Minimization and NP multifunctions

N. Danner *

Department of Mathematics, University of California Los Angeles, Los Angeles,
CA 90095-1555

C. Pollett

Department of Mathematics and Computer Science, San Jose State University,

San Jose, CA 95192.

Abstract

The implicit characterizations of the polynomial-time computable functions FP
given by Bellantoni-Cook and Leivant suggest that this class is the complexity-
theoretic analog of the primitive recursive functions. Hence it is natural to add
minimization operators to these characterizations and investigate the resulting class
of partial functions as a candidate for the analog of the partial recursive functions.
We do so in this paper for Cobham’s definition of FP by bounded recursion and
for Bellantoni-Cook’s safe recursion and prove that the resulting classes capture
exactly NPMYV | the nondeterministic polynomial-time computable partial mul-
tifunctions. We also consider the relationship between our schemes and a notion
of nondeterministic recursion defined by Leivant and show that the latter charac-
terizes the total functions of NPMV. We view these results as giving evidence
that NPMYV is the appropriate analog of partial recursive. This view is reinforced
by earlier results of Spreen and Stahl who show that for many of the relation-
ships between partial recursive functions and r.e. sets, analogous relationships hold
between NPMYV and NP sets. Furthermore, since NPMYV is obtained from FP
in the same way as the recursive functions are obtained from the primitive recur-
sive functions (when defined via function schemes), this also gives further evidence
that FP is properly seen as playing the role of primitive recursion.

* Corresponding author.
Email addresses: ndanner@member . ams.org (N. Danner),
pollett@mathcs.sjsu.edu (C. Pollett).

Preprint submitted to Elsevier Science 15 January 2002

1 Introduction

When considering the analogy between the arithmetic and polynomial-time
hierarchy, a standard view is that polynomial time plays the role of recur-
sive (though not always—see, e.g., Selman [6], to which we will return). The
polynomial-time sets are used as the base A} of the polynomial hierarchy
and A}, is defined as those sets polynomial-time in an oracle for some X
set. However, this view is not unproblematic. The analogy of ¥¥ with X; indi-
cates that NP N coNP should be identified with the recursive sets. Under the
assumption that P % NP N coNP, this leaves the polynomial-time sets to be
viewed in analogy with some smaller class.

A natural choice for this smaller class is the primitive recursive sets (or func-
tions). This is backed up by Cobham’s [3] characterization of FP, the func-
tions computable in polynomial time, by a scheme of recursion on notation
that is nothing more than an explicitly bounded version of primitive recur-
sion itself (formulated for binary words). Further, the work of Bellantoni and
Cook [2] and Leivant [4] provides primitive recursive schemes for defining FP
with no explicit bounds of any sort, instead controlling the primitive recur-
sion by semantically-inspired, syntactically implemented tiering notions. This
approach to characterizing complexity classes without any explicit mention of
resources or bounds is typically referred to as implicit computational complez-
1ty.

However, if we are to identify FP with the primitive recursive functions and
view NP NcoNP as the appropriate analogy for the recursive sets, we are left
with the following question: what is the correct analog of the partial recursive
functions? Of course, we expect some class of partial functions. However, from
a machine-based view of complexity classes, this is bound to lead to some
unpleasantness, as there does not seem to be a straightforward, “clean” way
to define complexity of partial functions. This especially becomes clear if we
insist upon some notion of time-bounded machines which may not halt on some
inputs. It is here that implicit computational complexity truly shines. Since
its characterizations make no mention of resources or bounds, it is natural to
extend the existing implicit characterizations of FP with operators analogous
to the classical case, and then analyze the resulting class of partial functions
as a candidate for the analog of the partial recursive functions.

Since one passes from the primitive recursive functions to the partial recursive
functions by adding the minimization operator to composition and primitive
recursion, an obvious starting point is to add a version of minimization to
Cobham’s, Bellantoni and Cook’s, and Leivant’s characterizations. To under-
stand the version of minimization that we use, consider the classical definition

used for the partial recursive functions:
(uz.0(Z,2) =0) = a < o(T,a) = 0 A Vb<aIt>0.¢(Z,b) =t.

To obtain a version of minimization appropriate to polynomial-time functions,
we want to ensure that the verification that a is in fact the minimum value
requires a search over a polynomial number of values. Thus we replace the
bounded quantifier with a sharply bounded one:

(z.0(Z,2) =0) =a < o(z,a) = 0 A Vb<|a|Ft>0.0(Z,b) = t.

This definition immediately raises a flag: minimization no longer defines a
partial function, as there could be several a satisfying Vo<|a|Jt>0.0(Z,b) =t
(e.g., suppose that ¢ is 1 on all inputs of length < 3 and 0 on all inputs of
length > 3; then this minimization would yield all a with |a| = 4). Thus our
straightforward approach leads us to consider partial multifunctions which
formally are maps from the natural numbers N to P<“(N), the set of finite
subsets of N. In retrospect, this is not at all unexpected. A partial function
satisfies the condition that for all z, ¢(z) has at most one element. A par-
tial multifunction is the same, except that ¢(z) has at most finitely many
elements. With the (essentially) unrestricted computational resources of re-
cursive functions, collapsing many values into one is not a problem. But when
we restrict the complexity of the objects under consideration, it is reasonable
to assume that we cannot necessarily perform such a collapse (e.g., if ¢(z) has
too many elements), and so our “functions” must be allowed to have many
outputs.

