Sy ..., does not prove NP = co-N P uniformly

,€TP

Chris Pollett
214 MacQuarrie Hall
Department of Computer Science
San Jose State University
1 Washington Square, San Jose CA 95192
pollett@cs.sjsu.edu

February 23, 2003— Draft

Abstract

A notion of a uniform sequent calculus proof is given. It is then

shown that a strengthening, 5y ., of the well-studied bounded arith-
metic system S, of Buss does not prove NP = co-NP with a uniform

proof. A slightly stronger result that S ,,,, cannot prove illj,k’ = flﬁ”k,
uniformly for 2 < k' < k is also established. A variation on the
technique used is then applied to show that Sk’ezp is unable to prove
Matiyasevich-Davis-Robinson-Putnam Theorem. This result is with-
out any uniformity conditions. Generalization of both these results to
higher levels of the Grzegorczyck Hierarchy are then presented.

Mathematics Subject Classification: 03F30, 68Q15
Keywords: bounded arithmetic, independence results, diophantine com-
plexity, MDRP, NP versus co-NP

1 Introduction

The formalizability of the Matiyasevich-Davis-Robinson-Putnam (MRDP)
Theorem [12] and the provability of NP = co-NP in weak systems of arith-
metic are closely connected. Recall the MRDP Theorem says that the ;-
sets are equivalent to the sets that can be defined by formulas of the form:

A = {z|3P)P(z,7) = Qz,7)},

where P, () are polynomials with coefficients in N. It is known that the
theory IAp+ezxp, which has bounded induction in the language of arith-
metic together with an axiom exp for exponentiation, proves the MRDP

Theorem [5]. By an old folklore result (see Hajek and Pudlak [8]), it is also
known if Buss’ theories S can prove MRDP then Z'ik = H'ik. In particular,
when k£ = 2, this implies NP = co-NP.

These theories Sy of Buss are interesting theories in which to study the
MDRP theorem. All of these theories contain S; which is a conservative
extension of IAy. They are defined from S; by expanding the language
to include functions symbols #9, ..., #r where the intended meaning of
the symbols is z#9y = 22 and for k& > 2, s,y = 218#s-1lWl Given
these growth rates are ever increasing but still subexponential, the theo-
ries Sy provide a setting in which to study the role of exponentiation in
the provability of the MRDP theorem. Moreover, many interesting connec-
tions between these theories and complexities classes have been developed
(see Krajicek [11], for example) and many complexity arguments have been
shown to be formalizable in them [19]. In particular, Sy can prove the
consistency of many of the propositional proof systems, such as extended
Frege systems, for which lower bounds are unknown. Such systems could
potentially be super, and if so, imply NP = co-NP. Despite these apparent
strengths, in this paper a deductive system S}, ¢, that contains Sy, is exhib-
ited that cannot prove the MRDP theorem. A notion of uniform sequent
calculus proof is also introduced and it is shown that Sj ., cannot prove
NP = co-NP with a uniform proof.

The strategy of the proof is as follows: First, the systems Sy, .., in the
language with 2% are defined and developed. These deductive systems have a
restricted form of induction inference where all the formulas in the upper and
lower sequent must come from the class f]go’ p(0penesy), the class of bounded
formula in our language all of whose quantifier bounding terms do not involve
2%, These systems are also restricted in that only cuts on f]go w(opencyy)-
formulas are allowed in an Sk, ¢z, proof. It is shown by a witnessiﬂg argument

that the predicates Si .., can prove are equivalent to both an exponen-

b
o0,k

tially large existential (32 < ¢) followed by a 3 (openegp)-formula (an

~

El,ewp(zb

2 k(openegp))-formula) as well as an exponentially large universal

(Vz < t) followed by a f]go,k(openexp)—formula (an Uliemp(i]goyk(openemp))—
formula) are precisely the f]go’k(openew)—predicates. A uniform S, ., proof
is one which would remain an 5, . proof if one replaced everywhere in
the proof one of the free variables from the conclusion by a term in the
language. If every NP predicate is equivalent to a co-NP predicate by such
a proof then Sk’emp is said to prove NP=co-NP uniformly. By a formalized

