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Abstract

This paper considers the relational versions of the sur-
jective and multifunction weak pigeonhole principles
for PV , Σb

1 and Θb
2-formulas. We show that the re-

lational surjective pigeonhole principle for Θb
2 formu-

las in S 1
2 implies a circuit block-recognition principle

which in turn implies the surjective weak pigeonhole
principle for Σb

1 formulas. We introduce a class of
predicates corresponding to poly-log length iterates
of polynomial-time computable predicates and show
that over R2

2 , the multifunction pigeonhole principle
for such predicates is equivalent to an “iterative” cir-
cuit block-recognition principle. A consequence of
this is that if R2

3 proves this circuit iteration princi-
ple then RSA is vulnerable to quasi-polynomial time
attacks.
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1 Introduction

The weak pigeonhole principle (WPHP) states that
given a function from a set of size n2 into a set of
size n, there are two elements in the domain that
map to the same element in the range. This prin-
ciple gives one the ability to do a limited amount of
counting with regard to the function in question. The
weak pigeonhole principle has been used in the con-
text of propositional proof complexity to define se-
quences of true formulas which do not have short res-
olution or constant depth Frege proofs [2][3]. It has
also been well-studied in the context of first order
logic. Here one adds the principle for some class of
relations—for instance, the p-time computable rela-
tions or the ∆0 relations—to a weak system of arith-
metic and considers what new results are provable
in the strengthened system. An early result of this
type is that I ∆0+WPHP(∆0) proves there are in-
finitely many primes [21]. The pigeonhole principles
in both contexts are intimately related via well known
translations of first order bounded arithmetics into se-
quences of propositional proofs [20][17].

Besides the traditional injective pigeonhole prin-
ciple described above, many other flavors have been
considered in the literature. These include the surjec-
tive pigeonhole principle which says that there is no
surjective function from a set of size n onto a set of

size 2n, the bijective pigeonhole principle which com-
bines the injective and surjective principles, and the
multifunction pigeonhole principle which is like the
injective principle but defined in terms of multifunc-
tions rather than just functions. In weak theories of
arithmetic it might not be provable that these pigeon-
hole notions coincide.

Recently, Jeřábek [12, §3] has shown that the sur-
jective pigeonhole principle for p-time functions is
connected with circuit lower bounds. He shows that
in bounded arithmetic S 1

2 the surjective weak pigeon-
hole principle for p-time functions is equivalent to the
statement that for each fixed k > 0 there is a string of
length 2nk which is hard for circuits of size nk. Here
S 1

2 is a theory which roughly has length induction for
NP predicates. Given this result it is natural to ask
whether the other forms of the pigeonhole principle
can be connected to circuit principles. Jeřábek’s re-
sult was for the pigeonhole principle expressed using
p-time functions so it is further natural to try to ex-
tend his results to the case where the surjection is
expressed as the graph of a function rather than by
a function symbol, thereby allowing consideration of
functions more complex than p-time.

As Aaronson notes in [1, §4.1], Razborov [24,
App. C] argues that Shannon’s counting argument
cannot obviously be formalized in S 1

2 . As a con-
sequence, S 1

2 cannot, at least in a direct way, for-
malize Kannan’s result [14] that there is a set in
NEXPNP that is not in P/poly. To a large degree,
these statements are consequences of Parikh’s The-
orem which shows that S 1

2 cannot define functions
of super-polynomial growth. Nevertheless, it is open
whether S 1

2 can prove a “weak Kannan result”—the
existence of sets Ak which require circuits of size
greater than nk for each fixed k. It is also still open
whether, if for one fixed set A defined by a bounded
arithmetic formula, S 1

2 can prove the sequence of
statements: “A requires circuits of size greater than
nk”, for each fixed k > 0. A positive answer to this
latter question would imply S 1

2 could prove P 6= NP,
and so, of course, P 6= NP would hold in the real
world. Jeřábek’s result to some extent gives an upper
bound on the theory required to prove a weak Kannan
result, for once we know a hard string exists, if we can
obtain a least such string, we can construct a fixed set
which is hard for size-nk circuits. This kind of argu-
ment can be carried out in the theory S 3

2 , where S i2
is defined roughly as the theory with length induc-



tion for the ith level of polynomial hierarchy. This
is because S 3

2 can do the necessary minimization and
Paris et al. [21], as presented in Kraj́ıček [15], have
shown that S 3

2 proves the weak pigeonhole principle
for p-time functions. It is interesting to ask whether
one can make any progress on showing a matching
lower bound on the theory required.

The intent of this paper is to show that to some ex-
tent all of the questions posed above can be answered.
For the remainder of this introduction, n = |x| for
some x. Let sWPHP(Ψ) (resp. mWPHP(Ψ)) denote
the surjective (resp. multifunction) weak pigeonhole
principle for the relations in Ψ. We show that over S 1

2 ,
sWPHP(Θb

2) implies there is a string S of length 2nk
that is not block-recognized by any circuit (code) of
size nk. That is, there is no such circuit such that for
b < 2nk−1 and s < 2n, C(b, s) outputs 1 if and only if
s is the b-th length-n block of S. Here Θb

2 (sometimes
called Σb

0(Σb
1) in the literature) is a class of formu-

las that precisely defines the sets in PNP(log), sets
computable in polynomial time using at most loga-
rithmically many oracle queries to an NP set. On the
other hand, it is also shown that the existence of such
a hard string for each k implies sWPHP(Σb

1). Here
the Σb

1-formulas correspond to the NP-sets. The rea-
son for the slight gap is that specifying the uniqueness
of the block that is recognized slightly bumps up the
complexity of the pigeonhole principle needed to show
the circuit result, but it is not clear how to harness
this added complexity in the reverse direction. For
this direction, we adapt the proof of Jeřábek’s result
to amplify a surjection f : 2n → 22n to a surjection
from 2n onto 22nk by a circuit that iterates f , but
only “remembers” n bits of each computation.