Another view of this sharply bounded quantifier is that instead of having
multiple output values, we should instead choose one of the values. This leads
directly to the idea of a nondeterministic choice in the computation, and in
fact such function classes have been considered. In particular, Spreen [7] de-
fines the class NPMYV to consist of those partial multivalued functions com-
putable on a nondeterministic Turing machine in polynomial time (there called
NTIMEF (Poly)). Selman [6] analyzes this class in detail as well. Here, “com-
puted” means that y is a possible output of ¢(x) iff the TM has an accepting
path on input x such that the contents of the output tape upon halting are y.
In [7], Spreen has a number of characterizations of NPMYV in terms of various
function-definition schemes such as a “guess” operator and unordered search
operator; here we extend this list using minimization notions and Bellantoni-
Cook style safe recursion. Thus not only does the approach of implicit compu-
tational complexity provide a straightforward way to generalize polynomial-
time computable functions to a broader class that ought to correspond to the
partial recursive functions, it in fact gives a resource-free characterization of
a previously-defined class that asserts to play the same role, thus justifying
the naturality of (what turns out to be) the single class considered. Further-
more, in an earlier paper Spreen and Stahl [8] provide compelling evidence

that NPMYV is the correct analog of partial recursive functions by showing
that many of the results relating partial recursive functions and the r.e. sets
transfer to the single-valued pmf’s of NPMYV and the NP sets; although we
do not do so here, it is routine to extend these results to all of NPMYV.

The plan of this paper is as follows. In Section 2 we provide the basic defini-
tions, including a notion of bounded minimization, resulting in an extension
of the Cobham class. Section 3 contains the proof that the extension captures
exactly NPMV. In Section 4 we introduce a resource-free notion of mini-
mization within the framework of Bellantoni and Cook’s safe recursion [2].
The only other work we know of that directly addresses the issue of adding a
minimization operator in a similar way is Bellantoni’s [1], where he adds an
operator that is single-valued and total; we compare our approach to his in
this section as well. In Section 5 we consider the scheme of nondeterministic
recursion defined by Leivant in [4] and show that the (total) functions defin-
able with this scheme are exactly the total functions of NPMYV (and hence
are the total functions definable using safe recursion and our notion of safe
minimization).

2 Definitions

We use lowercase Roman letters a, b, x, y for numeric variables. The length of a
number, |z|, is defined as [log,(x + 1)]|. We abbreviate a sequence z, . ..,y as
Z when k is not relevant and write |Z| for |z1],. .., |zg|. The binary successors
are s;(x) =q¢ 2z +1 for i = 0, 1 and the binary predecessor is given by p(z) =g4¢

l2/2].

A partial multifunction (pmf) is a map ¢ : N* — P<¥(N) for some k. Alter-
natively, ¢ can be viewed as a relation on N**! satisfying the constraint that
for all z, {y | (Z,y) € ¢} is finite. We use ¢, 9, p, and 6 to range over pmf’s.
Any total or partial function is identified in the natural way as a pmf, and
we assume this identification whenever we mention any functions or function
classes. We write ¢(Z) — y when y is a (possible) output of ¢(Z) and y < ¢(Z)
if there is some z such that ¢(z) — z and y < z.

Our computation model is the register machine (RM) which consists of a finite
set of states di,...,d,, a finite set of registers mg, ..., 7, and a finite set of
instructions of the following form:

Increment d;Iym;mydy and d;lymjmdy: When in state d;, if m; holds x, store
sox or sy in 7 and change to state dj.

Decrement d;Dmjmjid: When in state d;, if 7; holds z, store p(z) in 7; and
change to state dy.

Transfer d;T'm;dy,dg,: When in state d;, if the contents of 7; are either 0
or sox, change to state dy, and otherwise change to state dj,.

Let M be a register machine. States of M for which there is at most one
instruction are deterministic states; the others are nondeterministic. M is de-
terministic if all of its states are deterministic. For uniformity, we assume
that all RM’s have two distinguished states dac. and dye for which there
are no instructions (as well as possibly others). If M enters dacc Or dyej, it
is said to accept or reject its input accordingly; if it enters any state for
which there is no instruction, it is said to halt. A computation of a RM M
on input = zy,...,x, is started by storing z; in m;, entering state d,
and then executing instructions in the natural (possibly non-deterministic)
manner, halting if M enters a state for which there is no instruction. De-
fine M(Z) =q4¢ {y | mo contains y when M accepts z}. If M is deterministic,
then M (Z) has cardinality 0 or 1, and we say that M(Z) computes the par-
tial function ¢ defined as follows: if M(Z) is empty, then ¢(Z) is undefined,;
otherwise, M(z) = {¢(z)}.! If M is non-deterministic and M (Z) is finite
for all Z, then we say that M computes the partial multifunction ¢ given by
©(Z) = M(z). A configuration of M is a list d;, zq, . .., x,, specifying a state
and contents of the registers. A computation sequence for M is a sequence of
configurations ¢y, ..., ¢, such that

(1) For all i < n there is a transition of M from ¢; to ¢;;1; or

(2) There is some d < n such that cg4 is an accepting configuration, there
is a transition of M from ¢; to ¢;4q for all ¢« < d, and ¢; = ¢4 for all
d < j < n (in other words, we may repeat an accepting configuration ¢,
even though there is no transition from ¢y to itself).