padding argument, it is shown that if Sy .., could prove NP = co-NP by

such proofs then, in fact, Sg .4 proves

El,e:vp(zqu (Opene:vp)) = Ul,emp(zgo,k(openemp))-

This would imply roughly that the polynomial hierarchy (or for & > 2, some
kind of quasi-polynomial hierarchy) is the same as the class of elementary
predicates. However, one can show that these two classes can be diagonalized
apart. The MRDP result is proven using a similar argument together with
the folklore result mentioned above modified to these theories.

Although the main results of this paper are reasonably strong, the proof
techniques that are used are reasonably standard in bounded arithmetic
and computational complexity. There are four main aspects of the argu-
ment, that we feel are novel and interesting. The first is the theories Sj ¢qp
themselves. They provide nice intermediate theories between the theories Sy
which do not have exponentiation and the theory IAg+exp. For k > 2, the
theories S}, ¢qp are also stronger than the theory Sp(«) which Razborov [19]
argued can prove Hastad’s Switching Lemma [7]. The second aspect of our
argument which we feel is novel is the very weak closure properties of the
f]go k[E]—functions that are established and used for our witnessing argument.
This technique might be of independent interest and useful in future wit-
nessing arguments. A third aspect of this argument that is interesting s that
it illustrates the limitations of padding arguments in weak formal systems.
A final aspect of the argument which is interesting is that it generalizes to
higher levels of the Grzegorczyk Hierarchy, as is explained next.

The idea of this generalization to higher levels of the Grzegorczyk Hier-
archy is that although Gaifman and Dimitracopoulos [5] showed that A in
the language with 2% can prove the MRDP theorem, this is not the complete
story. Basically, this result says that this theory can prove exponentially
bounded quantifiers in a ¥j-set can be eliminated in a Diophantine way.
By Parikh’s theorem, however, this theory cannot prove the existence of
any functions of superexponential growth. Thus, one could ask how much
induction is needed to show that bounded quantifiers of superexponential
size can be eliminated? Obviously, if one has usual induction on bounded
formulas in a language with the given superexponential function symbols,
then one can probably apply the arguments of Gaifman and Dimitracopou-
los. What is shown in this paper is that for finite m > 2, if symbols for
the first m + 1 branches of the Ackermann function as well as their inverses
are added to the language, then if induction inferences are restricted to only
allow formulas not involving the m+ 1st branch symbol and any cut formula
in the proof does not involve the m + 1st branch symbol, then this system

does not suffice to prove MRDP in this language. Further, this system also
cannot prove NP = co-NP uniformly. Both these arguments use the same
ideas as for the Si .y, case. The unprovability of NP = co-NP argument
can be pushed slightly further without any work: given their definition, the
union of these systems can reason inductively about the primitive recursive
functions. One can say this system proves NP = co-NP uniformly if any of
its fragments can. Then one can show this system cannot prove NP = co-NP
uniformly. As the techniques used in the arguments of this paper make use
of the fact the underlying language only has finitely many symbols, it is
unclear how much farther these results can be extended. Still, this line of
research seems promising.

This paper is organized as follows: The next section contains the nota-
tions and definitions used in this paper. This is followed by a section showing
that 71,eqp-predicates of S ., are precisely the f]go’k(openemp)—predicates.
The NP = co-N P result is then presented and the section after that shows
the MRDP Theorem result. Then the generalizations to higher levels of the
Grzegorczyk Hierarchy are given. Finally, a conclusion is presented.

2 Preliminaries

Familiarity with the basic results of bounded arithmetic at the level of say
Buss [3] or Krajicek [11] is assumed.

