
Multifunction Algebras and

the Provability of PH ↓

Chris Pollett

Department of Mathematics,
University of California, Los Angeles, 90095-1555 CA

cpollett@willow.math.ucla.edu

We introduce multifunction algebras Bτ
i where τ is a set of 0 or 1-ary

terms used to bound recursion lengths. We show that if for all ` ∈ τ we
have ` ∈ O(|x|) then Bτ

i = FPΣp
i−1(wit, τ̇), those multifunctions com-

putable in polynomial time with at most O(p(`(x))) queries to a Σp
i−1

witness oracle for ` ∈ τ and p a polynomial. We use our algebras to ob-
tain independence results in bounded arithmetic. In particular, we show
if Si

2 proves Σb
j = PH for some j ≥ i then Si

2 ¹B(Σ̂b
i+1)

S2. This implies

if PNP 6= PNP (log) then S1
2 does not prove the polynomial hierarchy

collapses. We then consider a subtheory, Z, of the well-studied bounded
arithmetic theory S2 = ∪iS

i
2. Using our algebras (mainly the i = 1 vari-

ants of our algebras) we establish the following properties of this the-
ory: (1) Z cannot prove the polynomial hierarchy collapses. In fact, even
Z+Π̂b

0-consequences of S2 cannot prove the hierarchy collapses. (2) If
Z ⊆ Si

2 for any i then the polynomial hierarchy collapses. (3) If Z proves
the polynomial hierarchy is infinite then for all i, Si

2 ` Σp
i 6= Πp

i .

Key words: bounded arithmetic, complexity theory, multivalued functions,
conservation results, independence results, polynomial hierarchy
1991 MSC: 03F30, 68Q15

1 Introduction

Over the past thirty years many techniques have been developed to try to
resolve the P = NP question. Recently there has been some research in how
much mathematics is needed to formalize these techniques. The goal of such
research would be to show there is a theory which on the one hand can for-
malize the currently available methods yet on the other hand can be shown
to be unable to resolve P = NP . Since circuit lower bound results tend to
involve probability arguments over families of finite spaces, it turns out the
necessary counting arguments needed to perform these proofs can be done in

Preprint submitted to Elsevier Preprint 20 February 2003

relatively weak fragments of arithmetic. Razborov [16] argues that monotone
circuit lower bounds for clique whose proof uses the sunflower lemma can be
carried out in V 1

1 and that Hastad [6] style results can be carried out in U1
1 or

S2(α). Further Pudlak [15] has shown Ramsey’s theorem can be proven in S2

and Paris, Wilkie, Woods [12] have shown that for every n there is a prime
between n and 2n is provable in S2. For those unfamiliar with this area, V 1

1

roughly has induction for NE-predicates up to lengths of some number, U1
1

has induction for NE-predicates up to lengths of lengths of a number, and
S2(α) has induction for predicates in the polynomial hierarchy with oracle
predicate α.

There has also been some work trying to show independence in connection
with these theories. Results of Takeuti [18] and Johannsen [7,8] have shown
simple functions such as x .− 1 or bx

3
c are not definable in certain theories

with induction on formulas where all the quantifiers are bounded by a length.
Some slightly stronger theories involving weak quantifier replacement for Π̂b

0-
formulas unable to define bx

3
c were given in the author’s thesis [14]. For still

stronger theories, conditional results are known. Razborov [17] has shown
assuming the existence of pseudorandom number generators secure against
attacks by quasi-polynomial sized circuit families that S2

2(α) cannot prove
super-polynomial lower bounds on circuit size for NP -predicates. In general,
though, it seems hard to show that these larger fragments of S2 cannot prove
P = NP , NP = co-NP , or P 6= NP . Razborov’s result is not as strong as one
could hope in that the superpolynomial sized circuits must be coded using a
second order predicate α and S2

2(α) has limited ability to reason about such
objects. Also, S2

2(α) might still be able to prove no circuit family of size nm

can decide SAT for each integer m, which would still imply P 6= NP . In fact,
assuming the existence of pseudo-random number generators Buss [4] shows
the Σb

1-formula which says that C does not code a |x|m-size circuit which
computes satisfying assignments to any satisfiable instance x of SAT can be
witnessed by a probabilistic p-time algorithm with error bounded away from a
half. It is therefore not unreasonable to conjecture that if there are quasipoly-
nomial sized circuit (or even p-time) secure pseudorandom generators (which
is a strong form of P 6= NP) and P = BPP (which is true with respect to a
random oracle [1]) then in fact S1

2 ` P 6= NP . So independence proofs for S1
2

may be hard to prove. Nevertheless, proving a better independence result for
this fragment or weaker ones is important. Not only would it rule out some
methods of proving P 6= NP , but given the recent work on automatizabil-
ity [2] such a result could lead to efficient theorem proving methods for these
systems.

In this paper, we show one can allow a limited amount of induction on pred-
icates at every level of the the polynomial hierarchy and still end up with a
theory that cannot prove the polynomial hierarchy collapses. This theory Z
is non-trivial for the following reasons: (1) As we have argued above S2 can

2

formulate interesting complexity theoretic results. (2) The natural fragments
Si

2 of S2 do not contain Z unless the polynomial hierarchy collapses. (3) If Z
can prove the polynomial hierarchy is infinite then for all i, Si

2 ` Σp
i 6= Πp

i .
Notice (3) above is non-trivial since S2 might prove the hierarchy is infinite,
yet it might be the case that NP 6= co-NP is not provable in Si

2 for i ≤ 100.
The theory Z roughly consists of open axioms for the symbols in our language
together with induction up to terms of form |t|i+3 on Σp

i predicates for all
i > 0. Here |t|i+3 is i + 3 applications of the length function to the term t.

Our proof method may be of independent interest. To show Z cannot prove
the hierarchy collapses we first show: (1) if Z proves PH ↓ then Z = S2.
Then to get a contradiction, we show: (2) S2 can Σ̂b

1-define bx
3
c and Z cannot.

The result (1) holds for any theory contained in S2 which for each i proves
Σ̂b

i induction up to some term which is Ω(|x|m) for some m. (m may increase
with i.) So this result may be useful for stronger independence result as well
as conditional independence results. As one such application we show that if
PNP 6= PNP (log) then S1

2 cannot prove the hierarchy collapses. To show (2) we
introduce multifunction algebras Bτ

i . We then give a collection of growth rates

τZ
1 such that B

τZ
1

1 is precisely the Σ̂b
1-definable multifunctions of Z and show

this class does not contain bx
3
c. These algebras are also of interest in that for

i > 1, they correspond to the multifunction classes FPΣp
i (wit, τ̇) provided that

` ∈ O(|x|) for all ` ∈ τ . That is, the multifunctions computable in polynomial
time with at most p(`) queries to a Σp

i−1 witnessing oracle where ` ∈ τ and
p is a polynomial. (The B in Bτ

i is for bounded query class.) These algebras
may be useful to those who study machine independent characterizations of
complexity classes. A less direct proof that these algebras are FPΣp

i (wit, τ̇)
was given in the author’s thesis [14].

We now outline the format of the rest of this paper. In Section 2 we introduce
the algebras Bτ

i and show for i > 1 they are the same class as FPΣp
i (wit, τ̇). In

Section 3 we characterize the Σ̂b
i -definable multifunctions of the theories T̂ i,τ

2 .
Then in Section 4, we use this characterization to establish the properties of
Z and Si

2 mentioned at the start of this paper.

2 The algebras Bτ
i and Bi

Before we introduce our algebras let us make precise what we mean by mul-
tifunction.

Definition 1 A multifunction is a set f ⊆ N × N such that for all x ∈ N
there exists 〈x, y〉 ∈ f . We express 〈x, y〉 ∈ f as f(x) = y. The composition
of f , g is the relation (f ◦ g)(x) = z which holds if there is a y ∈ N such that
f(x) = y and g(y) = z. If f is a multifunction and r is a function, we write

3

f(x) > r(x) if there exists y > r(x) such that f(x) = y. We define f(x) < r(x)
and f(x) = r(x) similarly.

We now define some operations necessary to present our algebras.

Definition 2 Let e be a multifunction.

(i) (µ-operator) (µx ≤ z)[e(x,y, z) = 0] returns the least x ≤ z such that
e(x,y, z) = 0 holds and returns z + 1 if no such value exists.

(ii) (W -operator) The multifunction (Wx ≤ z)[C(x,y, z) = 0] is the set of
tuples

{〈〈y, z〉, x〉|(C(x,y, z) = 0∧x ≤ z)∨¬(∃x ≤ z)(C(x,y, z) = 0∧x = z+1)}

(iii) (BPRτ) f is defined by τ -bounded primitive recursion from multifunc-
tions g, h, t, and r if

F (0,x) = g(x)

F (n + 1,x) = min(h(n,x, F (n,x)), r(n,x))

f(n,x) = F (`(t(n,x)),x)

for some r ∈ B0 and for some t ∈ B0 and ` ∈ τ .

If g, h, t, and r are multifunctions then f obtained by BPRτ results by viewing
each step in the above iteration as a composition of multifunctions.

Definition 3

(i) Bτ
0 = B0 is the smallest class containing zero(x) = 0, S(x) := x + 1,

MSP (x, i) := bx/2ic, +, ·, .−, |x| := dlog2(x) + 1e, x#y := 2|x||y|, and
closed under composition.

(ii) B1 is the smallest class containing B0, containing (Wx ≤ |z|)[C(x,y) =
0] for C ∈ B0, and closed under composition.