We assume a coding of register machines and configurations satisfying the
condition that if e is the code of M and z is the code of a computation
sequence of length n for which every register in every configuration stores a
number of length < n, then n < |z| < sqbd,(n), where sqbd, is polynomial-
time computable in n. We also define a polynomial-time function result so that
if z is the code of a computation sequence, result(z) is the contents of 7y in
the last configuration of z. We shall consistently conflate state, configurations,
etc. with their corresponding codes.

We will consider the following classes of functions in this paper:

e FP: the class of total single-valued functions computable on a deterministic
RM in time polynomial in the length of the input.
e NPMYV: the class of pmf’s computable on a nondeterministic RM in time

L Of course, this is an insignificant variation on the usual definition for a partial
function to be computable on a deterministic RM.

polynomial in the length of the input. 2
e PR: the primitive recursive functions.
e REC: the partial recursive functions.

As noted by Leivant [4], Turing Machines and register machines are
polynomial-time reducible to each other, so our definitions of FP and NPMV
correspond to the usual ones.

We will make use of the following operators on pmf’s:

Composition ¢ is defined by composition from 9, py, ..., pg, written p(Z) =
d)(ja :01(:%)’ cee apk(a_:))a when

P(T) =y e 32.0(ZT) = 210 A A pk(Z) = 2 AP(T,2) =y

Bounded Recursion on Notation ¢ is defined by bounded recursion on
notation (brn) from 1, py, p1, and 6, when ¢ satisfies

©(7,0) =y < P(T) =y
0(Z,8;2) =y < Jup(Z, z) = upi(T,z,u) —y
o(@,2) <07 (@l 7, 2)

when
0(Z,8:2) =y < Jup(Z, z) = up(Z,z,u) —y
and for all Z and z, one has that ¢(z, z) < 6(z, 2).
Bounded Weak Minimization ¢ is defined by bounded weak minimization
(bwm) from v and 6, written ¢(Z) = uz<6(z).¢(z, z) = 0, when

(@) =y y< 0@ ANY(T,y) — 0AVz<|y|Ft>0.9(T, 2) — t.

If p(Z) — y, we say that y < 6(Z) is weak minimal such that ¢ (z,y) = 0.
Bounded Witnessing ¢ is defined by bounded witnessing from 1 and 6,
written ¢(z) = Wz<0(z).9)(z, z) = 0, when

o(z) =y <y <) AP, y) — 0.
Definition 1

(1) The class C is the smallest class of pmf’s that contains the projections,
zero, binary successors sy and s1, and smash function (z,y) — 2yl gnd
18 closed under composition, brn, and bwm.

(2) The class D is the smallest class of pmf’s that contains the projections,
zero, binary successors sy and s1, and smash function (z,y) — 29l gnd
18 closed under composition, brn, and bounded witnessing.

2 Following Papadimitriou [5], we assume that if M is a non-deterministic RM that
runs in time p(n), then on any input of length n, every computation path of M
halts in < p(n) steps.

Proposition 2 FP C C and FP C D.

PROOF. Without bwm or bounded witnessing, both classes are defined as
Cobham’s characterization of FP. [

We will freely make use of polynomial-time computable predicates in the def-
initions of our functions; in such cases, we understand that formally we are
referring to their characteristic functions, where xp(Z) = 1 if P(Z) holds and
xp(Z) = 0 if not. Specifically, in a minimization of the form pz < 6(z).P(Z, 2),
we mean uz < 0(z)[1 — xp(Z,2) = 0].

Definition 3 A pmf ¢ is polynomially-bounded (poly-bounded for short) if
there is a polynomial p such that for all Z, if p(ZT) — y, then |y| < p(|Z|).

Proposition 4 Every pmf in C and D s poly-bounded.

PROOF. This is a straightforward proof by induction on the definitions of C
and D. O

By this proposition, we may assume that the bounding functions used in
bounded recursion on notation and bounded weak minimization are in fact
polynomials.

3 Machine Characterization

Theorem 5 Let ¢ be a pmf. The following are equivalent:

(1) v € C;
(2) ¢ € D;
(3) ¢ € NPMV.

PROOF. (1) = (3): This is proved by induction on the definition of ¢ € C.
The initial functions of C are p-time computable, and hence in NPMYV. Oth-
erwise, assume that ¢ is defined from pmf’s we already know to be in NPMV.
The proof breaks into cases depending on how ¢ is defined from these pmf’s.
When a pmf 1 is given by the induction hypothesis, we assume it is computed
by the nondeterministic RM M, in time p,;, and similarly for other such pmf’s.

Suppose ¢(z) = 9(x, p(x)). Then ¢ is computed by the machine M as fol-
lows. On input z, run M, on z; if it rejects, M also rejects. Otherwise, if M),
accepts with output 2, run M, on input z, z; if it rejects, M rejects, and oth-
erwise M accepts with output that of M. Clearly M computes ¢ and runs

in time p,(n) + py(n, p,(n)).

