item (2) of Corollary 2 above was previously shown by Homer and Mo-
cas (14). Many interesting variations on item (4) can be given. We present here
some variants connected to circuit complexity. Recall from the introduction, a
u in front of a circuit class means the class restricted to DLOGTIME uniform cir-
cuits. The circuit class ACC is defined as ∪m>0AC0[m] where AC0[m] consists of
those languages decided by polynomial-sized circuit families of constant-depth
with unbounded fan-in gates of type AND, OR, NOT, or MODm. As men-
tioned in the introduction, TC0 is used to denote those languages decided by
constant depth threshold circuits. The class ModPH is the smallest class of
languages containing P such that if A is in ModPH so are PA and ModmPA for
some m. A language B is in ModmPA if there is some nondeterministic oracle



machine M with oracle A such that for all x, x is in B iff the number of paths
on which M is accepts x is a multiple of m.

Parberry and Schnitger (18) define the notion of a threshold Turing machine
(TTM). The class uTC0 is known is to be equal to the languages decided in
logarithmic time on a TTM with constantly many applications of the threshold
operation; whereas, CH is precisely the languages decided by TTM’s in polyno-
mial time with constantly many applications of the threshold operation. Simi-
larly, Allender (1) defines a notion of a σ-machine and shows uACC corresponds
to log-time on such machines and ModPH to polynomial time on such machines.
In both cases, Allender argues these machines enjoy the tape reduction prop-
erty and in his diagonalization proof argues there is a universal machine U in
both these models that simulates one step of the machine Mi (in one of these
models) in about i3 steps. By affixing a linear number of steps count-down
clock to such a universal machine, one gets that CH is versal for a class that
contains uTC0 and similarly that ModPH is versal for a class that contains
uACC. Noting that ∆3-TIME(nk)CH = CH and ∆3-TIME(nk)ModPH = ModPH,
as well as recalling Theorem 1, gives a proof of the next corollary:

Corollary 3. For each k ∈ N, we have:

(1) uTC0/polyk does not contain CH.

(2) uACC/polyk does not contain ModPH.

6. Selective Set Implications

Consequences of Theorem 2 for selective sets are now explored. Selman (22)
defines the P-selective sets based on the semi-recursive sets from computability
theory. These latter sets had previously been used to study semi-membership
algorithms. P-selective sets model an aspect of semi-feasible computation, and
have also been extensively studied. The books by Hemaspaandra and Ogi-
hara (11) and Hemaspaandra and Torenvliet (12) provide good introductions
to these sets and their literature.

Definition 6. A language L is in C-sel if and only if there is a R(x, y) ∈ C
such that: if x ∈ L, but y 6∈ L, then R(x, y) holds; and, if x 6∈ L, but y ∈ L,
then R(x, y) does not hold. It is also required that for all distinct strings x and
y exactly one of R(x, y) and R(y, x) must hold and that R(x, x) should always
hold.



P-sel is usually defined in terms of polynomial computable functions f(x, y)
that output x or y so that, if only one of the two strings is in the language, then
that one is output. With a little more effort, one can define classes like NP-sel
using functions (10). These definitions turn out to be equivalent to Definition 6
where C is P or NP. Definition 6 will be slightly more convenient for us, as it is
defined entirely in terms of language classes as opposed to function classes. To
see in the case of P that the two definitions are equivalent, suppose one has a
polynomial time f(x, y) selector for some language L. It can be assumed that f
is symmetric in its arguments by defining f ′(x, y) to be f(min(x, y), max(x, y)).
This can be verified to still be a selector for L. For this f ′, define R(x, y) to be
f ′(x, y) = x. Notice if x is in L but y is not, then R(x, y) holds but R(y, x) does
not. Similarly, if x is not in L but y is, then R(x, y) does not hold but R(y, x)
does hold. Lastly, notice if both x and y are in or both not in the language,
then as one f ′(x, y) = x and f ′(x, y) = y holds, one also has one of R(x, y)
and R(y, x) holds. We have defined f ′ so that f ′(x, y) = f ′(y, x) so only one
of these two cases can be the case. For the other direction, suppose now one
has a polynomial time R(x, y) that selects as in Definition 6, one can define
f(x, y) to output x if R(x, y) holds and output y otherwise. This can easily be
checked to be a selector.