For the multifunction case, let
ITER(PV , {||id||O(1)}) denote the class of rela-
tions which can be computed as poly-log length
iterations of a polynomial relation. The precise
statement of this requires that when x is in such a
set that is defined using a p-time relation, R, the
sequence of computation values R(x, y1), R(y1, y2),
. . . , R(yt−1, yt) where t is O(log |x|), is uniquely
defined. Note that just because we can recog-
nize that R(x, y1) holds in p-time does not imply
that there is a p-time function which computes y1
from x, even if y1 is polynomially bounded. This
iteration principle is similar to one considered in
Kraj́ıček [16] in the context of the propositional proof
complexity of the surjective pigeonhole principle.
ITER(PV , {||id||O(1)}) contains PV and like Θb

2 is
contained in the class Σb

2. We show that over R2
2 ,

mWPHP(ITER(PV , {||id||O(1)})) is equivalent to the
existence of a string S < 22nk that is not iteratively
block-recognized by any circuit of size nk. Hence,
this principle over R2

2 also implies mWPHP(PV ).
The last statement can be used to say something

either about the likelihood of proving circuit lower
bounds in weaker theories or about the security of
RSA against various kind of attacks attacks. Kraj́ıček
and Pudlák [18] (see also the proof in Thapen [25,
Lemma 3.15]) have shown that if there is an algorithm
witnessing the injective weak pigeonhole principle for
p-time functions (this is contained in iWPHP(PV )
which allows p-time relations) from a class C sat-
isfying PC = C, then RSA is vulnerable to attacks
from C. Extending Ri

2 by a quasi-polynomial growth
rate function, #3, gives the theories Ri3. We apply
Kraj́ıček and Pudlák’s result to conclude that if R2

3
proves our circuit principle then RSA is vulnerable to
quasi-polynomial time attacks. As R2

3 contains the

theories R2
2 and S 1

2 the same result holds for them if
they can prove our circuit principle. One can some-
what strengthen the theory R2

3 and still obtain re-
sults which we believe are open. For example, if
R3

3 proves our circuit principle, then RSA is vulner-
able to attacks computed in the polynomial closure
of quasi-polynomial local search. All of these result
rely on the fact that mPHP(PV ) implies iPHP(PV ).
It is unknown over S 1

2 whether sPHP(PV ) implies
iPHP(PV ), which is why an analogous result does
not follow immediately from Jeřábek’s result. As far
as the authors know, it is open whether RSA is vul-
nerable to quasi-polynomial local search attacks; the
main problem with breaking RSA using such an algo-
rithm would be to find a neighborhood function which
could indicate when one was getting closer to the mes-
sage text. We make the observation here though that
Hanika [11] extending work of Ferreira [10] has de-
fined a generalized search class GLS† which captures
the Σb

1-definable multifunctions of S 3
2 . Given that S 3

2
proves mPHP(PV ), and so also iPHP(PV ), it fol-
lows from Kraj́ıček and Pudlák that RSA is vulnera-
ble to attacks from the polynomial closure of GLS†.
It also probably follows that there is some generaliza-
tion of our circuit iteration principle corresponding
to these search classes for which S 3

2 can prove lower
bounds. Therefore, showing RSA is vulnerable to a
quasi-polynomial local search based attack or showing
lower bounds for our iteration principle in R3

3 might
not be much beyond current technology.

The format of the rest of this paper is as follows:
In the next section the notations and theories to be
discussed in the remainder of the paper will be in-
troduced. In the third section, results concerning the
weak pigeonhole principle are reviewed. The next two
sections prove the results for the surjective and then
the multifunction pigeonhole principle. Finally, the
last section has the RSA results.

2 Preliminaries

This paper assumes familiarity with Buss [4] or
Kraj́ıček [15]. For completeness, the basic notations
of bounded arithmetic are quickly reviewed. The
specific bootstrapping we are following is from Pol-
lett [23], but yield equivalents theories to the ones in
the books just mentioned. The language L2 contains
the non-logical symbols: 0, S, +, ·, =, ≤, .−, b 1

2xc, |x|,
MSP(x, i) and #. The symbols 0, S(x) = x+ 1, +, ·,
and ≤ have the usual meaning. The intended mean-
ing of x .− y is x minus y if this is greater than zero
and zero otherwise, b 1

2xc is x divided by 2 rounded
down, and |x| is dlog2(x+ 1)e, that is, the length of x
in binary notation. MSP(x, i) stands for ‘most signif-
icant part’ and is intended to mean bx/2ic. Finally,
x#y reads ‘x smash y’ and is intended to mean 2|x||y|.

Natural hierarchies of prenex formulas can be de-
fined in this language by counting alternations of
bounded quantifiers. A formula consisting of i + 1
alternations of bounded quantifiers, the outermost of
the form ∃x ≤ t (∀x ≤ t, respectively), followed by a
matrix of sharply-bounded formulas, is a Σb

i -formula
(Πb

i -formula, respectively). Here sharply bounded
means bounded by a term of the form |t|. The def-
inition of Σb

i presented above is sometimes called
strictΣb

i or Σ̂b
i in the literature. For the theories of

this paper it is a provably equivalent class to what is
usually considered elsewhere such as in Buss [4].

The theory BASIC is axiomatized by all substitu-
tion instances of a finite set of quantifier-free axioms
for the non-logical symbols of L2. The theories con-
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sidered in this paper are obtained from BASIC by
adding various forms of the induction scheme

A(0) ∧ (∀x)(A(x) ⊃ A(Sx)) ⊃ (∀x)A(t(x)).

C-IND , -LIND , and -LLIND are obtained by taking
A ∈ C and t(x) to be x, |x|, and ||x||, respectively.
We will also have occasion to use the axiom schemes
of Comprehension (C-COMP):

(∃w ≤ 2|a|)(∀i ≤ |a|)(A(i, a)⇔ Bit(i, w) = 1)

and Replacement (C-REPL):

∀x ≤ |a| ∃y ≤ bA(x, y) ⊃
∃w ≤ SqBd(b+ 1, a)∀i ≤ |a|

(
β(i, w) ≤ b ∧ A(x, β(i, w))

)
.

The theories Ri
2, S i2 and T i

2 are obtained from
BASIC by adding respectively the Σb

i -REPL+Σb
i -

LLIND , Σb
i -LIND , or Σb

i -IND axiom schema. The
definition of Ri

2 has Σb
i -REPL added because we are

working with prenex versions of Σb
i [23]. It is known

that S i+1
2 ⊇ T i

2 ⊇ S i2 ⊇ Ri
2 ⊇ S i−1

2 and that Ri
2

proves Σb
i -COMP . It is also known that if Ri+1

2 ⊇ T i
2

then the polynomial hierarchy collapses [19][23].
Buss [4, §3] shows that if one adds new function

symbols to S1
2 for each polynomial-time function, to-

gether with axioms saying how the functions are re-
cursively defined, one obtains a theory called S 1

2 (PV )
which is conservative over S 1

2 . For convenience, in this
paper it will be assumed that these functions symbols
are available in the language. We will use the nota-
tion FP to denote the defining equational axioms for
these function symbols, and PV to denote the rela-
tions definable as open formulas involving these func-
tions symbols. Among such functions, we will use the
following frequently:

1. Bit(i, w) is the i-th bit of w, LSP(w, i) is
the |w| − i least significant bits of w, and
w[a..b] = LSP(MSP(w, a), |w|−b) consists of bits
a through b inclusive of w.