Suppose that p(z, z) is defined by bounded recursion on notation from ¥, p;,
and 290"bI'D where ¢ is a polynomial that is increasing in both arguments.
Then for any z, we have ¢(w,z) — y iff there is a sequence tg, ..., % such
that ¢(z) — t, for all i < |z| we have p,u(z, |2/2], tiy1) — t;, and
to = vy, where z(7) is the i*® bit of z. Furthermore, for any such sequence and
all i, we have ¢(z,|2/2!]) = t;, so t; < 240zbl2) Thus to compute p(z, 2),
guess a sequence tg, ..., %, with each t; < 24(1zl12) and verify that the above
condition holds for each element of the sequence by running M, or M, and
comparing the output to the previous element in the sequence. If none of the
verifications fails and ¢y = y, then accept and output y. Guessing the sequence
takes |z|q(|z|, |z|) time and the verification takes |z|p(|z|, ¢(|z|, |z])) time.

Finally, suppose that ¢(z) = py < 6(z).¢(z,y) = 0. We compute p(z) as
follows. Run My on input z. If it rejects, then reject, and otherwise guess y
smaller than its output. Next verify that ¢(x,y) — 0 and reject if not. If
the verification is successful, run M, on input z,¢ for every ¢ < |y|. If any
of the computations accepts with output 0, reject, and otherwise accept with
output y.

(3) = (1): Suppose that ¢ is computed by the nondeterministic register ma-
chine M with code e that runs in time p(n). Define the polynomial-time pred-
icate T'(e, Z, z) to hold iff z codes an accepting computation sequence of M,
on input T of length p(|Z|); the point here is to accept only sufficiently long
computation sequences, so that any accepted sequence is automatically weak-
minimal. We claim that ¢(Z) — a iff there is a weak-minimal z < 25924 (P(Iz]))
such that T'(e, Z, z) and result z = a. The reverse direction is obvious. For the
forward direction, suppose that z codes an accepting computation sequence
of M on Z. By repeating the final configuration as many times as necessary, we
can assume that the computation sequence has length p(|Z|) so that T'(e, Z, 2)
holds. We need to show that z is weak-minimal, so suppose that w < |z|. Since
z < 280d.(p(2]) " this implies that w < sqbd,(p(|Z|)). For sufficiently large Z,
we have that sqbd,(p(|Z|)) < 27(2). By our assumption on codes of computa-
tion sequences (that the code of a sequence of length n must be at least 2"), w
cannot code a sequence of length p(|Z|), and so T'(e, T, w) cannot hold. Thus z
must be weak-minimal, and therefore we can define ¢ by

o(Z) = result(pz < 2Me(p(|j|))-T(€,faz))-

The proof that (2) and (3) are equivalent is essentially the same as the pre-

ceding, but without having to compensate for short computation sequences
for the reverse direction. This was originally proved by Spreen [7]. O

Corollary 6 (Normal Form Theorem) Every pmf ¢(Z) € C can be writ-
ten in the form p(uz < p(Z).4(Z, z) = 0) for some p,9) € FP.

As an application of this equivalence, consider the following “intersection” and
“union” operations on pmf’s:

(p@Y)(z) =y p@) —yVi(r)—y
(p@Y)(x) =y p@) —yAd(z)—y

We see that NPMYV is closed under both operations as follows. If ¢ and
Y are computed by the RM’s M, and M,, respectively, then (¢ @ ¢)(z) is
computed by nondeterministically choosing to run one of M, or My on z, and
(¢ ® ¢)(x) is computed by running both M, and M, and accepting exactly
when both accept with the same output. By the Theorem, C' and D must also
be closed under these operations. Note that this latter fact is not so obvious,
because composition is not such a simple operation when applied to partial
functions. In particular, consider the composition ¢(Z) = ¥(po(Z), p1(Z)). To
evaluate (%), intuitively we must find some 2; and 2, such that p;(Z) — 2.
This involves evaluating both p;. But if, for example, p;(Z) is undefined, then
the entire composition is undefined. On the other hand, these intersection and
union operators are well-defined even when ¢(z) or ¥ (z) is not defined.

4 Resource-free Characterization

We now recall Bellantoni and Cook’s definition of safe recursion [1] in the
context of pmf’s. Arguments are separated into two types: normal (for which
we use z, y, z) and safe (a, b, and ¢). One view of this distinction is that the
normal arguments can be used to clock iterations, whereas the safe arguments
can be used simply as bit stores, for which a polynomial number of the bits
can be examined in a computation [1]. Another view is that the safe positions
are safe for “large” input values; i.e., one can increase the size of these argu-
ments without a significant increase in the computation time [2]. Yet another,
more philosophically justified, view is given by Leivant [4]. He views the safe
argument positions as being able to take data that has been somehow “im-
predicatively” defined. That is to say, if the definition of the data somehow
assumes the totality of the domain on which the function is being defined, it
is impredicative, and can only be used in a safe position. In particular, when a
function is defined by recurrence as f(s;z,y) = g(z,y, f(z,y)), the definition
only makes sense when g is defined no matter what its third argument is—in

other words, the definition assumes the totality of f, and hence the domain of
definition—and so this argument position must be safe. We use a semicolon to
delimit normal from safe arguments: ¢(z; a) takes a single normal argument z
and a single safe argument a.