(iii) Bτ
1 is the smallest class containing Bτ

0 , containing (Wx ≤ |z|)[C(x,y) =
0] for any C in B0, closed under composition, and closed under BPRτ .

(iv) (i > 1) Bi is the smallest class containing Bi−1, containing (Wx ≤
z)[D(x,y) = 0] for D ∈ Bi−1 and closed under composition.

(v) (i > 1) Bτ
i is the smallest class containing Bi−1, containing (Wx ≤

z)[D(x,y) = 0] for D ∈ Bi−1, closed under composition, and closed under
BPRτ .

Definition 4 Let τ be a set of iterms (0 or 1-ary L2-terms). FPΣp
i (wit, τ) is

the class of multifunctions computable in polynomial time with fewer than
O(`(h(x))) witness queries to a Σp

i -oracle for some ` ∈ τ and h ∈ B0.
FPΣp

i (wit, s) for some single function s is the class where the number of
queries on inputs x of length n is bounded by O(s(n)).

4

To guarantee the class FPΣp
i (wit, τ) is closed under BPRτ we next define a

notion of a product closed set of iterms.

Definition 5 A set τ of terms is product closed if for all `(x), `′(x) ∈ τ and
s, t ∈ B0 there is an (` · `′) ∈ τ and an r ∈ B0 such that (` · `′)(r(x)) ≥
`(s(x)) · `′(t(x)).

An example of a product closed set of iterms is {id} since id(s(x) · t(x)) =
id(s(x)) · id(t(x)).

Given a set τ of iterms it is not hard to define inductively a minimal set of
iterms containing τ ∪ cl which is product closed. Here cl is the set of all closed
L2-terms. We write τ̇ for the product closure of τ and ˙(|τ |) for the product
closure of |τ |.

We will frequently use the following B0 functions:

2|y| = 2|y|
1

:= 1#y max(x, y) := cond(K≤(x, y), y, x)

2|y|
n

= 21·|y|n := 2|y|
n−1

#y min(x, y) := cond(K≤(x, y), x, y)

2k·|y|n := 2|y|
n · 2(k−1)·|y|n 2min(|y|,x) := MSP (2|y|, |y| .− x)

mod2(a) := a .− 2 · b1
2
ac LSP (x, i) := x .−MSP (x, i) · 2min(|x|,i)

K¬(x) := 1 .− x. β̂(x, |t|, w) := MSP (LSP (w, Sx|t|), x|t|)
K≤(x, y) := K¬(y .− x) Bit(i, x) := β̂(i, 1, x)

K∧(x, y) := x · y β̇(x, |t|, s, w) := min(β̂(x, |t|, w), s).

K=(x, y) := K∧(K≤(x, y), K≤(y, x))

cond(x, y, z) := K¬(x) · y + K¬(K¬(x)) · z

The k and n in 2k·|y|n are fixed integers. Taking products of terms 2k·|s|n we
can construct terms representing 2p(|s|) where p is any polynomial. β̂ and β̇
allow block sequence coding. Roughly, β̂(x, |t|, w) projects out the xth block
(starting with a 0th block) of |t| bits from w. β̇(x, |t|, s, w) returns the mini-
mum of β̂(x, |t|, w) and s. For clarity, we write 2`(x) for 2min(|t(x)|,`(x)), if `(x)
is a term which is obviously less than |t(x)| for some t ∈ L2.

We define a pairing operation which will sometimes be more convenient than
block coding.

Let B = 2|max(x,y)|+1. So B will be longer than either x or y. Hence, we can code
pairs as 〈x, y〉 := (2|max(x,y)|+y)·B+(2|max(x,y)|+x). To project out the coordi-

5

nates from an ordered pairs we use β(1, w) := β̂(0, b1
2
|w|c .− 1, β̂(0, b1

2
|w|c, w))

and β(2, w) := β̂(0, b1
2
|w|c .−1, β̂(1, b1

2
|w|c, w)) which returns the left and right

coordinate of the pair w. (The real Gödel beta function projects out β(i, w),
the ith element of a sequence w. However, as we never use this function we
allow the suggestive notation.) To check if w is a pair we use ispair(w) :=

Bit(w, b1
2
|w|c .− 1) = 1 ∧ 2 · |max(β(1, w).β(2, w))|+ 2 = |w|.

Notice the above functions are all in B0.

Definition 6 Given t ∈ B0 we define a monotonic term t+ called the dom-
inator for t by induction on the complexity of t. t = t+ if t is constant or a
variable. If t is S(f) then t+ is S(f+). If t is f ◦ g for ◦ a binary operation
other than .− or MSP then t+ is f+ ◦ g+. Lastly, if t is f .− g or MSP (f, g)
then t+ is f+.

Lemma 7 (i ≥ 1) Bτ
i is closed under the following type of recursion:

F (0,x) = g(x)

F (n + 1,x) = min(h(n,x, F (n,x)), r(n,x))

f(n,x) = F (min(n, `(t(n,x))),x)

where g and h are in Bτ
i , r, t ∈ L2 and ` ∈ τ .

PROOF. Let r+ denote r+(`(t),x). To define f we first define f ′ as

F ′(0,x) = g(x)

F ′(n + 1,x) = min(F ′(n,x) +

min(h(n,x, β̂(n, |r+|, F ′(n,x))), r)(2i|r+|), 2(`(t)+1)|r+|)
f ′(n,x) = F ′(`(t(n,x)),x)

From f ′ we can define f as β̂(min(n, `(t)), |r+|, f ′(n,x)). 2

To show Bτ
i = FPΣp

i (wit, τ̇) we use an arithmetization of the polynomial
hierarchy which is essentially due to Kent-Hodgson [10]. Let L2 be the language
which consists of the initial functions of B0. (The 2 in L2 is due to the presence
of # := #2 in the language. In general, x#ky := 2|x|#k−1|y| and Lk where k > 2
is the language containing Lk−1 together with #k.) We call a quantifier of the
form (∀x ≤ t) or (∃x ≤ t) where t is an L2-term not containing x a bounded
quantifier. A formula is bounded if all it quantifiers are. A quantifier of the form
(∀x ≤ |t|) or of the form (∃x ≤ |t|) is called sharply bounded and similarly a
formula is sharply bounded if all its quantifiers are.

6

The bounded arithmetic hierarchy is defined as follows: Σb
0 = Πb

0 is the class of
sharply bounded formulas. Σb

i is the least class containing Πb
i−1, closed under

conjunction, disjunction, sharply bounded universal quantifiers, and bounded
existential quantifiers. Similarly, Πb

i is the least class containing Σb
i−1, closed

under conjunction, disjunction, sharply bounded existential quantifiers, and
bounded universal quantifiers. This hierarchy corresponds in a natural way to
the polynomial time hierarchy: In the standard model Σb

i -formulas describe
exactly predicates in Σp

i . Similarly, Πb
i -formulas correspond to Πp

i -predicates.
This correspondence is proven in Buss [3].

The prenex bounded arithmetic hierarchy is defined similarly: Σ̂b
0 are those

formulas of the form (∃x ≤ |s|)φ and Π̂b
0 are those formulas of the form

(∀x ≤ |s|)φ where φ is an open formula. Σ̂b
i are those formulas of the form

(∃x ≤ t)φ where φ ∈ Π̂b
i−1-formula. Π̂b

i are those formulas of the form (∀x ≤ t)φ

where φ ∈ Σ̂b
i−1. For i ≥ 1, the sets described by Σ̂b

i -formulas and Σb
i -formulas

are equivalent [14,13]. (Given that we can do block coding in B0 it is not
hard to see one can do the necessary quantifier replacements and pairing.
See Remark 18) Similarly, sets described by Π̂b

i -formulas and Πb
i -formulas are

equivalent. We call any formula in
⋃

i Σ̂
b
i ∪ Π̂b

i a prenex formula.

Definition 8 For C a class of multifunctions, we write C = y to denote the
relations of the form f = y where f ∈ C. We define C > y similarly.

The next lemma connects the algebras Bi to the polynomial hierarchy.

Lemma 9 (1) B0 = 0 expresses precisely the open formulas of L2. (2) For
i ≥ 1 Bi = 0 expresses any predicate which is a Boolean combination of Σ̂b

i−1-

formulas. (3) For i ≥ 0, Bi = y can be expressed by a Σ̂b
i-formula.

PROOF.

(1) The functions in B0 are precisely the L2-terms as Bτ
0 = B0 is just the

closure of the initial functions of L2 under composition. In particular, Bτ
0 = B0

can define K=, K≤, K∧, and K¬. From these terms one can express any open
formula. Now suppose t ∈ B0, then since t ∈ L2, t = 0 is an open formula.

(2) The proof is by induction on i. When i = 1 by (1) it suffices to show B1

can express sharply bounded quantifiers. Consider A := (∃x ≤ |t|)B where B
is an open formula equivalent to fB = 0 in B0 = 0. Then A can be expressed
as

[K¬(K=((Wx ≤ |t|)[fB = 0], |t|+ 1))] = 0.

For all j < i assume Bj expresses Boolean combinations of Σ̂b
j−1-predicates.

Consider the Σ̂b
i−1-formula A := (∃x ≤ t)B where B is a Π̂b

i−2-predicate which
by assumption can be expressed in Bi−2 = 0 as fB = 0. Then A can be

7

expressed as [K¬(K=((Wx ≤ t)[fB = 0], t + 1))] = 0.