2. SqBd(a, b) := 2(2a#2b) is a bound on the value
of any sequence of length |b| + 1, each of whose
components is < a, and β(b, w) is the bth element
of the sequence w.

3. β̂(b, n, w) = w[bn..(b+ 1)n− 1] is the b-th
length n block of bits of w.

Beyond the standard bounded arithmetic formula
classes, we next define a class which has appeared in
the literature under several different names:

Definition 1 The class Θb
2 is the closure of Σb

1 under
Boolean connectives and sharply-bounded quantifica-
tion.

Θb
2 is sometimes called in the literature Σb

0(Σb
1) or

Σb
2 ∩Πb

2. Its sets corresponds to the complexity class
Θp

2 := PNP(log)[7].

Definition 2 By ∃!x ≤ tA(x) we mean the usual ab-
breviation

∃x ≤ tA(x) ∧ ∀x, x′ ≤ t((A(x) ∧ A(x′)) ⊃ x = x′).

We assume that the reader is familiar with
the usual definition of a circuit. The predicate
Circuit(C, n) is true if C codes a circuit on n vari-
ables and Output(C, i) is the PV -function comput-
ing the output of C on input i, where i represents
a number in binary (assume some default value if
∀n¬Circuit(C, n) or Circuit(C, n) but i ≥ 2n). These
are straightforward to formulate in S 1

2 using the se-
quence coding available there and have appeared be-
fore in the literature [6].

3 Pigeonhole principles

In this paper, the following variants of the weak pi-
geonhole principle will be considered:

iPHP(R)mn (~z):

n < m ∧ ∀x < ∃!y < nR(x, y, ~z) ⊃
∃x1, x2 < m∃y < n

(
x1 6= x2 ∧ R(x1, y, ~z) ∧ R(x2, y, ~z)

)
mPHP(R)mn (~z):

n < m ∧ ∀x < m∃y < nR(x, y, ~z) ⊃
∃x1, x2 < m∃y < n

(
x1 6= x2 ∧ R(x1, y, ~z) ∧ R(x2, y, ~z)

)
sPHP(R)mn (~z):

n < m ∧ ∀x < n∃!y < mR(x, y, ~z) ⊃
∃y < m∀x < n¬R(x, y, ~z)

where R is some predicate. These are respectively
the injective, surjective, and multifunction variants
of the principle. For any of these variants, the no-
tation PHP(R)mn will be used when there are no pa-
rameter variables or when the parameter variables are
clear. The notation PHP(C)mn will be used for the
class of formulas PHP(R)mn where R ∈ C. The no-
tation WPHP(C) will be used for PHP(C)n2

n . When
we refer to the scheme vWPHP(R)mn for v = s, i, or
m, we mean all instances of the corresponding sen-
tence in which terms are substituted for m and n.
When C = FP , we understand the parameter list to
have length 0, R to be a function symbol f ∈ FP ,
and R(x, y) to be f(x) = y. We now make a few
observations about the relations between the various
principles.

Proposition 1 BASIC proves the following equiva-
lences:

(a) mPHP(R)mn is equivalent to mPHP ′(R)mn where
mPHP ′(R)mn is

∀x1, x2 < m∀y < n(R(x1, y) ∧ R(x2, y) ⊃ x1 = x2) ⊃
¬(n < m) ∨ ∃x < m∀y < n¬R(x, y) .

(b) sPHP(R)mn is equivalent to

∀y < n∃x < mR(x, y) ⊃ mPHP ′(R)mn .

(c) iPHP(R)mn is equivalent to

∀x < m∀y1 < n∀y2 < n
(

R(x, y1) ∧ R(x, y2) ⊃ y1 = y2

)
⊃ mPHP(R)mn .

3



Proof. This argument will also hold if we had
written parameter variables. The statement (a) fol-
lows because mPHP ′(R)mn is just the contrapositive
of mPHP(R)mn . (b) follows because the condition
∀y < n∃x < mR(x, y) says R is a total multifunction
from y < n to x < m and the premise of mPHP ′(R)mn
guarantees this multifunction is a function. Finally,
(c) follows since the condition

∀x < m∀y1 < n∀y2 < n(R(x, y1) ∧ R(x, y2) ⊃ y1 = y2)

says R is a partial function from x < m to y < n and
the premise of mPHP(R)mn guarantees this function
is total. �

Corollary 2 BASIC proves mPHP(R)mn implies
both sPHP(R)mn and iPHP(R)mn .

Proposition 3 For each pigeonhole variant v =
m, s, i, the theories T 1

2 (R) and S 2
2 (R) prove that

vPHPn2

n (R) ⊃ vPHP2n
n (R),

Proof. (Sketch) The T 1
2 (R) results follows from

the S 2
2 (R) results since the formulas in question are

boolean combinations of Σb
2-formulas and S 2

2 (R) is
conservative over T 1

2 (R) for such formulas. The basic
idea of the proof for S 2

2 (R) is to show ¬vPHP2n
n (R) ⊃

¬vPHPn2

n (R). To do this in each case one iterates |n|
times the 2n into n function or multifunction (or n
onto 2n function) violating vPHPn2

n (R). �
It is unknown whether mPHP(Σb

1)mn is equivalent
to vPHP(Σb

1)mn over S 1
2 for v = s or i. Paris, Wilkie,

Woods [21] showed that S2 ` mWPHP(∆0), where
∆0 is the class of bounded formulas. Kraj́ıček [15]
has sharpened this to:

Lemma 4 T 2
2 (R) ` mWPHP(R). Hence, T 2

2 `
mWPHP(PV ) and in particular T 2

2 ` sWPHP(PV ).

4 Surjective pigeonhole principle and block-
recognition

Jeřábek shows in [12] that over S 1
2 , the surjective

weak pigeonhole principle is equivalent to the claim
that there is a string hard string of length 2nk for
circuits of size nk. The following can be shown to be
equivalent to Jeřábek’s result; the main difference is
the notation, which here corresponds to the notation
we will use for our later results:

Theorem 5 ([12, Lemma 3.2, Proposition 3.5]) Let
n = |z|. Over S1

2 , the scheme sWPHP(FP)n
2

n is
equivalent to the scheme

∃S < 22nk∀C < 2n
k

∃i < 2nk
(

Circuit(C,
∣∣2nk∣∣) ⊃ Output(C, i) 6= Bit(i, S)

)
for k = 0, 1, . . . .

We begin by giving modified versions of Jeřábek’s
results for relational versions of the surjective weak
pigeonhole principle. To simplify the notation a bit
in this section, we often abuse notation and write C(i)
to denote Output(C, i).