Now consider the following operations on pmf’s, where z mod 2 is the value
of the low-order bit of z:

Safe Composition ¢ is defined by safe composition from v, 6,,..., 0k,

and py, ..., pe, written (Z;a) = Y(01(Z;), ..., 0k(Z;); p1(Z5 @), - - -, pe(T;5 @),
when

©(7;a) — ¢ < Jwb. A [6:(Z;) — wi] A A [p;(Z;@) — bj] A y(w;b) — c.

Safe Recursion on Notation ¢ is defined by safe recursion on notation
(srn) from 1 and p;, written

p(z,0;a) = Y(z;
QO(‘T’ SiZ; C_l) = ,Oi(d_?,

ISTRS]

)_ — —

10, 0(Z,2;a))

when
©(Z, s;2;a) > ¢ < Jb.p(Z, z;a) — b A pi(Z, 2;a,b) — c.
Safe Weak Minimization ¢ is defined by safe weak minimization (swm)
from v, written ¢(Z;a) = pb.y)(Z;a,b) mod 2 = 0, when

o(Z;a) — ¢ < Y(T;a,c) mod 2 — 0 A Vd<|c|.9(Z;a,d) mod 2 — 1

(we write ¥(Z;a,c) mod 2 — 0 if there is z such that ¢(z;a,c) — =z
and z mod 2 = 0; this is just the usual notion of pmf composition of ¢
and A\z.z mod 2).

It would be natural to say that ¢ is defined by safe witnessing from 1 when
o(Z;a) — ¢ < Y(T;a,c) mod 2 — 0.

But with no minimization or bounding requirements, this would lead to pmf’s
with an infinite number of outputs for a fixed input (e.g., if ¢ is constantly
0), so we do not consider such a scheme.

As we mentioned in the introduction, Bellantoni [1] defines the minimization
scheme p'b. f(Z;a@,b) mod 2 = 0 to be the least b such that f(Z;a@,b) mod 2 = 0
if such a b exists and 0 otherwise.® Note that if f is total, then so is
ptb.f(Z;a@,b) mod 2 = 0, and so Bellantoni can add this scheme to his char-
acterization of FP (base functions plus safe composition and safe recursion

3 Actually, if there is such a b, Bellantoni’s minimization outputs s;b.

10

on notation) to define a new class of total functions. He then proves that un-
der the natural definition of “; applications of minimization,” the functions
definable with ¢ + 1 applications of minimization are exactly those that are
computable in polynomial time from a X oracle. He also shows that the same
characterization holds for a bounded version of this total minimization scheme
(no notion of safety). Furthermore, we note that if we add an unbounded, total
minimization operator to primitive recursion, then it is easy to show that the
functions definable with i+1 applications are exactly those recursive in a ¥; or-
acle (for a proof, one can simply remove the bounds from Bellantoni’s proof
of the bounded version). Thus this total minimization operator (bounded or
safe) behaves in a manner exactly analogous to the corresponding operator for
recursive functions. However, for exactly this reason, it does not capture the
appropriate minimization that is analogous to generating the partial recursive
functions, which is our aim in this paper.

However, safe weak minimization as stated also does not allow us to reach this
goal. Intuitively, the reason is as follows. Define the (single-valued) pmf ¢ by

0, |z| < |a
w(w;a)Z{ ol < el

1, |z > |al

Now define ¥(z;) = pb.¢(x;b) = 0. Fix any z; for simplicity, assume z has the
form 2% for some z. The least b such that ¢(z;b) = 0 is z. The crucial point is
that any © < a < 2% satisfies p(z;a) = 0 and is weak-minimal, since a < 2*
and w < |a| implies |w| < |z|. In particular, the set of outputs of ¢(z;) has
cardinality approximately 2%. But any NPMYV pmf has a set of outputs of
cardinality < 2P(®) for some polynomial p, so ¥ cannot be in NPMV.*

The solution is to use only the “already computable” low-order bits of the
result of minimization. First define a mod v to be the |v| low-order bits of a;
Bellantoni gives a definition with v normal and a safe in [1]. Now consider the
following scheme:

Limited Safe Weak Minimization ¢ is defined by limited safe weak min-
imization (lswm) from ¢ and p when

©(z;a) = (ub.1)(Z; @, b) mod 2 = 0) mod p(7;).

Note that we are not actually limiting the scope of the minimization operator
here; we are simply throwing away data from its results. We return to this
idea momentarily.

We now show that limited safe weak minimization is the appropriate operator

4 We would like to thank one of the referees for pointing out (essentially) this
example.

11

for this goal.
Definition 7 By is the following set of functions:

(1) The constant 0 (nullary) function.

(2) Projections: m; " (W1, . . ., Wnj Wpi1y -« s Wpim) = Wi

(8) Binary successors: so(;a) = 2a, s1(;a) = 2a + 1.

(4) Predecessor: pred(;0) = 0, pred(; s;a) = a.

(5) Conditional: cond(;a,b,c) = if a mod 2 = 0 then b else c.

Definition 8 The class Csage is the smallest class of pmf’s containing By that
is closed under safe composition, srn, and lswm. The class C2Rl consists of
those functions of Csate with only normal arguments.

The following definition, lemma, and proposition are taken essentially from [1].
Taken together, they formalize the intuition that for any pmf ¢ there is a
polynomial ¢ such that the |w| bits of the output of ¢(Z;a) depend only on

the g(|w|) bits of the safe arguments @. For a sequence @ = ay, . .., ax, we write
a mod v for a; mod v, ..., a; mod v. We only use this for vector notation; in
particular, a,bmod v = aq, ..., a;, b mod v.