(3) We show the graph of any f(x) ∈ Bi can be expressed in the form Af (x, y)

where Af is a Σ̂b
i -formula and y is bounded in Af by a term t. In the i = 1

case, by using dummy quantifiers we can express the base functions of B0

with Σ̂b
1-formulas. So it remains to show Σ̂b

1-formulas can express the graphs
of functions defined by sharply bounded W -operator on open formulas (by
(1)).

Suppose f(x) = y is a function in B0. Hence, f is an L2-term. So we can
define the graph of ((Wx ≤ |t|)[f(x) = 0]) = y with the following formula
which when prenexified is equivalent a Σ̂b

1-formula

[(∃x ≤ |t|)(f(x) = 0 ∧ y = x) ∨ (∀x ≤ |t|)(f(x) > 0 ∧ y = |t|+ 1)].

Now suppose f = h(g1(x1), . . . , gn(xn)) and we can Σ̂b
1-define the functions

h(z1, . . . zn) and gj(xj) with graphs H, Gj. Then we can define f with the

following formula which when prenexified is a Σ̂b
1-formula:

y ≤ t ∧ (∃y1 ≤ t1) · · · (∃yn ≤ tn)[G1(x1, y1)

∧ · · · ∧Gn(x1, y1) ∧H(y1, . . . , yn, y)].

For i ≥ 1 the same argument shows the graphs of Σ̂b
i -formulas are closed

composition. What is left to show is that one can express with Σ̂b
i -formulas

the graphs of multifunctions defined by W -operator. Suppose fC(x) ∈ Bi−1,2.
Our induction hypothesis is that the graph of fC(x) = y can be defined with
some Σ̂b

i−1-formula, C(x, y). We can define (Wy ≤ t)[fC(x) = 0] = z with the

following formula which when prenexified is a Σ̂b
i -formula

[(C(x, 0) ∧ x = z) ∨ (∀x ≤ t)(¬(C(x, 0) ∧ z = t + 1)].

2

The following lemma follows from the fact that we can compose multifunctions
defined using BPRτ in Bτ

i .

Lemma 10 (i ≥ 0) Bτ
i = B τ̇

i .

Theorem 11 (i > 1) Bτ
i = FPΣp

i−1(wit, τ̇) provided ` ∈ O(˙{|x|}) for all
` ∈ τ .

PROOF. The condition on τ insures that Bτ
i can only perform polynomially

many witness queries on a given input. First we argue Bτ
i ⊆ FPΣp

i−1(wit, τ̇).

8

By Lemma 9 (3), the graph of any f ∈ Bi−1 is contained in Σb
i−1. Hence,

with one witness query to a Σp
i−1-oracle we can compute the value of any

f ∈ Bi−1. Similarly with one witness query to a Σp
i−1-oracle we can compute

(Wy ≤ t)(f(x, y) = 0) where f ∈ Bi−1. Suppose Mf ,Mg ∈ FPΣp
i (wit, τ̇), the

machine that runs first Mg on input x followed by Mf on the result is still in
this class since the number of queries will just be the sum of Mg’s and Mf ’s
queries which is boundable by a term in τ̇ . Similarly, for closure under BPRτ

to compute Mf from Mg and Mh with bound `(t) where ` ∈ τ , we first run
Mg on x then run Mh on the output, then Mh on that output, and so on `(t)
times. The total number of queries will be `(t) times the maximum number of
queries Mh makes in an step. Since by definition τ̇ is product closed this total
can be bounded by some term in τ̇ .

Now we show Bτ
i ⊇ FPΣp

i−1(wit, τ̇). By Lemma 9 (2), any B(Σp
i−1)-predicate

can be expressed in Bi = 0. Let M ∈ FPΣp
i−1(wit, τ̇). Let (∃y ≤ t)C(q, y) be

M ’s oracle and let p(|x|) bound M ’s runtime and `(t(x)) where ` ∈ τ̇ and
t ∈ L2 bound the number of queries M makes. Consider the following Πp

i−2-
predicate Comp(x,w, v, j) “w is a valid computation of M on the input x with
the first j queries answered by the first j bits of v and if the query k answer is
a 1 then the witness wk returned satisfies C(qk, wk)?” We assume the coding
of a w is done using block coding and the maximum block length is |k(x)|
where k ∈ L2. We assume block i contains a tuple that can be decoded using
the pairing operations and this tuple gives the configuration of the machine at
time i. Since we have a bound t on the size of witness returned by a query, we
can bound the size of any computation w of M on x by some function 2p(|x|)

where p is a polynomial. Let g(x) ∈ Bi be 〈1, ((Wy < 2p(|x|))Comp(x, y, 1, 1))〉.
The first coordinate in this case is being used to say that v = 1. The y given in
the remaining coordinate returned by g will be a computation on x where the
oracle always responded ‘no’ except on the first query or y will be 2p(|x|) + 1 if
there is no such computation. Now let h(j, x, w′) be

〈2 · β(1, w′) + 1, ((Wy < 2p(|x|))Comp(x, y, j, 2 · β(1, w′) + 1)〉

if β(2, w′) ≤ 2p(|x|) and let h(j, x, w′) be

〈4 ·MSP (β(1, w′), 1) + 1,

((Wy < 2p(|x|))Comp(x, y, j, 4 ·MSP (β(1, w′), 1) + 1)〉

otherwise. Clearly h can be defined in Bi using cond. The coordinate of w′

stores the value of the current v. The two cases of h correspond to the case
where there was a computation of M on x with the first j queries answered
according to v, and where there wasn’t. In the first case, we shift v one bit to
the left and put a 1 as the low order bit and then query whether there is a
computation of M on x with the first j queries answered according to this v′.

9

The second case, is similar except to make v′ we set the low order bit of v to 0,
shift left and add 1. We can now define a multifunction f ∈ Bτ

i which returns
a computation of M on input x. This function is defined from g, h and r(x)
a bound on the size of pairs that can occur in the above using the recursion
of Lemma 7 up to `(t). Now using the β̂ function we can project out the last
block of M ’s computation on x and so get the output of M on x. 2

Corollary 12 (i > 1) (Bτ
i = 0) = PΣp

i−1(τ̇) provided ` ∈ O(˙{|x|}) for all
` ∈ τ .

PROOF. Suppose M ∈ PΣp
i−1(τ̇) then by Theorem 11, M can be computed

by some f ∈ Bτ
i , since PΣp

i−1(τ̇) ⊆ FPΣp
i−1(wit, τ̇). Now f = 1 is equivalent

to 1 .− f = 0. So Bτ
i = 0 contains PΣp

i−1(τ̇). For the other direction consider
some predicate f = 0 in Bτ

i = 0. By Theorem 11, f can be computed by
some Mf in FPΣp

i−1(wit, τ̇). Let M be the PΣp
i (τ̇) machine which uses the

oracle ∃wComp(x,w, v, j) (this is a non-witnessing oracle it just answers 1
or 0) and performs the same kind of search for a v as in Theorem 11. Af-
ter having determined v for a correct computation it then asks the query
∃w(Comp(x,w, v, j) ∧ Out(w) = 1) where Out(w) is the output of Mf on
input x in this computation. If the answer if 1, M outputs 0 otherwise M
outputs 1. 2

3 Bounded Arithmetic

We now introduce some bounded arithmetic theories including Z. Then we
characterize their Σ̂b

i -multifunctions.

We begin with BASIC which consists of all substitution instances finite set
of quantifier free axioms for the non-logical symbols of L2. These axioms are
listed in Buss [3] with the exception of the axioms for MSP and .− which are
listed in Takeuti [19].

Definition 13 EBASIC is obtained from BASIC by adding the following
three axioms:

(1) b < 2min(k·|d|,|d|2) ⊃ MSP (a · 2min(k·|d|,|d|2) + b, min(k · |d|, |d|2)) = a.

(2) (b < 2|d| ∧ a < 2|d|) ⊃ (β̂(0, |d|, a · 2|d| + b) = b ∧ β̂(1, |d|, a · 2|d| + b) = a).

(3) Si · |a| ≤ k ⊃ β̂(i, |a|, w) = β̂(i, |a|, LSP (w, k))

The three new axioms allow EBASIC to do simple reasoning about block
codings of sequences. (see [14,13]). For example, they allow EBASIC to prove

10

the following lemma the proof of which appears in [14,13].

Lemma 14 Let m = max(s(a), t(a, s)) and let t∗ := t(a, β̇(0, |m|, s(a), w))
where s(a), t(a, b) ∈ L2. Then LIOpen and EBASIC prove:

(a) (∃w ≤ 22·|m|)A(β̇(0, |m|, s, w), β̇(1, |m|, t∗, w))
⇔ (∃x ≤ s)(∃y ≤ t)A(x, y)

(b) (∀w ≤ 22·|m|)A(β̇(0, |m|, s, w), β̇(1, |m|, t∗, w))
⇔ (∀x ≤ s)(∀y ≤ t)A(x, y).

We now define more powerful theories by adding various types of induction
axioms to BASIC and EBASIC.

Definition 15 The Ψ-INDτ axioms are the axioms IND`
α:

α(0) ∧ (∀x)(α(x) ⊃ α(Sx)) ⊃ (∀x)α(`(x))

where α ∈ Ψ and ` ∈ τ .

As an example, let id(a) = a. Then Ψ-IND{id} is the usual induction for
Ψ-formulas. Other common sets of terms are {|id|}, {||id||} or {|id|m} where
|id|0 = id and |id|m = ||id|m−1|. We often write IND, LIND and LLIND
instead of IND{id}, IND{|id|}, and IND{||id||}. The set {|id|m} for fixed m is
just a singleton set; however, we will consider sets of terms such as {2p(|id|i)}
or {22p(|id|i)} where p is a polynomial.