Ko (16) shows that P-sel is contained in P/quadratic. One proof of this is as
follows: Let L be in P-sel via relation R(x, y). Recall a tournament is a digraph
without self loops such that between any two vertices x 6= y there is exactly
one edge among (x, y) and (y, x). Construct on the strings of L of length n, a
tournament, TR(n), by directing an edge from y to x if R(x, y) holds and x 6= y.
Definition 6 guarantees for each pair of strings x, y in L that exactly one of
(y, x) and (x, y) will be an edge in the resulting graph. This condition makes
TR(n) a tournament of size at most 2n. From the theory of tournaments, there
is a set of at most n + 1 vertices, z0, . . . , zn, such that for all z in TR(n), there
is some zi such that (zi, z) (i.e., R(z, zi) holds) is an edge in TR(n). Given this
set of n + 1 strings, each n-bits long, then for each length n string x it holds
that x is in the language if and only if for some zi, R(x, zi) holds. To see this
notice, if x is not in L, then as zi is in L, and by the the selecting property of R,
R(x, zi) will not hold. On the other hand, if x is in L, by the the tournament
property, there will be a zi such that R(x, zi) holds. We remark that if there
are no strings of length n in L then the set of strings is the empty set, so there
is no element zi in this set to make R(z, zi) hold. So in this case all strings x of
length n would be rejected. Thus, in all cases, given at most quadratic advice,
one can decide sets in P-sel. This argument also establishes:



Lemma 4. C-sel is contained in DTIME(n2)C/quadratic.

As DTIME(n3)C
′
is versal for DTIME(n2)C and by Theorem 3, one has:

Theorem 4. Let k ∈ N. Then R
DTIME(nk)
T (C-sel) 6⊇ ∆3-TIME(nk+4)C

′
and

R
DTIME(nk)
T (C-sel) 6⊇ Σp

2(C ′), provided C ′ is versal for C and clearable.

Corollary 4. For each k ∈ N, the following relationships hold:

(1) R
DTIME(nk)
T (NP-sel) 6⊇ PNE.

(2) R
DTIME(nk)
T (P-sel) 6⊇ EXP.

(3) R
DTIME(nk)
T (L-sel) 6⊇ PSPACE.

(4) R
DTIME(nk)
T (uTC0-sel) 6⊇ CH.

(5) R
DTIME(nk)
T (uACC-sel) 6⊇ ModPH.

Proof. (1) Theorem 4 gives that R
DTIME(nk)
T (NP-sel) 6⊇ Σp

2(NEXP). By the
strong exponential hierarchy collapse (9), this latter is PNE. (2) Theorem 4

gives R
DTIME(nk)
T (P-sel) 6⊇ Σp

2(EXP) = EXP. (3), (4), and (5) follow similarly. �

Fu (7), using Komolgorov complexity, had previously shown result (2).

7. On Avoiding Advice and Size Hierarchies

Given any of the complexity classes C considered in this paper, it is straightfor-
ward to construct a nonrecursive set in C/1: Set the advice on inputs of length
n to be 1 if n is in the halting set, and 0 otherwise. Set x ∈ L if and only if
the advice for length |x| is 1. Then L is in C/1 and clearly not recursive. One
could hope that a result like L/poly is contained in L/lin is possible and from this
get that L/poly 6⊇ PSPACE using the languages of this paper. Unfortunately,
Lµ(C, t) itself provides a counterexample showing this is impossible.

Theorem 5. Let t(n) ≥ n be such that t(n) < 2n and let F ⊆ o(t). Then
Lµ(C, t) ∈ DTIME(log t(n))/t(n) + 1 and so DTIME(log t(n))/t(n) + 1 6⊆ C/F .

Proof. Let µMn(n, t) be the advice string on inputs of length n. The
DTIME(log t(n)) machine copies the low-order dlog(t(n) + 1)e bits of the in-
put to the the advice query tape and queries that bit of the advice string. It
then accepts if that bit of the advice string is on, and rejects otherwise. �



A slightly different statement of the result DTIME(log t(n))/t(n)+1 6⊆ C/F
appears in Balcázar, Hermo, Mayordomo (4) and Hermo, Mayordomo (13).
Both of these papers use Komolgorov complexity arguments for their proofs.
We next present some interesting consequences of this result. Let PREC denote
the primitive recursive languages. PREC is recursively presentable so the next
corollary follows from the above theorem.

Corollary 5. Fix k ∈ N. Then DLOGTIME/polyk+1 6⊆ PREC/polyk. Hence,
one also has that DLOGTIME/polyk+1 contains a language not in any of the
classes NEXP/polyk, P/polyk, and L/polyk.

Corollary 6. Neither L/poly nor P/poly contains DTIME(log2 n)/O(2log2 n).