Definition 3 Let C be a circuit on |dm/ne|+n input
variables. We say that C n-block-recognizes S < 2m
for all i < dm/ne and s < 2n, C(i, s) is true iff s =
β̂(i, n, S).

The predicate Fits(C,S,m, n) says that C(·, ·) has
the right shape for n-block-recognizing S < 2m:

Circuit(C, |dm/ne|+ n) ∧ S < 2m.

Let BlockRec(C,S,m, n) be the formula that says
C n-block-recognizes S < 2m:

Fits(C,S,m, n) ∧
∀i < dm/ne ∃!s < 2n

(
C(i, s) ∧ C(i, β̂(i, n, S))

)
.

Proposition 6 Let n = |z|. For each k >

0, S 1
2 + sWPHP(Θb

2) proves ∃S < 22nk∀C <

2n
k¬BlockRec(C,S, 2nk, n).

Proof. Reason in S 1
2 . Existence of S in

∀C < 2n
k

∃!S < 22nk
[

[
Fits(C,S, 2nk, n) ∧

∀i < 2nk−1(∃!s < 2nC(i, s) ∧ C(i, β̂(i, n, S)))
]
∨[

(¬Fits(C,S, 2nk, n) ∨

∃i < 2nk−1¬∃!s < 2nC(i, s)
)
∧ S = 0

]]
is provable using PV -REPL as follows: Fix C < 2n

k

.
If C is not of the correct shape, then S will be 0 and
the result holds. So assume Circuit(C,

∣∣2nk−1
∣∣ + n)

and ∀i < 2nk−1∃!s < 2nC(i, s). Using Σb
1-COMP ,

one can show one can define any block of S bit-by-bit.
Then using Σb

1-REPL one can define all the blocks in
a single string. Uniqueness of S follows by proving
length induction first on the bits in two strings in
a block and then by length induction on the blocks.
Since the predicate in brackets is Θb

2, one can apply
sWPHP(Θb

2) to conclude that there is some S < 22nk

such that for all C < 2n
k

the predicate in brackets
fails. Then in particular, the first disjunct must fail,
which completes the proof of the Theorem. �

As a corollary to the proof, we have the following
result:

Proposition 7 Let n = |z|. For each k >

0, S 1
2 + sWPHP(FP) proves ∃S < 22nk∀C <

2n
k¬BlockRec(C,S, 2nk, |n|).

Proof. The same argument applies, but now we note
that the condition on C is PV because the quanti-
fiers in the uniqueness criterion are sharply bounded,
so sWPHP(PV ) applies. But then this condition de-
fines a PV -function, so only the functional version of
sWPHP is needed. �

Theorem 8 Let T be the theory obtained from S1
2 by

adding the axiom

∃S < 22nk∀C < 2n
k

¬BlockRec(C,S, 2nk, n)

for each n = |z| and k > 0. Then T proves
sWPHP(Σb

1).

Proof. It suffices to argue in S 1
2 that if there is

a Σb
1-relation R(x, y) that is the graph of a surjec-

tion f from 2n onto 22n (where without loss of gen-
erality n = |z| for some z), then ∀S < 22nk∃C <

2n
k

BlockRec(C,S, 2nk, n). Note that assuming the
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existence of such a relation R does not allow us to as-
sume there is a function symbol in PV for f , since we
do not have that S 1

2 proves that R is the graph of a
function. Say that R has the form ∃z < 2n

`

R0(x, y, z)
where R0 is PV and let C0 be a circuit on vari-
ables x0, . . . , xn−1, y0, . . . , y2n−1, z0, . . . , zq (q = n`)
that outputs 1 exactly when R0(x, y, z) holds (here,
Bit(i, x) = xi, etc.). Furthermore, let `′ be such that
C0 has size O(n`

′
). We will use C0 to construct cir-

cuits Gi(u, x, y, w) where u < 2i, x, y < 2n, and w
is a sequence of length i, each of whose elements has
size bounded by 2n+ q. Gi is intended to represent a
surjection from 2n onto 22in by repeatedly applying f
to x and taking the left- or right-half of the result ac-
cording to the bits of u. Our final circuit C will be ob-
tained by fixing i and “hard-coding” w. Specifically,
the predicate computed by Gi is defined as follows:

G0(u, x, y, w) :=(u = 0) ∧ (x = y)

Gi+1(u, x, y, w) :=u < 2i+1 ∧
Gi(DMSB(u),

cond(MSB(u), w[n..2n− 1],
w[0..n− 1]),

y,MSP(w, 2n+ q)) ∧
C0(x,w[0..2n− 1],

w[2n..2n+ q − 1]).

where DMSB(u) = LSP(a, |a| − 1) is a with its
most significant bit deleted, MSB(a) = MSP(a, 1)
is the most significant bit of a, and cond(b, c, d) is
either c or d as per whether b = 0 or b = 1. For-
mally, we are defining a function Ḡ(i), where Ḡ(i) is
the code of the circuit computing the predicate Gi;
Ḡ(i+ 1) is defined recursively from the code returned
by Ḡ(i). Thus, when we write Gi(u, x, y, w), we really
mean Output(Ḡ(i), u, x, y, w). Following Jeřábek, if
r = ||z|| for some z and i < r, then Gi(u, x, y, z) is
Σb

1-definable and we can prove

1. For any S < 22rn,

∃e < SqBd(n, 22r−i)∃w < SqBd(i(2n+q), 22r−i)

∀u < 2i∀v < 2r−iGi(u, (e)v, β̂(2iv+u, n, S), (w)v),

(Σb
1-LIND on i ≤ r). Since r = ||z|| and i ≤ r,

this predicate is in fact Σb
1. In particular, tak-

ing i = r we have that

∃e < 2n∃w < 2r(2n+q)∀u < 2rGr(u, e, β̂(u, n, S), w).

2.

∀i∀u < 2i+1∀e < 2n∀y, y′ < 22n∀w,w′ < 2i(2n+q)[
(Gi(u, e, y, w) ∧ Gi(u, e, y′, w′)) ⊃ y = y′].

(Πb
1-LIND on i).