Definition 16 (i ≥ 0) T i
2, Si

2 and Ri
2 are axiomatized as BASIC+Σb

i-IND,
BASIC+Σb

i-LIND, and BASIC+Σb
i-LLIND respectively.

T̂ i
2, Ŝi

2, and R̂i
2 are defined similarly except with Σ̂b

i induction axioms.

Let τ be a set of iterms. We define T̂ i,τ
2 to be

EBASIC+Σ̂b
i-INDτ

We define S2 := ∪iS
i
2 and define Z := ∪iZi where Zi := T̂

i,{|id|i+3}
2 .

It is shown in Pollett [13] that T i
2 = T̂ i

2 and Si
2 = Ŝi

2. It is not known if
Ri

2 = R̂i
2. However, R̂i

2 ⊆ Ri
2 since one can show R0

2 proves the axioms of
EBASIC [13]. Finally, it follows by the recursive doubling trick used to show
Si+1

2 ⊇ T i
2 in Buss [3] that Zi+1 ⊇ Zi for each i.

Proofs in our theories will be carried out in the sequent calculus system LKB
of Buss [3], together with the theories’ axioms as initial sequents. It is often
convenient, however, to reformulate inductions axioms as induction rules of
inference:

11

Definition 17 A Ψ-INDτ inference is an inference:

A(b), Γ → A(Sb), ∆

A(0), Γ → A(`(t(x))), ∆

where b is an eigenvariable and must not appear in the lower sequent, t ∈ L2,
` ∈ τ , and A ∈ Ψ.

Buss [3] shows that one gets the same theory if one formulates Si
2 or T i

2 with
inductions axioms or induction rules. The same proof works in the T̂ i,τ

2 case.

We will sometimes casually argue that a given formula is equivalent to a Σ̂b
i

formula so we can do induction on it.

Remark 18 The following was shown in Pollett [13]. The proof is a straight-
forward induction argument. Let τ be a set of iterms all of which are O(|x|)
then T̂ i,τ

2 proves the Π̂b
i-REPLτ axioms

(∀x ≤ `(s))(∃y ≤ t(x, a))α(x, y, a) ⇔
(∃w ≤ 2 · (t+(`(s), a)#(2`(s))))(∀x ≤ `(s))α(x, β̇(x, |t+(`(s), a)|, t, w))

where α ∈ Π̂b
i , ` ∈ τ , and s, t ∈ L2. Using the above kind of replacement where

τ = {id} and Lemma 14 one can show the result we stated earlier that every
Σb

i-predicate is equivalent to a Σ̂b
i-predicate. In fact, this is provable in Ŝi

2. So
this also gives Ŝi

2 = Si
2, T̂ i

2 = T i
2.

Let Ψ be a set of formulas. A theory T can Ψ-define a multifunction f(x), if
there is a Ψ-formula Af (x, y) such that T ` ∀x∃yAf (x, y) and N |= Af (x, y) ⇔
f(x) = y. If T proves y is unique then we say T Ψ-defines the function f . We
will be interested in Σb

i and Σ̂b
i -definability. A predicate is ∆b

i with respect to
a T if it is provably equivalent in T to both a Σb

i -formula and a Πb
i -formula.

A predicate is ∆̂b
i with respect to a T if it is provably equivalent to both a

Σ̂b
i -formula and a Π̂b

i -formula.

Theorem 19 (i ≥ 0) Suppose ` ∈ O(˙{|x|}) for all ` ∈ τ . Then T̂ i,τ
2 can

Σ̂b
i-define the multifunctions in Bτ

i .

PROOF. Since functions in Bτ
0 = B0 are all L2-terms, EBASIC ⊆ T̂ i,τ

2 can
Σ̂b

0-define them. For i ≥ 1, it suffices to show that T̂ i,τ
2 proves the class Bτ

i

contains the appropriate W -operators, and is closed under composition and
BPRτ

2 .

(W -operator) We first show EBASIC can Σ̂b
1-define (Wx ≤ |t|)[f(x, z) = 0]

for f(x, z) a function in B0 = Bτ
0 . i.e., f is just an L2-terms. To see this notice

12

EBASIC proves

∃y ≤ |t|+1[(∃x ≤ |t|)(f(x, z) = 0∧y = x)∨(∀x ≤ |t|)(f(x, z) > 0∧y = |t|+1)]

and the formula inside the (∃y ≤ |t| + 1) is equivalent to a Σ̂b
1-formula. Next

we show EBASIC can Σ̂b
i -define (Wx ≤ t)[fC(x, z) = 0] for fC(x, z) ∈ Bi−1.

By Lemma 9, fC = 0 is expressible by a Σ̂b
i−1-formula C(x, z). So EBASIC

can Σ̂b
i -define (Wx ≤ t)[fC(x, z) = 0] since it proves

(∃y ≤ t + 1)[(∃x ≤ t)(C(x, z) ∧ y = x)∨
(∀x ≤ t)(¬C(x, z) ∧ y = t + 1)].

and the formula inside the (∃y ≤ t + 1) is equivalent to a Σ̂b
i -formula. Since

T̂ i,τ
2 ⊃ EBASIC, this shows T̂ i,τ

2 is also closed under the appropriate W -
operators.

(Composition) Suppose f = h(g1(x1), . . . gn(xn)) and that T̂ i,τ
2 can Σ̂b

i -define

h(z1, . . . zn) and gj(xj) where 1 ≤ j ≤ n and where h, gj ∈ B
|τ |
i . Then there

are Σ̂b
i -formulas H, G1, . . . , Gn such that T̂ i,τ

2 ` (∀z)(∃y ≤ t)H(z, y) and
T̂ i,τ

2 ` (∀xj)(∃y ≤ tj)Gj(xj, y), for 1 ≤ j ≤ n. So

T̂ i,τ
2 ` (∀x1) · · · (∀xn)(∃y ≤ t)(∃y1 ≤ t1) · · · (∃yn ≤ tn)(G1(x1, y1)

∧ · · · ∧Gn(x1, y1) ∧H(y1, . . . yn, y)).

The formula inside the (∃y ≤ t) is equivalent to a Σ̂b
i -formula in EBASIC

and it defines f .

(BPRτ) Suppose f is obtained by BPRτ from g and h which are Σ̂b
i -definable,

r, t ∈ L2, and ` ∈ τ . Let G and H be the Σ̂b
i -graphs of g and h such that

T̂ i,τ
2 ` (∀x)(∃y ≤ t1)G(x, y) and T̂ i,τ

2 ` (∀n,x, u)(∃v ≤ t2)H(n,x, u, v). We
can assume r(0,x) ≤ t1(x). So let A(n,x, w, y) be

G(x, β̇(0, |r+(`(t),x)|, r(0,x), w)))∧
β̇(n, |r+(`(t),x)|, r(`(t)),x), w) = y ∧
(∀j < `(t))((H(j,x, β̂(j, |r+(`(t),x)|, w), β̂(Sj, |r+(`(t),x)|, w))

∧β̂(Sj, |r+(`(t),x)|, w) < r(n,x)) ∨ β̂(Sj, |r+(`(t),x)|, w) = r(n,x))

and let B(n,x) be (∃y ≤ r)(∃w ≤ 2`(t)·(|r+|+1))A(n,x, z, w, y). Let F (n,x, y)
denote the formula within the (∃y ≤ r). Since ` ∈ O(|x|), this formula is
equivalent to a Σ̂b

i -formula in T̂ i,τ
2 and we can define f if we can show

(∀x, n)(∃y ≤ r)F (`(t(n,x)),x, y).

13

So it suffices to show (∀x, n)B(`(t),x). Now B is also equivalent to a Σ̂b
i -

formula, so T̂ i,τ
2 can use INDτ

B axioms. Since T̂ i,τ
2 proves (∀x)(∃y ≤ t1)G, it

proves B(0,x). Suppose T̂ i,τ
2 ` B(m,x) where m ≤ `(t). So there are v, w, y

satisfying A(m,x, w, y). If we set y′ = h(m,x, y), and

w′ = y′ · 2min((m+1)·|r+|,`(c)·|r+|) + LSP (w, (m + 1) · |r+|)

then by axioms (1) and (3) of EBASIC, T̂ i,τ
2 ` A(m + 1,x, z, w′, y′). Hence,

T̂ i,τ
2 ` B(m + 1,x). By the INDτ

B axioms, T̂ i,τ
2 ` (∀x, n)B(`(t),x). 2

Let T be EBASIC or T̂ i,τ
2 . By Parikh’s Theorem [11], T can Σ̂b

m-define a
function f if and only if there is a Σ̂b

m-formula Af (x, y) such that T proves
(∀x)(∃!y ≤ t)Af (x, y). For a multifunction one does not have to show unique-

ness. An EΣ̂b
m-formula is a formula (∃y ≤ t)A where A ∈ Σ̂b

m. We write LΨ
(lexicographically Ψ) for the set of formulas that can be made into Ψ-formulas
by introducing dummy quantifiers. We define a witness predicate as follows.

If A(a) ∈ LΠ̂b
m−1 then WitmA (w, a) := w = 0 ∧ A(a)

If A(a) is (∃x ≤ t(a))B and A ∈ Σ̂b
m then WitmA (w, a) := w ≤ t(a) ∧B(w, a)

If A(a) is (∃x1 ≤ t1)(∃x2 ≤ t2)B and A ∈ EΣ̂b
i then

WitmA (w, a) := ispair(w) ∧ β(1, w) ≤ t1 ∧ β(2, w) ≤ t2 ∧
B(β(1, 2), β(2, w), a).