Definition 9 Let p(Z,a) be a pmf (note that we do not separate the arguments
into normal and safe here) and let q be a polynomial.

(1) ¢ is poly-checking on Z with threshold ¢ if for all w and all v satisfying
|v] > q(|Z])+|w| we have p(Z,a mod v) — ymodw < ¢(Z,a) — ymodw.

(2) A pmf¢(Z,a) is polymax bounded on Z by q if for all & and a, if p(Z,a)
is defined, then |¢o(z,a)| < ¢(|z]) + max{|a|}.

It might be argued that by automatically limiting the minimization operator,
we enter a “grey area” of implicit computational complexity, as the definition
is reminiscent of limited primitive recursion. However, this limitation is of a
different character. For any sort of minimization operator, when looking at
potential witnesses b for which ¢(Z;a,b) = 0 mod 2, we can examine only
an amount of information that is polynomial in |b|; otherwise the verification
that b is acceptable could not be done in polynomial time.® Suppose that b is
the least such witness, and let ¢ satisfy b < ¢ < 2°. Examining information that
is polynomial in |c| probably means examining values < b (as is the case in
the counterexample above). By minimality of b, we see that c is also possibly
a witness, which implies that there are possibly an exponential number of
witnesses. However, we can view the pmf’s of Cs. as being stratified by the
number of uses of lswm. Consider a function that uses lwsm exactly once,
say ¢(Z;a) = (uba)(z;a,b) = 0 mod 2) mod p(Z;). In [1], Bellantoni shows
that the functions definable from the base functions By using safe composition

5 Note that Spreen’s operators in [7] do not attempt a notion of minimization.

12

and srn are poly-checking on their normal arguments. Of course, 9 is such a
function. So even though there may be exponentially large witnesses b that
¥(Z;a,b) = 0 mod 2, only a polynomial number of any of them are actually
used in the computation. Thus intuitively our limiting operator only returns
the portion of the witness actually used. Of course, this rationale can only
be extended if we continue to generate pmf’s that are poly-checking, which is
what we now prove.

Proposition 10 If ¢(Z;a) € Csae, then ¢ is poly-checking and polymaz
bounded on .

PROOF. By induction on the definition of Cg,s. The cases other than Iswm
are proved as in [1]. Suppose that ¢(Z;a) = (ub.¥(Z; a,b) = 0 mod 2)modp(Z;)
and that ¢ and p are both polymax bounded by ¢(|Z|), which also acts as a
threshold witnessing that they are poly-checking. For any and @ we have that
if p(Z;a) — b, then |b| < |p(Z;)] < q(]Z]), so ¢ is polymax bounded by q. Now
let p(n) = q(n) + 2, fix any Z, @, and w and choose v with |[v| > p(|Z|) + |w].
Define the sets

= ((ub.9(Z;a mod v,b) = 0 mod 2) mod p(Z;)) mod w
(b3

Z;a mod v, b mod v) = 0 mod 2) mod p(Z;)) mod w

a
mod v, b mod v) mod w.

Since ¢ is a threshold for ¢ we have that

(%;a,5) mod 1

¥ (Z; @ mod v, b mod v) mod 1.

Now suppose that ¢ = b mod p(7;) € A; we must show that ¢ € B. By
the previous comment, we have that (Z;a mod v,b mod v) = 0 mod 2.
Furthermore, if d < |b], then d mod v < d < |b| so by weak minimality
of b we have that ¢(%;a@ mod v,d mod v) # 0mod 2, so ¢ € B. Now sup-
pose that ¢ = bmod p(Z;) € B. Set b' =4 b mod v; we first show that
b mod p(z;) € A. By definition, 9(Z;a@ mod v,b') = Omod 2. If d < ||,
then d < |b|, so 9(Z; @ mod v,d mod v) # 0 mod 2 by weak-minimality of b.
But if d < |b'|, then we also have that |d| < |v|, so d mod v = d and therefore
¥(Z;a@ mod v,d) # 0 mod 2. Thus we conclude that ¥’ mod p(Z;) € A. Since
[v] = |p(;)] we have b' mod p(Z;) = (bmod v) mod p(7;) = bmod p(T;) = c,
and therefore we conclude that ¢ € A, completing the proof. O

13

Theorem 11 Let ¢ be a pmf. Then ¢ € NPMV iff ¢ € C2

safe *

PROOF. The proof that ¢ € NPMYV implies ¢ € C™2! follows the same
lines as the proof of Thm. 5 that if ¢ € NPMYV then ¢ € C. What we
must do is define a version of the Kleene T-predicate using safe recursion on
notation that allows us to extract accepting computation sequences of a non-
deterministic RM. The main idea is that we use srn to define functions f(z;a)
which “examine” p(|z|) bits of @ and return some value. In other words, normal
arguments are used as clocks to examine safe values, which are used as “bit
stores.” With this in mind, define (characteristic functions of) the following

predicates:

e mach(m;e) < the |m| low-order bits of e code a description of a nondeter-
ministic RM (given the coding, mach(m;e) actually examines p(|m|) bits
of e for some fixed polynomial p, a detail which we do not specify from this
point onward).