3. The size of Gi is O(in`
′+1).

Now suppose that S < 22nk and let r =
∣∣2nk−1

∣∣ =
(k − 1) |n| + 1, so that 2rn = 2nk. Then as we
just showed, there are (provably in S 1

2 ) e and w such
that Gr(·, e, ·, w) n-block-recognizes S. Let Cr(i, s) =
Gr(i, e, s, w). The size of Cr is ≤ c((k − 1) |n| +
1)n`

′+1 ≤ c′kn`
′+2 for some c and c′. Furthermore,

any circuit of size m can be given a code of size
≤ 2m(|m|+1). Thus, if we take k large enough so that
nk ≥ 2c′kn`

′+2(
∣∣∣c′kn`′+2

∣∣∣+1), then C(k−1)|n|+1 < 2n
k

is a circuit that n-block recognizes S. Since S was
chosen arbitrarily, this completes the proof. �

Combining Propositions 6 and 7 with Theorem 8,
we have the following inclusions of theories, where
the block-recognition axiom schemes range over all
n = |z| and k > 0:

S 1
2 + sWPHP(Θb

2) ⊇

S 1
2 + ∃S < 22nk∀C < 2n

k

¬BlockRec(C,S, 2nk, n) ⊇
S 1

2 + sWPHP(Σb
1) ⊇ S 1

2 + sWPHP(PV ) ⊇
S 1

2 + sWPHP(FP ) ⊇

S 1
2 + ∃S < 22nk∀C < 2n

k

¬BlockRec(C,S, 2nk, |n|).

We have the following curious corollary:

Corollary 9

S 1
2 +∀S < 22nk∃C < 2n

k

BlockRec(C,S, 2nk, |n|) ⊇

S 1
2 + ∀S < 22nk∃C < 2n

k

BlockRec(C,S, 2nk, n).

where the block-recognition axiom schemes range over
all n = |z| and k > 0.

Note that the “obvious” approach to proving this
fails. One can construct an n-block-recognizer by
combining many copies of an |n|-block-recognizer,
each of size nk; however, the resulting circuit (code)
will possibly have size greater than nk.

Referring back to Theorem 5, we see what ap-
pears to be a peculiarity. Jeřábek shows that
sWPHP(FP)n

2

n is equivalent to the claim that for
each k there is S < 22nk that is not computed by
any circuit (code) of size nk. This in turn seems to
be equivalent to the claim that for each k there is S
of size < 2nk that is not 1-block recognized by any
circuit (code) of size nk, since 1-block-recognition is
obviously equivalent to computability. However, this
is not quite the case. Suppose that S < 22nk is com-
puted by C < 2n

k

. A circuit C ′(i, b) that 1-block-
recognizes S may be built from C(i) by comparing b
to C(i) and outputting 0 or 1 as appropriate. How-
ever, if C ′ is obtained from C by adding c new gates
to do this calculation, then |C ′| ≥ |C|+ c |n|, and so
it may not be the case that |C ′| < nk. Thus being
computable by a circuit (code) of size < nk does not
imply being 1-block-recognizable by a circuit (code)
of size < nk.

We conclude this section with a variant of
sWPHP . Let sWPHP(D,R)mn be the following prin-
ciple:

(n < m ∧ ∀x < n(D(x) ⊃ ∃!y < mR(x, y))) ⊃
∃y < m∀x < n(D(x) ⊃ ¬R(x, y)).

In other words, R cannot be the graph of a sur-
jective function from D (a subset of {0, . . . , n})
onto {0, . . . ,m}. sWPHP(D, C) is the set of prin-
ciples sWPHP(D,R)n

2

n for D ∈ D and R ∈ C. This
bears some similarity to Thapen’s alternative version
of a multifunction pigeonhole principle which states
that a function cannot be a surjection from a subset
of n onto m [25, Definition 3.1(4)]. There, however,
the complexity of the domain is left unspecified, and

5



it is not certain what the exact relationship between
the two principles is. The proof of the following is
similar to that of Proposition 6:

Proposition 10 Let n = |z|. For each k > 0, S 1
2 +

sWPHP(Θb
2,PV ) proves

∃S < 22nk∀C < 2n
k

¬BlockRec(C,S, 2nk, n).

5 mWPHP and Iteration

The next definition will be used to state circuit prin-
ciples connected with mWPHP .

Definition 4 Given a class C of formulas and a set τ
of terms, ITER(C, τ) consists of formulas of the form

Iter(R,B,E, z1, . . . , zn, s, t) :=

∃w ≤ SqBd(s, 2min(t+1,|r|))Comp(R,B,E,w, ~z, s, t)

where R(i, u, v, ~z) ∈ C, r, B(~z) and E(~z) are terms,
and Comp(R,B,E,w, ~z, s, t) is

Seq(w) ∧ Len(w) = t+ 2 ∧

∀i ≤ t
(
β(i, w) ≤ s ∧ R(i, β(i, w), β(i+ 1, w), ~z) ∧

∀v ≤ s(R(i, β(i, w), v, ~z) ⊃ v = β(i+ 1, w))
)
∧

β(0, w) = B(~z) ∧ β(t+ 1, w) = E(~z).

It is permissible that R not depend on all of the vari-
ables ~z; when this is a case for a specific R (such as
Out, in Definition 5), we will omit mention of the
unused variables. Formally we should declare the pa-
rameters upon which R depends and rewrite Comp
to list only those parameters, but we will instead in-
formally refer to R “depending” on zi or not (and
similarly for B and E).

The predicate Iter is related to a predicate in
Kraj́ıček [16] which was studied in the context of
propositional proof complexity. Where it is clear that
a suitable r can be found so that t+ 1 < |r| then, we
will sometimes just write 2t+1 for 2min(t+1,|r|). The
latter form is introduced only because the exponential
function is not necessarily total in bounded arithmetic
theories. The intuition behind Iter(R,B,E, ~z, s, t) is
that it verifies that there is a (t + 1)-stepped com-
putation from initial value B(~z) to final value E(~z)
each step of which follows uniquely from the previous
according to R. The values at each step are bounded
by s. It should be observed that if s is of polyno-
mial length then the ability to verify in p-time that a
string for the (i+1)-st step follows from a string for i-
th step does not entail that there is a p-time function
computing the (i+ 1)-st step from the i-th step.

Write {||id||O(1)} for the set of terms of the form
||t||m for some term t and some fixed number m in the
language. The following lemmas establish the basic
properties of ITER(C, τ).

Lemma 11

1. The theory S 1
2 proves that ITER(PV , {||id||O(1)})

contains the PV predicates.

2. For R(i, u, v, j, ~z) ∈ PV , any terms B(j, ~z)
and E(j, ~z), and any term h(~z), there is
R∗(i, u, v, ~z) ∈ PV and terms B∗(~z) and E∗(~z)
such that R2

2 proves

∀j ≤ |h(~z)| Iter(R,B,E, j, ~z, s, ||t||m)⇔
Iter(R∗, B∗, E∗, ~z, s(|h|+ 1), ||t||m).

In other words, ITER(PV , {||id||O(1)}) is closed
under sharply bounded universal quantification.

Proof. (1) Suppose R(~z) is a PV predicate. Consider
the predicate R∗(i, a, b, ~z) defined as

(i = i ∧ a = 0 ∧ b = 0 ∧ R(~z)).