Thus, if A ∈ LEΣ̂b
m then WitmA is equivalent in EBASIC to a Π̂b

m−1-formula.
The witness predicate above is simplified from Buss [3]. The simplification
arises because we are in the prenex setting. From the definition of witness the
next useful properties follow:

Lemma 20 (m ≥ 1) If A(a) ∈ LEΣ̂b
m, then: (a) EBASIC ` WitmA (w, a) ⊃

A(a). (b) There is a tA so that EBASIC ` A(a) ⇔ (∃w ≤ tA(a))WitmA (w, a).
(c)For tA, EBASIC ` WitmA (w, a) ⊃ w ≤ tA.

PROOF. (a) This statement is immediate from the definition of WitmA .

(b) If A ∈ Σ̂b
m then tA is just the bounds on the outermost existential quanti-

fier. Otherwise, if the outermost two existential quantifiers are bounded by t1
and t2, their pair is bounded by 22·(max(t1,t2)+1).

(c) Follows from (b) and the definition of WitmA . In particular, the definition
of ispair forces any pair for a witness to be unique. 2

14

For a cedent Γ = {A1, . . . , An} we use ∨Γ (resp. ∧Γ) to denote the disjunction
(resp. conjunction) of its formulas. We write w = 〈〈w1, · · · , wn〉〉 to denote
pairings of the form 〈w1, 〈w2, · · · , 〈wn−1, wn〉 · · ·〉〉. We will use this convention
in defining witnesses for Witm∧Γ and Witm∨Γ.

We define Witm∧Γ(w, a) by induction. If Γ = ∅, define Witm∧Γ(w, a) to be 0 = 0.
If Γ = {A} then Witm∧Γ(w, a) is WitmA (w, a). If Γ = {A1, . . . , An}, let Γ′ be
{A2, . . . An} and set Witm∧Γ(w, a) to be WitmA1

(β(1, w), a)∧Witm∧Γ′(β(2, w), a).

Now we define Witm∨Γ(w, a). If Γ = ∅, define Witm∨Γ(w, a) to be ¬(0 = 0). If
Γ = {A} then Witm∨Γ(w, a) is WitmA (w, a). Otherwise, if Γ = {A1, . . . , An},
let Γ′ be {A2, . . . An} and define Witm∨Γ(w, a) to be (WitmA1

(β(1, w), a)∧w1 ≤
tA1) ∨Witm∨Γ′(β(2, w), a) where tAj

are from Lemma 20.

Both Witm∧Γ and Witm∨Γ are equivalent to Π̂b
m−1-formulas in EBASIC.

Lemma 21 (m ≥ 1) Let Γ be a cedent of LEΣ̂b
m-formula with free variables

a. There is a term tΓ such that EBASIC ` Witm∧Γ(w, a) ⊃ w ≤ tΓ and
EBASIC ` Witm∨Γ(w, a) ⊃ w ≤ tΓ.

We also have

EBASIC ` (∃w ≤ tΓ)Witm∧Γ(w, a) → (∃w ≤ t∆)Witm∨∆(w, a)

if and only if EBASIC ` Γ → ∆.

PROOF. This follows from the definition of witness for a cedent, the fact that
witnesses for a cedent are made up of pairs, and by the bounds for witnesses
for formulas given by Lemma 20. 2

Theorem 22 (i ≥ 1) Suppose ` ∈ O(˙{|x|}) for all ` ∈ τ and T̂ i,τ
2 ` Γ → ∆

where Γ and ∆ are cedents of LEΣ̂b
i-formulas. Let a be the free variables in

this sequent. Then there is an f ∈ Bτ
i such that:

T̂ i,τ
2 ` Witi∧∧Γ(w, a) ⊃ Witi∨∨∆(f(w, a), a).

PROOF. This is proved by induction on the number of sequents in an T̂ i,τ
2 -

proof of Γ → ∆. By cut elimination, we can assume all the sequents in the
proof are in LEΣ̂b

i . In the base case, the proof consists of sequent→ A where A
is a logical axiom, an equality axiom, or an EBASIC axiom. In each of these
cases the witness predicate is A ∧ w = 0. So we can choose f to be the zero
function. The weak inferences, structural inferences, and cut can be handled
in essentially the same way as in the Si

2 case of the witnessing argument in
Buss [3]. The remaining cases are the bounded quantifier rules and induction.

15

We show the (∃ ≤:left) and (∃ ≤:right) – the (∀ ≤:left) and(∀ ≤:right) are
similar – and, of course, we show the Σ̂b

i -INDτ case.

(∃:left case)
b ≤ t, A(b), Γ → ∆

∃x ≤ tA(x), Γ → ∆

By hypothesis there is a g ∈ Bτ
i such that

T̂ i,τ
2 ` Witib≤t∧A∧Γ(w, a, b) ⊃ Witi∨∨∆(g(w, a, b), a, b).

There are three subcases. In each case, we need to determine a value for the free
variable b and then run g using that value. First, suppose (∃x ≤ t)A(x) ∈ EΣ̂b

i .
If w is a witness for (∃x ≤ t)A(x)∧Γ, then β(1, (β(1, w)) is a value for b such
that A(b) holds and β(2, β(1, w)) is a witness for A(b). Let our new witness
function be

f(w, a) = g(〈〈0, β(2, β(1, w)), β(2, w)〉〉, a, β(1, β(1, w))).

It is easy to see that

T̂ i,τ
2 ` Witi(∃x≤t)A∧Γ(w, a) ⊃ Witi∨∨∆(f(w, a), a).

In the second case suppose (∃x ≤ t)A(x) ∈ Σ̂b
i . If w is a witness for (∃x ≤

t)A(x) ∧ Γ, then β(1, w) is a value for b such that A(b) holds. Let our new
witness function be

f(w, a) = g(〈〈0, 0, β(2, w)〉〉, a, β(1, w)).

It follows that

T̂ i,τ
2 ` Witi(∃x≤t)A∧Γ(w, a) ⊃ Witi∨∨∆(f(w, a), a).

The last case is when (∃x ≤ t)A(x) ∈ LΣ̂b
i−2. (Notice by the definitions

of Σ̂b
i and Π̂b

i if (∃x ≤ t)A(x) ∈ LΠ̂b
i−1 then (∃x ≤ t)A(x) ∈ LΣ̂b

i−2. So

(∃x ≤ t)A(x) ∈ LΣ̂b
i−2 is the only remaining case.) In this case, let fA be the

multifunction in Bi−1 which by Lemma 9 has the property that fA(x) = 0
iff A(x). We define f to be the same as in the above case except rather than
use β(1, β(1, w)) to give a value b we instead use the Bi ⊂ Bτ

i multifunction
(Wx ≤ t)[fA(x) = 0] to give a value for b. Note if (∃x ≤ t)A(x) ∈ Σ̂b

0 then t is
sharply bounded and A is open so this function is definable in B1.

(∃:right case)
Γ → A(t), ∆

t ≤ s, Γ → (∃x ≤ s)A(x), ∆

16

By hypothesis there is a g ∈ Bτ
i such that

T̂ i,τ
2 ` Witi∧∧Γ(w, a) ⊃ WitiA(t)∨∆(g(w, a), a).

The definition of Witi implies

T̂ i,τ
2 ` Witit≤s∧Γ(w, a) ⊃ t ≤ s ∧Witi∧Γ(β(2, w), a).

So if A ∈ Σ̂b
i define f := 〈〈t(a), β(1, g(β(2, w), a)〉, β(2, g(β(2, w), a))〉.

If A ∈ Π̂b
i−1 define f := 〈t(a), β(2, g(β(2, w), a))〉.

For all other A define f := g(β(2, w), a)).

These functions are all Bτ
i and note that

T̂ i,τ
2 ` Witit≤s∧Γ(w, a) ⊃ Witi(∃x≤s)A(x)∨∆(f(w, a), a).

(Σ̂b
i-INDτ case)

A(b), Γ → A(Sb), ∆

A(0), Γ → A(`(t)), ∆

where ` ∈ τ . By hypothesis there is a g ∈ Bτ
i such that

T̂ i,τ
2 ` WitiA(b)∧Γ(w, a) ⊃ WitiA(Sb)∨∆(g(w, a), a).

Let h(m,w, a, b) be

cond(WitiA(Sb)∨∆(m, a, b),m, g(〈m,β(2, w)〉, a, b))

Define f by BPRτ
2 in the following way

F (0, w, a) = 〈β(1, w), 0〉
F (b + 1, w, a) = min(h(F (b, w, a), w, a, b), t∨A(Sb)∨∆)

Define f(u,w, a) := h(min(u, `(t)), w, a). Recall t∨A(Sb)∨∆ is the term guaran-
teed to bound a witness for A(Sb) ∨∆ by Lemma 21. It is easy to see

T̂ i,τ
2 ` WitiA(0)∧Γ(w, a) ⊃ WitiA(0)∨∆(f(0, w, a), a)

From this one can then show that

T̂ i,τ
2 ` WitiA(0)∧Γ(w, a) ∧WitiA(b)∨∆(f(b, w, a), b, a)

⊃ WitiA(Sb)∨∆(f(Sb, w, a), Sb, a).

17

Since t is in τ , it then follows by Σ̂b
i -INDτ that

T̂ i,τ
2 ` WitiA(0)∧Γ(w, a) ⊃ WitiA(`(t))∨∆(f(`(t), w, a), a).