o cfg(n;e,c) & mach(|ef;e)A the |n| low-order bits of ¢ code a configuration
of the RM described by e.

o trans(n;e,ci,c2) < mach(lef;e) A cfg(n;e, c1) A cfg(n;e,cz) A there is a
transition from ¢; to cs according to the description e.

e cs(n,t;e, z) < mach(lef;e) A Jt| < |z|A the [t| low-order bits of z code a
sequence of configurations ¢y, ...,cg,...,cx of a RM such that for all ¢ < k&
we have trans(n;e, ¢;, ¢;41) and if ¢ is repeated, then it codes an accepting
configuration.

o T*(n,t;e,Z,z) < cs(n,t;e,z) A the first configuration of z is the initial
configuration of the RM described by e on input Z and the last configuration
is an accepting state.

Now suppose that 1y € C. By Thm. 5, ¢ is computed by a nondeterministic
RM with code e with time bounded by some polynomial p(n). Since no more
than p(n) registers are accessed during a computation on input of length n,
every configuration can be coded by a string whose length is also polynomial
in n, say ¢(n). Furthermore we have that the code of any computation sequence
of length < n is itself < sqbd,.(n;). Thus, arguing as in Thm. 5, if we define

o(Z;) =a result(uz.T*(Q‘I(‘“_”D, gsabd, (p(21):). ¢ 7 z)),

then ¢ € C22! and ¥(Z) = ¢(Z;).
For the reverse direction, one proves by induction that if ¢(Z;a) € Caafe,
then ¢ € C using the polymax bound on ¢ given by Prop. 10. The only
cases of real interest are when ¢ is defined by safe recursion on notation
or safe weak minimization. If ¢ is defined by srn from % and p;, then the
same recursion on notation defines ¢ in C. Furthermore, if ¢ is polymax
bounded by ¢ on Z, then for all Z and a for which ¢(Z;a) is defined we have

14

o(z;a) < 24(1#)+2 el Since the bound is polynomial-time computable, the
recursion on notation is bounded by a function definable in C. Suppose that
o(Z;a) = (ubyp(z;a,b) = 0 mod 2) mod p(Z;). Let g(n) serve as a polymax
bound and threshold function for ¢, ¥, and p, and let ¥’ and p' be given by
the induction hypothesis applied to ¥ and p. Define the sets

A = {bmod p(Z;) | b weak-minimal s.t. ¢)(Z;a,b) = 0 mod 2}
B = {bmod p'(7) | b < 2¢(FD+max{la}+2 weak minimal s.t. ¢'(Z,a, b) = 0 mod 2}

It suffices to show that A = B, for then we can take
@' (%,a) = (ub < 20(ENFTmaxtlal}+s /(7 G b) = 0 mod 2) mod p'(Z)

where we note that the mod function is polynomial-time computable and
therefore definable in C. Clearly B C A. Suppose that b mod p(Z;) € A. Fix
any v with |v| = ¢(|Z|) + max{|a|} + 2 and set ' =4¢ b mod v. Then

¥(Z;a, b mod v) = ¢ (Z;a mod v, b mod v) mod 1 = ¢(Z;a,b) mod 1 =0

because amodv = a and q is a polychecking threshold for ¢. Thus we have that
Y'(z,a,b") = ¢¥(z;a,b') = 0 mod 2 by the induction hypothesis. Furthermore
Ib'| < |v| = q(|Z|) + max{|a|} + 2. Finally, suppose that d < |[b'|; then d < |b],
so ¥'(z,a,d) = ¥(Z;a,d) # 0mod 2 by weak minimality of b. Thus since
|v| > |p(Z)]|, we have that bmod p(Z;) = (bmodv)modp(Z;) = d'modp'(Z) € B,
completing the proof. O

5 Nondeterministic Recursion

n [4, §5], Leivant discusses a notion of nondeterministic recursion and its safe
(ramified) variant. We say that f(Z,z;a) is defined from the finite set & of
multifunctions by nondeterministic safe recursion if

f(z,0;a) — c< dg € ®.g(T;a) —
f(Z,siz;a) — c < dg € ©.3b.f(Z, 2; a)|—>b/\g(a: z;a,b) — ¢

In other words, at each step of the computation of f(Z, z; a) we are allowed to
“choose” a different recursion function from ®. Note that if ® consists of total
multifunctions, then f is also a total multifunction. Let E be the smallest class
of (total) multifunctions containing By that is closed under safe composition
and nondeterministic safe recursion; E™™! consists of those functions of E that
have only normal arguments. In this section we prove that E™™! consists of
exactly the total multifunctions of NPMYV. ¢

6 Because of a technical subtlety, Leivant’s proof sketch of this result does not carry
through.

15

Lemma 12 If f(z;a) € E, then f is polymaz bounded on Z.

PROOF. This is proved by induction on the definition of f and is essen-
tially the same as the proof that the functions defined by safe recursion (no
minimization) are all polymax bounded. O

Theorem 13 Let f be a total multifunction. Then f € E™ iff f € NPMV.