Let SIZE(t(n)) denote those languages computed by fan-in 2, AND, OR,
NOT circuits of size O(t(n)). The use of O(t(n)) rather than t(n) ensures that
the class would remain stable if we chose a different basis rather than AND,
OR, NOT. Let AC0-SIZE(t(n)) denote those languages computed by constant-
depth, unbounded fan-in AND, OR, NOT circuits of size O(t(n)). Let α(n) be
a nondecreasing, unbounded function which is o(s(n)). As we will see below,
Theorem 5 also entails SIZE(s(n)) ( SIZE(α(n)s(n) log2 s(n)). Such circuit
hierarchies have been noted before. Kannan (15) shows by counting that there
is a circuit of size 3n2k+2 not computed by any circuit of size nk, a result which
is weaker than ours and is basis specific since it does not incorporate a big-O in
the definition of size. Also, in the fixed basis, non big-O setting, Paterson and
Wegener (19) show if s(n) is of growth rate less than C{∧,∨,¬}(Bn−1), then there
is a circuit of size s(n) + 1 that computes a boolean function not computable
by a circuit of size s(n). Here C{∧,∨,¬}(Bn−1) is the AND, OR, NOT circuit
size of the boolean function on n − 1 variables which requires the greatest
circuit size. They also show if s(n) is smaller than C{∧,∨,¬}(Bn), there there
is a circuit of size s(n) + n that computes a boolean function not computable
by a circuit of size s(n). Using the first result for t(n) < n and the second
for larger t(n)’s, one can thus show if s(n) is o(t(n)) and t(n) is less than
C{∧,∨,¬}(Bn) then SIZE(s(n)) is strictly contained in SIZE(t(n)). So Patterson
and Wegener’s results are stronger than what we will show. Nevertheless, as
our result is easily obtained from the work so far, and generalizes easily to other
nonuniform models, we present it anyway.

Corollary 7. Let α(n) be as above and assume SIZE(s(n)) does not contain
all languages. For k > 0, SIZE(α(n) · s(n) log2 s(n)) ) SIZE(s(n)) and AC0-
SIZE(α(n) · s(n) log2 s(n)) 6⊆ SIZE(s(n)).



Proof. First, note SIZE(2n/n) does contain all languages, so we do need the
assumption on SIZE(s(n)). As mentioned earlier, it is known (see Vollmer (25))
that for s(n) > n, SIZE(s(n)) ⊆ DTIME([s(n)]2)/O(s(n) log s(n)). Next we
note as α(n) is nondecreasing and unbounded, DTIME([s(n)]2)/O(s(n) log s(n))
is contained in DTIME([s(n)]2)/(α(n)s(n) log s(n) − 1). So by Theorem 5
there is a language in DTIME(log(α(n) · s(n) log s(n)))/α(n)s(n) log s(n) that
is not in SIZE(s(n)). Basically, the machine just queries the appropriate bit
of the advice string. We could do this with a DNF circuit as follows: For
each bit position of the advice string which is a ‘1’, we AND together the
log(α(n) · s(n) log s(n)) + 1 inputs which would be used in this query, and
then OR over the at most α(n) · s(n) log s(n) such 1 values. This gives a cir-
cuit of size O(α(n)s(n) log s(n)[log α(n) + log s(n) + log log s(n) + 1]). All of
the terms in the square brackets are O(log s(n)), so one has a circuit of size
O(α(n)s(n) log2 s(n)) as desired. As our circuit is a DNF, it also implies the
second result of the corollary. �

The above proof only needs: (1) a primitive recursive procedure to evaluate
a circuit of size s(n) given the O(s(n) log s(n)) sized encoding of it and an
input, and (2) a circuit exists of size O(α(n) · s(n) log2 s(n)) which extracts
the appropriate information from the advice string. These conditions hold for
a variety of classes such as: (a) constant depth unbounded fan-in AND, OR,
NOT , MODk (for all k > 0) circuits of size s(n), denoted ACC(s(n)), (b)
constant depth threshold circuits of size s(n), denoted TC0(s(n)), (c) logk s(n)
depth, fan-in less than or equal to two, AND, OR, NOT circuits of size s(n),
denoted NCk(s(n)), (d) logk s(n) depth, unbounded fan-in, AND, OR, NOT
circuits of size s(n), denoted ACk(s(n)), and (e) size s(n) branching programs,
denoted BP(s(n)). Thus, one gets:

Corollary 8. Let C(s(n)) denote one of AC0(s(n)), ACC(s(n)), TC0(s(n)),
NCk(s(n)), ACk(s(n)), BP(s(n)). Let α(n) be as above and assume C(s(n))
does not contain all languages. For k > 0, C(α(n)s(n) log2 s(n)) ) C(s(n)).