This completes all possible cases and the proof. 2

Corollary 23 (i ≥ 1) Let ` ∈ O(˙{|x|}) for all ` ∈ τ . (1) The Σ̂b
i-definable

functions of T̂ i,τ
2 are contained in Bτ

i . (2) For i > 1 the Σ̂b
i-definable mul-

tifunctions of T̂ i,τ
2 are precisely Bτ

i = FPΣp
i−1(wit, τ̇). (3) The Σ̂b

1-definable
multifunctions of T̂ 1,τ

2 are Aτ
1, the smallest class containing operators (Wy ≤

t)(y = y) where t ∈ L2 and containing B1 and closed under composition and
BPRτ .

PROOF. We show (2) first. For the ‘if’ direction we use Theorem 19. For
the other direction consider Theorem 22 when we take Γ empty and ∆ to be
a EΣ̂b

i formula (∃y ≤ t(x))A(x, y) provable in T̂ i,τ
2 . Then we get that there

is a Bτ
i function f such that T̂ i,τ

2 `→ WitiA(x, f(x)). Given the definition
of witness we thus have T̂ i,τ

2 `→ A(x, β(1, f(x)). So k := β(1, f(x)) give at
least one value such that A(x, y) holds. In the case where A(x, y) defines a
function in T̂ i,τ

2 this is the only value y such that A(x, y) holds. This shows
(1). Suppose A is multivalued. From k we next define a Bτ

i function h such
that h(x) = y iff A(x, y). Suppose A(x, y) is of the form (∃z ≤ s)B(x, y, z)
where B ∈ Π̂b

i−1. We do the following: (a) Compute k(x) = y0. (b) Ask the
queries (Wy ≤ t)(y = y) and (Wz ≤ s)(z = z). Let y1 and z1 be the oracle
responses. (c) Ask the Σ̂b

i−1-query ¬B(x, y1, z1). If the answer is ‘1’ output y0.
Otherwise, output y1. For i > 1, f can be easily constructed using cond and
Lemma 9 as a composition of Bτ

i multifunctions so will be Bτ
i . The purpose

of step (b) is to nondeterministically get values for y1 and z1. If these values
happen to witness (∃y ≤ t)A then y1 is output, otherwise y0 is output. Notice
this argument show the Σ̂b

1-definable multifunctions of T̂ 1,τ
2 are in Aτ

1. For the
other direction the proof is the same as Theorem 19 once one observes that
(Wy ≤ t(x))(y = y) can be Σ̂b

1-defined in T̂ 1,τ
2 using (∃z ≤ t(x))(z = y). 2

The next two theorems are from Pollett [13]. We will have need of them in
the next section.

Theorem 24 (i ≥ 1) Suppose for all ` ∈ τ that ` ∈ O(˙{|x|}). Let 2τ̇ be the

set of terms 2` where ` ∈ τ̇ . Then T̂ i,2τ̇

2 ¹B(Σ̂b
i+1)

T̂ i+1,τ
2 . The ∆̂b

i+1-predicates

of both these classes are PΣp
i−1(τ̇).

Theorem 25 (i ≥ 0, k ≥ 2) [Pollett [13], Corollary 57] The ∆̂b
i+k-predicates

of T̂ i,τ
2 are PΣp

i+k−1(1).

18

We went to some effort establishing Corollary 23 since Pollett [13] does not
classify the Σ̂b

1-definable multifunctions of T̂ 1,τ
2 which we will have need of

in the next section. In particular we will need the upper bound on the Σ̂b
1-

definable functions of T̂ 1,τ
2 below.

4 Properties of Z and Si
2

In this section, we prove the properties of Z and Si
2 mentioned in the abstract

of this paper.

Theorem 26 If Z ⊆ T i
2 for any i then the polynomial hierarchy collapses to

B(Σp
i+2). Since Si

2 ⊆ T i
2, this also implies if Z is contained in Si

2 the polynomial
hierarchy collapses.

PROOF. Z ⊆ T i
2 implies Zi+2 ⊆ T i

2. The ∆̂b
i+2-predicates of T i

2 are PΣp
i+1(1)

by Theorem 25. By Corollary 24, Zi+2’s ∆̂b
i+2-predicates are PΣp

i+1(˙({|id|i+5})).
It is not hard to exhibit complete problems for the latter class. Hence, if
Zi+2 ⊆ T i

2 then

PΣp
i+1(1) = PΣp

i+1(˙({|id|i+5}))
and so for some k, PΣp

i+1 [k] = PΣp
i+1 [k +1], the result then follows from Chang

and Kadin [9,5]. 2

Definition 27 Define 2 ↑ 0(x) := x, 2 ↑ (i + 1)(x) := 22↑i(x). Let τZ
i be the

set of iterms of the form 2 ↑ j(p(|x|j)) for j ≥ i + 3 and p any polynomial.

Let BZ
i be short-hand for B

τZ
i

i .

As a consequence of Theorem 24 and the fact that a statement provable in Z
must in fact be provable in Zi (recall Zi+1 contains Zi) for some large enough
i, we have:

Lemma 28

(i > 0) T̂
i,τZ

i
2 ¹B(Σ̂b

i+1)
Z.

(i > 0) The Σ̂b
i-definable multifunctions of Z are precisely BZ

i .

To prove Z cannot prove the collapse of the hierarchy we first show if Z proves
PH ↓ then Z = S2. This requires the next lemma.

19

Lemma 29 There is a Σ̂b
i-formula Ui(e, x, z) such that for any φ(x) ∈ Σ̂b

i

there is a fixed number eφ and

EBASIC ` Ui(eφ, x, 2|x|
eφ

) ≡ φ(x).

PROOF. Note since we have pairing we are not losing any generality by
only considering 1-ary φ’s. Also by Lemma 9 we can express any open formula
A(x,y) as an equation f(x,y) = 0 where f ∈ L2. By induction, on the com-
plexity of A this is provable in EBASIC. So any Σ̂b

i -formula φ(x) is provably
equivalent in EBASIC to one of the form

(∃y1 ≤ t1) · · · (Qyi ≤ ti)(Q
′yi+1 ≤ |ti+1|)(ti+2(x,y) = 0)

where the quantifiers Q and Q′ will depend on whether i is even or odd. We fix
some coding scheme for the 11 symbols of L2 as well as for the i + 2 variables
x, y1, . . . , yi+1. We use de to denote the code for some symbol. i.e., d= e is the
code for =. We choose our coding so that all codes require less than |i + 12|
bits and we use 0 as dNOP e meaning no operation. The code for a term t is a
sequence of blocks of length |i+12| that write out t in postfix order. So x+y1

would be coded as the three blocks dxedy1
ed+ e. The code for a Σ̂b

i -formula will
be 〈〈dt1e, . . . , dti+3

e〉〉. We now describe Ui(e, x, z). It will be obtained from the
formula

(∃w ≤ z)(∃y1 ≤ z)(∀j ≤ |e|)(∀y2 ≤ z) · · · (Qyi ≤ z)(Q′yi+1 ≤ |z|)φi(e, j, x,y)

after pairing is applied. Here φi consists of a statement saying w is a tuple
of the form 〈〈w1, . . . , wi+2〉〉 together with statements saying each wi codes a
postfix computation of ti in e = 〈〈dt1e, . . . , dti+3

e〉〉. This amounts to checking
conditions for each m

[β̂(j, |i + 12|, dtme) = dxe ⊃ β̂(j, |z|, wm) = x]∧
[β̂(j, |i + 12|, dtme) = d+ e ⊃
β̂(j, |z|, wm) = β̂(j .− 2, |z|, wm) + β̂(j .− 1, |z|, wm)] ∧ · · ·

· · ·

[β̂(j, |i + 12|, dtme) = dNOP e ⊃ β̂(j, |z|, wm) = β̂(j .− 1, |z|, wm)].

φi also has conditions ym ≤ β̂(|e|, |z|, wm)∧ if ym was existentially quantified
and conditions ym ≤ β̂(|e|, |z|, wm) ⊃ if ym was universally quantified. Finally,
φi has a condition saying β̂(|e|, |z|, wi+2) = 0. Since EBASIC can prove simple
facts about projections from pairs, it can prove by induction on the complexity
of the terms in any Σ̂b

i -formula φ(x) that Ui(eφ, x, 2|x|
eφ

) ≡ φ(x). 2

One easy corollary of the above lemma is the following:

20

Corollary 30 (i ≥ 1) The theory T̂ i,τ
2 is finitely axiomatized provided τ is

finite.

PROOF. We can axiomatize T̂ i,τ
2 as EBASIC+IND

{`}
Ui

for ` ∈ τ . 2

Theorem 31 Suppose Z proves PH ↓. Then Z = S2.

PROOF. Since Z := ∪iT̂
i,{|id|i+3}
2 , if Z proves PH ↓ then T̂

i,{|id|i+3}
2 must

prove Uk of Lemma 29 equivalent to a Π̂b
k-formula for some i and k. Hence,

T̂
i,{|id|i+3}
2 proves Σ̂b

k = Π̂b
k. If k ≤ i then T̂

i,{|id|i+3}
2 proves Σ̂b

m-IND{|id|i+3}

for all m. So if we choose m := 2i + 9 we get T̂
m,{|id|i+3}
2 ⊆ T̂

i,{|id|i+3}
2 . Then

i + 3 applications of Theorem 24 show Si
2 ⊆ T̂

i,{|id|i+3}
2 . Since T̂

i,{|id|i+3}
2 proves

Σ̂b
k = Π̂b

k and k < i, T̂
i,{|id|i+3}
2 thus contains Sm

2 for every m. If k > i, then

since T̂
i,{|id|i+3}
2 ⊆ T̂

k,{|id|k+3}
2 (you can use Theorem 24 to see this), T̂

k,{|id|k+3}
2

proves Σ̂b
m-IND{|id|k+3} for all m. We can then perform the same argument as

in the first case. 2

Corollary 32 (i ≥ 1) If Si
2 proves PH ↓ then Si

2 ¹B(Σ̂b
i+1)

S2. In particular,

if PNP (log) (PNP then S1
2 does not PH ↓. Also, if Si

2 6= T i
2 then Si

2 does not
prove PH ↓.