Then Iter(R∗, 0, 0, ~z, 1, ||t||m) will compute the same
predicate as R(~z) (regardless of t).

(2) The left-hand-side says that for each j ≤ |h|, R
“maps” B(j, ~z) to E(j, ~z) in ||t||m steps. R∗ will map
the sequence 〈B(0, ~z), . . . , B(|h| , ~z)〉 to the sequence
〈E(0, ~z), . . . , E(|h| , ~z)〉 in the same number of steps.
By Σb

2-REPL the left-hand-side is equivalent to

∃w ≤ SqBd(SqBd(s, 2||t||
m+1), 2|h|+1)∀j ≤ |h|

Comp(R,B,E, β(j, w), j, ~z, s, ||t||m).

Let R∗(i, u, v, ~z) be the predicate

u ≤ SqBd(s, 2|h|) ∧ v ≤ SqBd(s, 2|h|) ∧
Seq(u) ∧ Seq(v) ∧
∀j ≤ |h| (R(i, β(j, u), β(u, v), j, ~z).

Let B∗ = 〈B(0, ~z), . . . , B(|h| , ~z)〉 and E∗ =
〈E(0, ~z), . . . , E(|h| , ~z)〉. Then the sequenceW defined
by β(i,W ) = 〈β(0, β(i, w)), . . . , β(|h| , β(i, w))〉 is a
witness to the right-hand-side; since W is computable
in polynomial-time from w, it is definable in R2

2 ⊇ S 1
2 .

�

Lemma 12 R2
2 proves Uniq(||t||m) for fixed m where

Uniq(a) is the formula

Comp(R,B,E1, w1, ~z, s, a) ∧
Comp(R,B,E2, w2, ~z′, s, a) ⊃ w1 = w2 ∧ E1 = E2

where z′i = zi if R or B depends on zi.

Proof. First, note that Comp is equivalent to a Πb
1

formula so Uniq(|x|) will be equivalent to a Σb
1 for-

mula. Also, given the definition of Comp uniqueness
of w in Comp(R,B,E,w, ~z, s, a) guarantees unique-
ness of E. Let Comp′(R,B,w, ~z, s, a) be the same
predicate as Comp except where the last conjunct
checking that the final value of the sequence is E has
been discarded. Let Uniq′(a) be

∀w1, w2 ≤ SqBd(s, 2a)
[

Comp′(R,B,w1, ~z, s, a) ∧ Comp′(R,B,w2, ~z, s, a) ⊃
w1 = w2

]
.

Given our discussion this will be a Πb
2-formula and

Uniq′(a) ⊃ Uniq(a), so it suffices to prove Uniq′(|x|)
to complete the proof. The theory S 1

2 proves Uniq′(0)
since any sequence satisfying the Comp′ expression
will in this case consist of only two elements, the first
elements must be x and the third conjunct in the def-
inition of Comp′ forces the uniqueness of the second
block. This third conjunct in the definition of Comp′
can also be used to show Uniq′(a) ⊃ Uniq′(Sa); the
relevant fact is that

Comp′(R,B,w, ~z, s, Sa) ⊃
Comp′(R,B, FRONT (w), ~z, s, a).
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Here FRONT (w) is the p-time function that returns
all but the last element of w. The point is Uniq′(a)
guarantees the uniqueness of FRONT (w) since it has
size less than SqBd(s, 2a), and the third conjunct will
guarantee the uniqueness of the element that is added
to FRONT (w) to obtain w. Hence, w will also be
unique. Thus using Πb

2-LLIND and standard speed-
up of induction techniques [23], the theory R2

2 proves
Uniq′(||x||m) and hence Uniq(||x||m). �

Definition 5

1. Let Out(i, u, v, b, C) be the predicate that is true
when C is a circuit on |i|+ |u|+ |v|+ |b| variables
and C(i, u, v, b) is true.

2. Let IterBlockRec(C,S, c, x, t) be

∀b < nk−1
(

Iter(Out, c, β̂(b, 2 |x| , S), b, C, c, S, 2|c|, t)
)
.

By Lemma 11, this is an iteration predicate.
Note that Out depends only on the parameters b
and C.

3. Let CompOutput(w,C, S, c, b, x, t) be

Comp(Out, c, β̂(b, 2 |x| , S), w, b, C, c, S, 2|c|, t)

so that IterBlockRec(C,S, c, x, t) is

∀b < nk−1∃w ≤ SqBd(2|c|, 2t+1)
(

CompOutput(w,C, S, c, b, x, t)
)
.

Theorem 13 Let n = |x|. For
k > 1, ||t||j in {||id||O(1)}, the theory
R2

2+mWPHP(ITER(PV , {||id||O(1)})) proves the
principle

∃S < 22nk∀C < 2n
k−2n∀c < 22n

¬IterBlockRec(C,S, c, x, ||t||j).

The use of two separate variables C and c is a nota-
tional convenience: we could replace them by a single
variable C ′ of size 2n

k

and use MSP and LSP to ob-
tain values for these two variables.

Proof. Reason in R2
2 , and suppose that

∀S < 22nk∃C < 2n
k−2n∃c < 22n

[
∀b < nk−1∃w ≤ SqBd(22n, 2||t||

j+1)

CompOutput(w,C, S, c, b, x, ||t||j)
]
.

Using Lemma 11, the expression in square brackets
is equivalent in R2

2 to an ITER(PV , {||id||O(1)}) pred-
icate. So by mWPHP(ITER(PV , {||id||O(1)})) there
are S1 6= S2 < 22nk , C < 2n

k−2n, c < 22n such that

∀b < nk−1∃w ≤ SqBd(22n, 2||t||
j+1)

(
CompOutput(w,S,C, c, b, x, ||t||j)

)

for i = 1, 2. Fix any b < nk−1. By
Lemma 12, there is a unique pair (w, v) such that
Comp(Out, c, v, w, b, C, c, Si, 2|c|, ||t||j) for i = 1, 2
(note that Out does not depend on S), and so we con-
clude that for each b < nk−1 we have β̂(b, 2n, S1) =
β̂(b, 2n, S2). In other words, the b-th blocks of S1
and S2 are equal. Since b was chosen arbitrarily, all
blocks of S1 and S2 are the same. By induction on
the number of blocks, one shows that this implies that
S1 = S2, a contradiction. �

Theorem 14 Let n = |x|. Let T be the theory R2
2

extended by the axioms

∃S < 22nk∀C < 2n
k−2n∀c < 22n

¬IterBlockRec(S,C, c, x, ||t||j)

for each k > 1, ||t||j in {||id||O(1)}. Then
(a) T proves mWPHP(PV ) and (b) T
proves mWPHP(ITER(PV , {||id||O(1)})).