8. Acknowledgements

The author thanks Eric Allender, Steve Homer, Nicholas Tran, Bin Fu, Lance
Fortnow, and Ingo Wegener for useful discussions/e-mail exchanges. The au-
thor would also like to thank the anonymous referees and the editors for their
valuable feedback.



References

[1] Eric Allender. The Permanent Requires Large Uniform Threshold Circuits.
Chicago Journal of Theoretical Computer Science. Volume 1999. Article 7.

[2] J. Balcázar, J. Diaz, and J. Gabarró. Structural Complexity I. Springer-Verlag.
Second Edition. 1995.

[3] J. Balcázar, J. Diaz, and J. Gabarró. Structural Complexity II. Springer-Verlag.
1990.

[4] J. Balcázar, M. Hermo, E. Mayordomo. Characterizations of logarithmic advice
complexity classes. Proceedings of the IFIP 12th World Computer Congress
(IFIP’92). J. Van Leeuwen IFIP transactions A-12. pp. 315–321. 1992.

[5] Jin-Yi Cai, Osamu Watanabe. On Proving Circuit Lower Bounds Against PH
and Some Related Lower Bounds for Constant Depth Circuits. SIAM Journal of
Computing. Vol. 33 Iss. 4. pp. 984–1009. 2004.

[6] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. Non-
deterministic NC1 computation. Journal of Computer and System Sciences. Vol.
57 pp. 200–212. 1998.

[7] B. Fu. On P-selective Sets and EXP Hard Sets. Manuscript. 1997.

[8] J. H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, pp. 6–20,
1987.

[9] L. Hemachandra. The Strong Exponential Hierarchy Collapses. Journal of Com-
puter and System Sciences Vol. 39 Issue 3. pp. 299–322. 1989.

[10] L. Hemaspaandra, A. Hoene, A. Naik, M. Ogiwara, A. Selman, T. Thierauf, and
J. Wang. Nondeterministically Selective Sets. International Journal of Founda-
tions of Computer Science. Vol. 6 No. 4. pp. 403–416. 1995.

[11] L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion.
Springer-Verlag. 2002.

[12] L. Hemaspaandra and L. Torenvliet. Theory of Semi-feasible Algorithms.
Springer-Verlag. 2003.

[13] M. Hermo, E. Mayordomo. A note on polynomial size circuits with low resource-
bounded Kolmogorov complexity. Mathematical Systems Theory. Vol. 27. pp.
247–356. 1994.



[14] S. Homer and S. Mocas. Nonuniform Lower Bounds for Exponential Time
Classes. In Proceedings from the 20th International Symposium on Mathematical
Foundations of Computer Science August, 1995. LNCS #969, Springer-Verlag.

[15] R. Kannan. Circuit-Size Lower Bounds and Non-reducibility to Sparse Sets.
Information and Control. Vol. 55. pp. 40–56. 1982.

[16] K. Ko. On self-reducibility and weak-P-selectivity. Journal of Computer and
System Sciences. Vol. 26. Iss. 2 pp. 209–221. 1983.

[17] C. Papadimitriou. Computational Complexity. Addison-Wesley. 1994.

[18] I. Parberry, G. Schnitger. Parallel Computations with Threshold Functions.
Journal of Computer and System Sciences. Volume 36. Issue 3. 1988. pp. 278–
302.

[19] M. S. Paterson, I. Wegener. Nearly optimal hierarchies for network and formula
size. Acta Informatica. Vol. 23. 1986. pp. 217–221.

[20] U. Schöning. Complexity and Structure. LNCS #211. Springer-Verlag. 1986.

[21] J. Seiferas, Michael J. Fischer, Albert R. Meyer. Separating Nondeterministic
Time Complexity Classes. Journal of the ACM. Vol. 25 , Iss. 1. January 1978.
pp. 146–167.

[22] A. Selman. P-selective sets, tally languages, and the behavior of polynomial
time reducibilities on NP. Mathematical Systems Theory Vol. 13 Iss. 1. pp.55–65.
1979.

[23] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal of
Computing. Vol. 20, pp. 865–877. 1991.

[24] N. V. Vinodchandran A note on the circuit complexity of PP. Electronic Col-
loquium on Computational Complexity (ECCC). Vol. 56. 2004.

[25] H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag. 1999.

[26] Ingo Wegener. The Complexity of Boolean Functions. Wiley. 1987.

[27] S. Žák. A Turing machine hierarchy. Theoretical Computer Science Vol. 26.
1983. pp. 327–333.

Manuscript received

Chris Pollett