PROOF. The second statement follows from the first since the ∆̂b
2-predicates

of S2 contains PNP ; whereas, those of S1
2 are exactly PNP (log). So if PNP)

PNP (log) then S1
2 cannot be B(Σ̂b

2)-conservative over S2. The third statement
similarly follows from the first since the Σ̂b

i -IND{id} axioms of T i
2 can be writ-

ten as Σ̂b
i+1-formulas. For the first statement, we will argue that Si

2 ¹B(Σ̂b
i+1)

Si
2+Z. Given this if Si

2 proves Σ̂b
k = Π̂b

k for some k then Si
2+Z also proves this.

So by the same argument as Theorem 31, Si
2 +Z = S2. Hence, Si

2 ¹B(Σ̂b
i+1)

S2.

So suppose Si
2 + Z proves a sequent of Σ̂b

i+1-formulas Γ → ∆. (We can reduce

B(Σ̂b
i+1)-conservativety to this case using the same proof as Theorem 59 in

Pollett [13].) Since Zm ⊆ Zm+1 for all m, we can assume in fact that Si
2 + Zm

proves A for some fixed m > 0. Hence, also Si
2 + T̂

m,τZ
m

2 proves Γ → ∆. Since if

m ≤ i, Si
2 ⊇ T̂

m,τZ
m

2 , the only hard case is when m > i. To see this case notice

Si
2 + T̂

m−1,τZ
m−1

2 can simulate an Si
2 + T̂

m,τZ
m

2 proof of Σ̂b
m-sequents in the same

way that T̂
m−1,τZ

m−1

2 can simulate a T̂
m,τZ

m
2 -proof of Σ̂b

m sequents in the proof of
Theorem 24, the only new rule of inference to worry about is the Σ̂b

i -IND{|id|}

inference. Let A be the induction formula in such an inference. Using a witness
oracle for A we query if A(|t|) holds. If it does we output the witness returned
by the witness oracle. Otherwise we query A(0). If A(0) does not hold then
we output 0 as the antecedent will be false. Finally if, neither of these cases

21

occurs, using O(log) queries to a Σp
i -oracle witness to binary search for a value

such that A(a) but A(Sa) does not where A is the Σ̂b
i induction formula and

run the multifunction witnessing the upper sequent in this proof on this value
to get a witness for the succedent in the lower sequent. This multifunction
is Σ̂b

i+1-definable in Si
2 and using Σ̂b

i -IND{|id|} on how this multifunction is

defined in [13], Si
2 can prove it has the desired properties. So Si

2 + T̂
m−1,τZ

m−1

2

can simulate the Si
2 + T̂

m,τZ
m

2 proof of Γ → ∆. If m− 1 > i, then we continue
proving a chain of such conservation results until we get to the i = m − 1

case. For i = m− 1 we have Si
2 ⊇ T̂

m−1,τZ
m−1

2 , hence, Si
2 proves Γ → ∆ and so

Si
2 ¹B(Σ̂b

i+1)
Si

2 + Z. 2

The third statement in the above corollary was pointed out to me by Sam Buss
via Jan Krajicek. We now prove Z cannot prove the collapse of the hierarchy.
Our method is based on the proof in Johannsen [7] that S0

2+ does not Σb
1-define

bx
3
c.

Definition 33 The function #B(x) returns the number of alternations be-
tween 1 and 0 in reading the binary number x from left to right. We start the
counting of this number at 1 so #B(1) = 1.

As an example, let x be the binary number 1110011 then #B(x) = 3. Since
the number of alternations in x’s binary notation is always going to be less
than the length of x we have the following easy lemma.

Lemma 34 If y ≤ x then #B(y) ≤ |x|.

PROOF. This follows since #B(y) ≤ |y| ≤ |x|. 2

To prove our results we study the way #B(f(x1, . . . , xn)) depends on #B(xi)
where f is in Bτ

1 .

Lemma 35 The following inequalities hold:

(a) #B(|x|) ≤ ||x||

(b) #B(b1
2
xc) ≤ #B(x)

(c) #B(MSP (x, i)) ≤ #B(x)

(d) #B(Sx) ≤ #B(x) + 1 ≤ 2 ·#B(x)

(e) #B(x#y) = 2

22

(f) #B(x + y) ≤ 5
2
· (#B(x) + #B(y))

(g) #B(x .− y) ≤ 5
2
· (#B(x) + #B(y)) + 7

2
≤ 9

2
· (#B(x) + #B(y))

(h) #B(x · y) ≤ (2 · (#B(x) + #B(y))log 5(5 · (#B(x) + #B(y)) + 8.5) ≤ 56 ·
(#B(x) + #B(y))1+log 5

(i) #B((Wi ≤ |t(x)|)(f(x, z) = 0)) ≤ ||t|| ≤ k||x|| for some fixed k.

PROOF.

(a) This follows from Lemma 34
(b) Since b1

2
xc chops off the low order bit of x the number of alternations

can at most stay the same.
(c) This follows by similar reasoning to (b).
(d) If the low order bits of x is 0 then adding 1 can increase the number of

alternations by at most one since only this bit will be flipped. Otherwise,
adding 1 will toggle the low order block of 1’s in x and carry the 1 to the
0 to its left. Again, at most increasing the number of alternations by 1.

(e) The number x#y is a 1 followed by |x||y| zeros.
(f) First, notice that adding 2i to or subtracting 2i from x can only increase

the number of blocks in x by at most 2. Since the blocks of 1’s in y can
be represented as expressions of the from 2j+i− 2i, when we perform the
addition we get at most 4 blocks in the new number for every block of
1’s in y. So the new number has fewer than #B(x) + 4#B(y) blocks. By
symmetry it also has less than #B(y) + 4#B(x) blocks. The minimum of
these two values is thus bounded by their average.

(g) This follows from (f) since if x ≥ y then

x .− y = (2|x|+1 − 1− ((2|x|+1 − 1− x) + y))

and 2|x|+1 − 1− x has at most one more block then x and

(2|x|+1 − 1− ((2|x|+1 − 1− x) + y))

has at most one more block then (2|x|+1 − 1− x) + y.
(h) Consider multiplying x by a block of 1’s 2i+j−2i. This gives x ·2i+j−x2i

which is the subtraction of two number each with at most one more
alternation than x. So we get less than 5 · #B(x) + 8.5 blocks by (g).

There are d#B(y)
2
e blocks of 1’s in y. So to compute #B(x · y) we need to

add together fewer than #B(y) numbers with fewer than 5 ·#B(x) + 8.5
blocks. If we do this in a balanced fashion then by (f) we get fewer than
5|#B(y)|(5 ·#B(x)+8.5) blocks. This is less than (2#B(y))log 5(5 ·#B(x)+
8.5) and in turn less than (2(#B(x)+#B(y))log 5(5·(#B(x)+#B(y))+8.5).

(i) Follows from (a).

23

2

As an aside, it would be interesting to get a better bound on the number of
blocks produced by multiplication. One can construct examples where #B(x·y)
is Ω((#B(x) + #B(y))2). For example, if one multiplies (11)2 and (111)2 one
gets (10101)2. Take two sequences {ai},{bi}, such that ai has i blocks of 11’s
alternating with blocks of 0’s (these blocks of 0’s increase in size with i) and
bi has i blocks of 111’s alternating with blocks of 0’s and such that ai · bi is of
the form (1010101 · · ·)2.

We now bound the number of blocks that can be produced by recursion. For
this define: LB(x) := #B(x) + ||x||.

Lemma 36 Let τ be a set of nondecreasing iterms all of which are O(||x||).
Assume τ has at least one unbounded term and let f be defined by BPRτ using
g, h,r, `, t satisfying

#B(g(x))≤ c · (
m∑

i=0

LB(xi))
4`1(s1(x))

#B(r(n,x))≤ c · (LB(n) +
m∑

i=0

(LB(xi)))
k

#B(h(n,x, y))≤ c · (LB(n) + (
m∑

i=0

LB(xi)) + LB(y))4`2(s(n,y,x))

where `1, `2 ∈ τ̇ , s, s1 ∈ L2 and c, k are constants. Then there is an `3 ∈ τ̇ , a
term t′ ∈ L2 such that

#B(f(n,x)) ≤ c · (LB(n) +
m∑

i=0

LB(xi))
4`3(t′(n,x))

PROOF. Note we do not lose any generality in assuming the constant c is
the same in the bound of each g, h, and r since if they differed we could always
take the maximum of the three values. We know by the bound on h that

#B(F (n + 1,x)) ≤ c · (LB(n) + LB(F (n,x)) +
m∑

i=0

LB(xi))
4`′(s(n,F (n,x),x))

.