Proof. (a) Assume that R(x, y) is a PV -formula that
is the graph of an injective multifunction from 22n

into 2n. Define AMP ′(S, c, j, x, w) to be the conjunc-
tion of the following statements:

1. S < 22j+1n;

2. w is a sequence of length j + 1;

3. For 0 ≤ i ≤ j, β(i, w) is a sequence of length 2i;

4. For 0 ≤ i ≤ j and 0 ≤ ` < 2i, |β(`, β(i, w))| ≤
2n;

5. For 0 ≤ i < j and 0 ≤ ` < 2i,

R(β(2`, β(i+ 1, w)),MSP(β(`, β(i, w)), n));

6. For 0 ≤ i < j and 0 ≤ ` < 2i,

R(β(2`+ 1, β(i+ 1, w)),LSP(β(`, β(i, w)), n));

7. β(0, β(0, w)) = c;

8. For 0 ≤ ` < 2j , β(`, β(j, w)) = β̂(`, 2n, S).

In other words, w is a “triangle” that consists of
j + 1 rows, where the i-th row has 2i blocks, and
each block is of length at most 2n; the 0-th row is c
and the (j + 1)-st row is S. The i-th row is formed
by using R to “compress” the blocks of the (i + 1)-
st row. Let AMP (S, c, j, x) be the predicate ∃w ≤
SqBd(SqBd(22n, 22j−1), 2j)AMP ′(S, c, j, x, w). As
usual exponentials are ‘cut-off’, in this case by
a term of the form ||r|| for some r, so AMP
is (equivalent to) a Σb

1 formula over BASIC .
By Πb

2-LLIND on j, one can show that ∀S <

22j+1n∃c < 22nAMP (S, c, j, x) and hence conclude
∀S < 22k|n|+1n∃c < 22nAMP (S, c, k |n| , x). For the
induction step, given S < 22j+2n, use R to compress
adjacent length-n blocks in pairs to get S′ < 22j+1n

and then apply the induction hypothesis to get c such
that AMP (S′, c, j, x). To show AMP (S, c, j, x), take
the sequence (triangle) w′ given by AMP (S′, c, j, x)
and add a new row consisting of the length-2n blocks
of S.
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Now fix S < 22nk and take c such that
AMP (S, c, k |n| , x). Let C(i, u, v, b) be the circuit
that computes the predicate

R
(
v, cond

(
Bit((k − 1) |n| − i, b),

MSP(u, n),LSP(u, n)
))
∧ (i = 0 ⊃ u = c).

Take any b < nk−1 (the number of length-2n blocks
in S). Let w be the sequence (triangle) given by
AMP (S, c, k |n| , x) and define a new sequence v by
β(i, v)) = β(MSP(b, i), β(i, w)). In other words, v
consists of the blocks in w starting at c and travers-
ing the triangle to end at the b-th block of S in the last
row. Then v is a sequence of k |n| starting at c, ending
at β̂(b, 2n, S) and for which C(i, β(i, v), β(i+1, v)) for
each i; this follows from AMP (S, c, k |n| , x). Unique-
ness of each step follows from the fact that R is in-
jective. As in the proof of Theorem 8, take k large
enough so that we can assume C < 2n

k−2n; then by
chasing definitions, we see that we have proved

∀S < 22nk∃C < 2n
k−2n∃c < 22n

IterBlockRec(C,S, c, x, k ||x||),

completing the proof of (a).
We now describe how to modify the proof

of (a) to obtain a proof of (b). Let Q :=
Iter(R,B,E, x, y, ~z, s, ||t||m) be a predicate such that
¬mWPHP(Q). We are assuming that the injection
from 22n to 2n is on the variables x and y which
are among the parameter variables of R, B, and E.
We use the R in this Q to create a modified version
of AMP , essentially where we have inserted between
each step in the old AMP the iterations need to com-
pute Q . Let clen := ||t||m + 3. The new version of
AMP ′ asserts:

1. S < 22j+1n;

2. w is a sequence of length j · clen+ 1;

3. For 0 ≤ i ≤ j, let i′ := i · clen; then β(i′, w)
is a sequence of length 2i and for 0 ≤ ` < 2i,
|β(`, β(i′, w))| ≤ 2n.

4. For 0 ≤ i ≤ j, and i · clen < i′ < (i + 1) · clen,
β(i′, w) is a sequence of length 2i+1, and for 0 ≤
` < 2i+1, |β(`, β(i′, w))| ≤ s, and R(i′, β(`, β(i′+
1, w)), β(`, β(i′, w)));

5. For 0 < i < j and 0 ≤ ` < 2i, let xi,2` :=
β(2`, β((i+ 1) · clen,w)), Lyi,` := MSP(β(`, β(i ·
clen,w)), n), bi,2` := β(2`, β((i+1) ·clen−1, w)),
and ei,2` := β(2`, β(i · clen + 1, w)). Then
bi,2` = Lyi,` ∗B(xi,2`, Lyi,`, ~z) and ei,2` = Lyi,` ∗
E(xi,2`, Lyi,`, ~z). Here, ∗ denotes concatenation;
we need this extra data when we construct the
circuit that iteratively block-recognizes S.

6. For 0 ≤ i < j and 0 ≤ ` < 2i, let
xi,2`+1 := β(2`+ 1, β((i+ 1) · clen,w)), Ryi,` :=
LSP(β(`, β(i · clen,w)), n), bi,2`+1 := β(2` +
1, β((i + 1) · clen − 1, w)), and ei,2`+1 :=
β(2` + 1, β(i · clen + 1, w)). Then bi,2`+1 =
Ryi,` ∗ B(xi,2`+1, Ryi,`, ~z) and ei,2`+1 = Ryi,` ∗
E(xi,2`+1, Ryi,`, ~z);

7. β(0, β(0, w)) = c;

8. For 0 ≤ ` < 2j , β(`, β(j · clen,w)) = β̂(`, 2n, S).

So this formula asserts that w is a “triangle of grids”
that consists of j + 1 grids. The i-th grid has 2i
columns and ||t||m+3 rows. The last row of each grid
corresponds to to a row of the triangle from the PV
case. The immediately prior row consists of blocks of
the form B(x, y), where x < 22n is the value in same
column and next row and y < 2n is the value x is
mapped to by Q. Then within a column, one traverses
row-by-row by applying R. The new formula AMP is
defined from this AMP ′ as before with a larger (but
still polynomial bound) for w. Given that the univer-
sals above will be sharply bounded in R2

2 , this AMP
is still equivalent to a Σb

1-formula. So one can prove
∀S < 22j+1n∃c < 2nAMP (S, c, j, ·||t||m, x) by induc-
tion on j in R2

2 and hence conclude ∀S < 2n
k∃c <

2nAMP (S, c, k ||x|| · ||t||m , x). The induction step is
handled by using the fact that since ¬mWPHP(Q),
there is some unique sequence that makes Q an an
injective map from 22n into 2n. So given S < 22j+2n,
apply Q to the length-2n blocks of S to obtain length-
n blocks, and concatenate these to get S′ < 22j+1n.
Apply the induction hypothesis to find c such that
AMP (S′, c, j ||t||m , x). Let w′ be the sequence such
that AMP ′(S′, c, j ||t||m , x, w′) and now append the
clen-row by 2j+1-column “grid” that has the length-
2n blocks of S as the last row, and the the computa-
tion sequence of R in each column.