PROOF. For the forward direction, prove by induction that if f(z;a) € E,
then f(Z,a) € C, and therefore f € NPMV by Thm. 5. This is essentially
the same as the proof of the forward direction of Thm. 11. Of course, the
only case that needs consideration is when f is defined by nondeterminis-
tic safe recursion from ®. Say that ® = & U ®;, where the multifunctions
of @y are used to compute f(Z,0;a) and the multifunctions of ®; are used to
compute f(Z,s;z;a). Then we define f in C by

0.0 = @ g)wa)

gcdo

f(z,s;2,a) = (P g) (Z,z,a, f(T,2,a))

ged,

where @ is the “union” operator defined after Cor. 6 (recall that we have only
defined nondeterministic safe recursion from finite sets ®, so ®, and ®; are
finite). The polymax bound on f given by Lemma 12 gives a polynomial-time
computable bound on the recursion, and so the recursion can be defined in C.

For the reverse direction, suppose that f is computed by a nondeterministic
RM M that runs in time g(n), uses states dy, ..., d, and registers m, . .., Tp.
For simplicity, assume that f is unary. We can assume that M has exactly
two instructions for each nondeterministic state. We define a new register
machine N that will behave similarly to M; the difference is that N will first
guess its nondeterministic choices, then behave deterministically, referring to
its original guesses whenever it encounters a nondeterministic state. Formally,
we define N as follows:

(1) N uses registers mq, ..., Tmyi1, States dy, ..., dy, and new states ¢ and dg,
d.o, da1, and d; for every nondeterministic state d, of M.

(2) From the initial state, N nondeterministically constructs y in 7,11 with
length < g(|mi| + - - - + |m,|) using the states ¢.

(3) Otherwise, N is exactly the same as M, except that for every nondeter-
ministic state with instructions d, Dy and d,D; we replace these instruc-

16

tions with the following:

daTﬂ-m—}-ldaOdal

daOPWm+17Tm+1diz0

da1P7Tm+17Tm+1d:11

d.yDo
Thus, when N enters state d,, it transitions to state d,;, where 7 corre-
sponds to the low-order bit of the contents of 7,1, deletes that bit, and

then executes either the first or second instruction that M would execute
from state d,.

Note that the only nondeterministic instructions are now those that start
with one of the states from ¢. Then N also computes f(Z) by executing ex-
actly q(Jz1| + - -+ + |z,|) nondeterministic steps that change the contents of
only 7,11, then acting deterministically. To simulate N using nondeterminis-
tic safe recursion:

(1)

(3)

Define transition functions 7;(;s,ag,...,apms1) for j = —1,...,m + 1
as in [4], but do not define them for the states ¢ (more accurately, the
definition for the states ¢ is irrelevant). For j > 0, 7; gives the contents
of the 78 register after the transition from state (with code) s (for which
there is only one possibility); 71 gives the next state. The 7; can be
defined with just the use of conditionals, successors, and predecessors,
and hence can take all safe arguments.

Define the functions o; by simultaneous safe recursion so
that o;(y1,...,y;,2;d,a0,...,am41) is the contents of my after exe-
cuting |yi| x -+ x |y;| + |z| steps starting at state d and with q; in
register 7;; see [4] for details. Leivant also shows there that simultaneous
safe recursion is reducible to safe recursion, so we can without loss of
generality assume we use the latter.

Define the function guess(z;) using nondeterministic safe recursion by

e K P

In other words, guess is defined from the set of functions containing the
constant 0 and 1 functions and sy and s;.

Just as in [4], if ¢(n) < n* (where ¢(n) is the running time of M), then f is
represented in E™™ as

f(z;) = omyprx(z,...,2,0,8,2,0,...,0, guess(?k"””‘);))-

17

Examining the proof of Thm. 13, we actually proved that if f € E™™! then
f can be defined in C using only the schemes of composition and bounded
recursion on notation, along with the @ operator. So if we let C’ be the smallest
class of (total) multifunctions containing the same base functions as C that is
closed under composition, brn, and @, then we have proved:

Theorem 14 Let f be a total multifunction. Then f € C' iff f € NPMYV.

References

[1] S. Bellantoni. Predicative recursion and the polytime hierarchy. In Feasible
Mathematics II (Ithaca, NY, 1992), pages 15-29. Birkhauser Boston, Boston,
MA, 1995.

[2] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the
polytime functions. Comput. Complezity, 2(2):97-110, 1992.

[3] A. Cobham. The intrinsic computational difficulty of functions. In Logic,
Methodology and Philos. Sci. (Proc. 1964 Internat. Congr.), pages 24-30. North-
Holland, Amsterdam, 1965.

[4] D. Leivant. Ramified recurrence and computational complexity I: Word
recurrence and poly-time. In Feasible Mathematics II (Ithaca, NY, 1992), pages
320-343. Birkhauser Boston, Boston, MA, 1995.

[5] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing
Company, Reading, MA, 1994.

[6] A. L. Selman. Much ado about functions. In Eleventh IEEE Conference on
Computational Complexity, pages 198-212. 1996.

[7] D. Spreen. On functions computable in nondeterministic polynomial time: Some
characterizations. In Computer Science Logic (Karlsruhe, 1987), pages 289-303.
Springer-Verlag, Berlin, 1988.

[8] D. Spreen and H. Stahl. On the power of single-valued nondeterministic
polynomial time computations. In Computation Theory and Logic, pages 403—
414. Springer-Verlag, Berlin, 1987.

18