Notice by the definition of BPRτ , F (n,x) ≤ r(n,x). So also ||F || ≤ ||r||.
Since r ∈ L2, there is a constant k′ such that

||r(n,x)|| ≤ k′ · (||n||+
m∑

i=0

||xi||) ≤ k′ · (LB(n) +
m∑

i=0

LB(xi))

24

Let k := k′ + 1. Thus, LB(F (n + 1,x)) is less than

c · (k · (LB(n) +
m∑

i=0

LB(xi)) + #B(F (n,x)))4`′(s(n,F (n,x),x))

Using our bound on #B(h), we can then expand #B(F (n,x)) and so on. We
can thus bound #B(f(n,x)) = F (`(t(n,x)),x) by Y :=

c · (
m∑

i=0

LB(xi) +
`(t)∑

j=0

k · (LB(j) +
m∑

i=0

LB(xi)))
4ψ

where ψ is

`1(s1(x)) +
`(t)∑

j=0

`2(s(j, F (j,x),x)

Since ` and `2 are nondecreasing and F ≤ r we can bound ψ by ψ′ :=

`1(s1(x)) + `(t+(n,x)) · `2(s
+(`(t+(n,x)), r+(`(t+(n,x)),x),x).

Let `′ be an unbounded term in τ and let v be a fixed number such that
`′(v) > 1 then ψ′ is bounded by

`′(v) · `1(s1(x)) · `(t+(n,x)) · `2(s
+(`(t+(n,x)), r+(`(t+(n,x)),x),x)

Since this term is just a product of terms in τ , it is bounded by some term
`4(t

′′) where `4 ∈ τ̇ . Now consider the term W under the exponent in Y . Since
` is nondecreasing and O(||x||), W can be bounded by

m∑

i=0

LB(xi) + `(t+(n,x)) · k · (2 · ||n||+
m∑

i=0

LB(xi))

which is less than

(2k + 1)(LB(n) +
m∑

i=0

LB(xi))
2 ≤ (LB(n) +

m∑

i=0

LB(xi))
4k+2.

So #B(f(n,x)) is bounded by

c · (LB(n) +
m∑

i=0

LB(xi))
(4k+2)·4`4(t′′)

.

Using the unbounded term `′ again we can get an `3 ∈ τ̇ and a t′ such that
(4k + 2) · 4`4(t′′) ≤ 4`3(t′) and thus prove the theorem. 2

Lemma 37 Let τ be a set of nondecreasing iterms all of which are O(||x||).
Assume τ has an unbounded term. If f(x) ∈ Bτ

1 and #B(xi)) ≤ ||xi|| then

#B(f(x)) ≤ c · (||x1||+ · · ·+ ||xn||)4`(t(x))
, t ∈ L2 and ` ∈ τ̇ .

25

PROOF. This follows from Lemma 35 and Lemma 36 and by noticing 1 +
log 5 < 4. 2

Theorem 38 The function bx
3
c is not Σ̂b

1-definable in Z. Hence, Z cannot
prove the polynomial hierarchy collapses.

PROOF. By Lemma 28 and Corollary 23, the Σ̂b
1-functions of Z are contained

in BZ
1 . Notice all the terms in τ̇Z

1 are o(|x|3). Consider y := 2|x|+1 − 1 for any

x. #B(y) = 1, yet b2|x|+1−1
3

c is a number of length |x| − 1 of the form 1010 · · ·.
Hence, #B(byc) = |x| − 1 > 1

4
· 22|y|3 which is greater than

c · ||y||4p(`(y)) ≤ c · 222·|y|4·p(`(y))

for fixed p, c, and for ` ∈ τ and large enough x. This is since 2 · |y|4 ·p(`(y)) can
be majorized by a term in τ̇Z

1 and as we have already observed all these terms

are o(|x|3). So by Lemma 37, bx
3
c is not in B

{|id|4}
1 and hence not in BZ

1 . On
the other hand, bx

3
c ∈ FP and by Theorem 31 if Z proves PH ↓ then Z = S2.

In which case, FP ⊆ BZ
1 since the Σ̂b

1-definable functions of S1
2 are FP (from

Buss [3] and using the fact that S1
2 can prove every Σb

1-formula equivalent to
a Σ̂b

1-formula) and S1
2 ⊆ S2. This is a contradiction since BZ

1 does not contain
bx

3
c. So Z does not prove PH ↓. 2

Remark 39 At this point, in the spirit of Razborov’s work on what fragments
can formalize which lower bounds techniques, we should examine the complex-
ity of the lower bounds proof just presented. The function #B(x) is polynomial
time computable, and hence, Σb

1-definable in S1
2 . The theory S1

2 can also prove
appropriate roundings on all of the inequalities in Lemma 35. For the bounds
on #B(x + y) and #B(x · y) one would fix y and perform induction on the
number given by the first i blocks of x. Then reverse the roles of x and y and
reason as we did above to get the bound. Lemma 36 can also be proven by
IND{|id|}. Hence, by induction on the complexity on any term in BZ

1 , S1
2 can

prove BZ
1 cannot does not contain bx

3
c.

Corollary 40 The theory T := Z+{Π̂b
0-consequences of S2} cannot prove the

polynomial hierarchy collapses.

PROOF. Let π denote the Π̂b
0-consequences of S2. We claim the Σ̂b

1-definable
functions of Z + π are still in BZ

1 , and so the argument above also implies
Z + π cannot prove PH ↓. Since Witi+1

A := w = 0 ∧ A for any A in π, we
can choose the zero function to witness A and use the same proof as the proof

of Theorem 24 to show T̂ i,2τ̇

2 + π ¹B(Σ̂b
i+1)

T̂ i+1,τ
2 + π. By the same reasoning

as Lemma 28 we get T̂
i,τZ

i
2 + π ¹B(Σ̂b

i+1)
Z + π. So T̂

1,τZ
1

2 + π ¹B(Σ̂b
2) Z + π.

26

Since Wit1A := w = 0 ∧ A, essentially the same proofs of Theorem 22 and

Corollary 23 show the Σ̂b
1-definable multifunctions of T̂

1,τZ
1

2 + π and hence
Z + π are BZ

1 . 2

Theorem 41 If Z proves PH ↑ then for all i, Si
2 ` Σp

i 6= Πp
i .

PROOF. For Z to show PH ↑, Z must show Σp
i 6= Πp

i for i > 0. We take this
to mean there is a Π̂b

i -formula A(x) such that for each integer k, the theory
Z proves the statement ∀e∃x¬(A(x) ⇔ Ui(e, x, 2|x|

k
). These statements are

equivalent in Z to Σ̂b
i+1-formulas. Hence, by Lemma 28 they are provable in

T̂
i,τZ

i
2 . But T̂

i,τZ
i

2 ⊆ Si
2 since terms in τZ

i are surpassed by |id|3. So T̂
i,{|id|3}
2 ⊆ Si

2

proves these statements and, thus, that Σp
i 6= Πp

i . 2

5 Acknowledgements

We would like to thank Sam Buss and Jan Johannsen for constructive com-
ments on an earlier version of this paper.

References

[1] C.H. Bennett and J. Gill. Relative to random oracle A, PA 6= NPA 6= co-NPA

with probability 1. SIAM Journal of Computing, 10:96–113, 1981.

[2] M. Bonet, T. Pitassi, and R. Raz. No feasible interpolation for TC0-frege proofs.
In Foundations of Computer Science, volume 38, pages 254–263, 1997.

[3] S.R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[4] S.R. Buss. Bounded arithmetic, complexity and cryptography. To appear
Theoria, 1998.

[5] R. Chang and J. Kadin. The boolean hierarchy and the polynomial hierarchy:
a closer connection. In Proceedings Fifth Annual Structures in Complexity
Conference, pages 169–178, 1990.

[6] J. Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the Eighteenth Annual ACM Symposium on theory of Computing, pages 6–20,
1987.

[7] J. Johannsen. On the weakness of sharply bounded polynomial induction. In
Proceedings of Gödel 1993, pages 223–230. Springer-Verlag, 1993.

[8] J. Johannsen. A model-theoretic property of sharply bounded formula with
some applications. Mathematical Logic Quarterly, 44(2):205–215, 1998.

27

[9] J. Kadin. The polynomial time hierarchy collapses if the boolean hierarchy
collapses. SIAM Journal on Computing, 17(6):1263–1282, August 1988.

[10] C. F. Kent and B.R. Hodgson. An arithmetical characterization of np.
Theoretical Computer Science, 21:255–267, 1982.

[11] R. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic,
36:494–508, 1971.

[12] J. Paris, A. Wilkie, and A. Woods. Provability of the pigeonhole principle and
the existence of infinitely many primes. Journal of Symbolic Logic, 53:1235–
1244, 1988.

[13] C. Pollett. Structure and definability in general bounded arithmetic theories.
To appear Annals of Pure and Applied Logic.

[14] C. Pollett. Arithmetic Theories with Prenex Normal Form Induction. PhD
thesis, University of California, San Diego, 1997.

[15] P. Pudlak. Ramsey’s theorem in bounded arithmetic. In Computer Science
Logic ’90, LNCS533, pages 308–317. Springer-Verlag, 1990.

[16] A.A. Razborov. Bounded arithmetic and lower bounds in Boolean complexity.
In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages 344–386.
Birkhauser, 1995.

[17] A.A. Razborov. Lower bounds for propositional proofs and independence
results in bounded arithmetic. In Proceedings of 20th International Symposium
on the Mathematical Foundations of Computer Science, page 105. Springer-
Verlag, 1995.

[18] G. Takeuti. Sharply bounded arithmetic and the function a .− 1. In volume
106 of Contemporary Mathematics, Logic and Computation, pages 281–288.
American Mathematical Society, 1990.

[19] G. Takeuti. RSUV isomorphisms. In P. Clote and J. Kraj́ıček, editors,
Arithmetic, Proof Theory and Computational Complexity, pages 364–386.
Oxford Science Publications, 1993.

28