Now given S < 22nk we need a circuit C(i, u, v, b)
that recognizes a path through this “triangle of grids”
that starts at c and ends at β̂(b, 2n, S). When i =
i′ · clen, we are transitioning from the last row of a
grid (corresponding to the rows of the triangle from
the PV case); the circuit verifies that LSP(v, n) =
B(u,MSP(v, |v| − n)). This is why we need to keep
extra copies of the Ly’s and Ry’s in all the cells of
the grid; without them, we could not perform this
verification “locally.” When i = i′ · clen + 1, we are
transitioning from one grid to the next. The circuit
just verifies that left- or right-half of v is MSP(u, n)
according to the ((k − 1) |n| − i′)-th bit of b. Fi-
nally, if i = i′ · clen + i′′ with i′′ > 1, we are tran-
sitioning according to R, so the circuit verifies that
R(i′′,LSP(v, n),LSP(u, n)). �

It would be interesting to know if mWPHP(PV )
implies mWPHP(ITER(PV, {||id||O(1)})) over some
non-trivial theory. To show this would seem to involve
showing that from an iterated relation PV defining a
injective multifunction from n2 to n, one could some-
how do away with the iteration and find a PV rela-
tion defining a injective multifunction from n2 to n
relation. It is not clear how this could be done.

6 Iteration and RSA

In this section, the provability of

∃S < 22nk∀C < 2n
k−2n∀c < 22n

¬IterBlockRec(C,S, c, x, k)

in R2
3 and R3

3 is connected to the security of RSA. To
state our results, we define the class qPLS and recall
the definition of RSA.

The class PLS for polynomial search was defined
by Johnson, Papadimitriou, and Yannakakis [13] and
was shown to contain several interesting optimization
problems. Buss and Kraj́ıček [8] showed that the Σb

1

provably total multifunctions of T 1
2 can be character-

ized as the composition of a projection function with a
PLS multifunction. By a quasi-polynomial, we mean
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a function of the form 2(log n)k for some k. A natural
generalization of PLS to quasi-polynomial time can
be defined as follows:

Definition 6 A qPLS problem consists of a quasi-
polynomial time cost function c, a quasi-polynomial
time neighborhood function N , and a quasi-
polynomially bounded set of quasi-polynomial time so-
lutions, defined by a predicate F . For an input x, the
set {s : F (x, s)} is the set of feasible solutions, the
mapping s 7→ c(x, s) assigns a cost to each solution,
and the mapping s 7→ N(x, s) maps solutions to solu-
tions. The multifunction f defined by the qPLS prob-
lem is given by the relation f(x) = y iff F (x, y) and
c(x,N(x, y)) < c(x, y).

Define x#3y as 2|x|#|y|. Let Ri3, Si3, and T i3 be
the theories obtained from Ri

2,S i2, and T i
2 by adding

this symbol and its defining axiom. A straightfor-
ward generalization of Buss and Kraj́ıček [8] shows
that the Σb

1 provably total multifunctions of T 1
3 can

be characterized as the composition of a projection
function with a qPLS multifunction (see Pollett [22]
for results of this type). A straightforward generaliza-
tion of Buss [4] shows that the Σb

1-definable functions
of S1

3 are the quasi-polynomial time functions.
Recall what an instance of RSA is:

Definition 7 An instance of RSA consists of a mod-
ulus n = pq for two large primes p and q, exponents e
and d which are mutual inverse modulo (p−1)(q−1),
a message m < n, and a ciphertext c < n such that
c ≡ me mod n and m ≡ cd mod n. The RSA instance
is solved (hence, vulnerable) if given n, e, and c, one
can compute m.

We are now ready to present the main result of
this section.

Theorem 15 Let n = |x|. (a) If for any
k, R2

3 proves ∃S < 22nk∀C < 2n
k−2n∀c <

22n¬IterBlockRec(S,C, c, x, k) then RSA is vulnera-
ble to quasi-polynomial time based attacks. (b) If
for any k, R3

3 proves ∃S < 22nk∀C < 2n
k−2n∀c <

22n¬IterBlockRec(S,C, c, x, k) then RSA is vulnera-
ble to polynomial time in qPLS based attacks.

Proof. Both (a) and (b) are proved essentially the
same way. By Buss, Kraj́ıček, and Takeuti [9] it
is known that R3

3 is Σb
3 conservative over S 2

2 , and
by Buss [5], S2

3 is Σb
2-conservative over T 1

3 . Simi-
larly, by Buss, Kraj́ıček, and Takeuti [9], R2

3 is Σb
2-

conservative over S1
3 . Let T be either R2

3 or R3
3.

Then if T proves ∃S < 22nk∀C < 2n
k−2n∀c <

22n¬IterBlockRec(S,C, c, x, k), then by Theorem 14,
T proves mWPHP(PV ) so by Proposition 1, it also
proves iWPHP(PV ) and thus iWPHP(FP). The lat-
ter consists of formulas of the form:

∃x < n2f(x, c) ≥ n ∨
∃x1, x2 < n2(x1 6= x2 ∧ f(x1, c) = f(x2, c))

which are Σb
1-formulas. Hence, by the previously

mentioned conservation results, one has in the case
of R2

3 that S1
3 proves iWPHP(FP) and in the case

of R3
3 that T 1

3 proves iWPHP(FP). Using the wit-
nessing arguments used to show the characterizations
of Σb

1-definability in these latter theories one can say
the following: (a) for R2

3, there is a quasi-polynomial
time function g which when given inputs c, a such that
∀x < a2f(x, c) < a outputs x1 < x2 < a2 such that

f(x1, c) = f(x2, c). (b) for R3
3, g can be computed as

a a projection of a qPLS problem. By Kraj́ıček and
Pudlák [18] there is polynomial time algorithm using
g as an oracle which solves RSA. �
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