The language Lo will be used to denote the language with non-logical
symbols: 0, S, +, -, <, =, L%xj, |z|, MSP(z,1), &9y, and #. The symbols
0, S(x) =z +1, +, -, and < have the usual meaning. The intended meaning
of x = y is x minus y if this is greater than zero and zero otherwise, L%:EJ is
z divided by 2 rounded down, and |z| is [logy(z + 1)], that is, the length
of z in binary notation. MSP(z,4) stands for ‘most significant part’ and is
intended to mean |z/2°]. The function symbol z&-y is intended to return
the bit-wise logical AND of z and y. This function will be used to avoid
an innermost universal quantifier in the formalization of NP used in this
paper. z#y reads ‘z smash y’ and is intended to mean 2/*!I%/. The operation
is also written #9. In general, a2,y = 21%#i-119l and the language Ly
for k > 2 has the symbols of Lj_; together with #;. Finally, Ly ¢4y is the
language Ly together with the non-logical symbol 2 intended to represent
base 2 exponentiation.

For this paper, it is useful to be able to have a pairing function, as well
as to have functions that can project blocks of bits from a number so that
a limited amount of sequence coding can be done. These can be defined

by Lo-terms as follows: For projection of bits, define the functions 2/ :=
14y, 2min(ylz) .= MSP(1#y, |y| =), LSP(z,4) := z ~ MSP(z, 1) - 2in(lzli)
By (z,w) :== MSP(LSP(w, Szlt|),z|t|), and BIT(i,z) := f(i,z). Here j is
supposed to project the zth block of |¢| bits from w and BIT is supposed to
return the ith bit of . Given these functions to define pairing operations,
let max(z,y) = (1= ((z4+1) =y))y+ (1= (y=x))z and set B = 2l max(@y)l+1,
Thus, B will be longer than either x or y. Define an ordered pair as (x,y) :=
(2lmax(z)l 1) . B 4 (2lmax(@) 4 1), To project out the coordinates from
such an ordered pair, use (w); := BL%\wIJ'—l(O’BL%IWU(O’UJ)) and (w)g :=

Btllw\kl(o’ B[lle (1,w)) which return the left and right coordinates of the
pair w. To check if w is a pair the formula ispair(w) :=

Bit(w, L%lej 1) = 1 A2 | max((w)y, (w)s)] + 2 = |w]

is used. The usual properties of this formula as well as the terms listed
above are provable in the theories we will consider in this paper [16].

A quantifier of the form (Vz < ¢) or (3z < t) where ¢ is a term not
containing x is called a bounded quantifier. A formula is bounded or A if
all its quantifiers are. A quantifier of the form (Vz < |t|) or of the form
(3z < |t|) is called sharply bounded and a formula is sharply bounded if all
its quantifiers are.

The main results of this paper make use of the following variations on
the standard bounded arithmetic hierarchies.

Given languages L' C L from those mentioned above and a class of L-
formulas C, the hierarchy of formulas E; ;/(C) and U; 1/(C) are defined as
follows: Ej 1/(C) are those formulas of the form (3z < t)¢ and U; 1/(C) are
those formulas of the form (Vz < t)¢ where ¢ is in C and ¢ is an L'-term.
Ei.z/(C) are those formulas of the form (3z < t)¢ where ¢ € U;_y 1(C)-
formula and ¢ is an L'-term. U; 1,(C) are those formulas of the form (Vz <
t)¢ where ¢ € E;_11(C) and ¢ is an L'-term. The notation E 1/ (C) will
be used for U;(E; 1/(C) UU; 1,(C)). The class of quantifier-free formulas is
denoted by open (or openy or openc,, to emphasize the language is Lj or
Lk,emp)-

To indicate that a vector b of free variables of a formula ¢ may occur
in terms involving any of the symbols of L, sometimes the notation ¢(a;b)
will be used. Here the variables b may or may not be restricted to L’-terms
and @ are variables which are restricted to L'-terms. For most of this paper
L' will be Ly, and L will be Ly, ¢4, so the variables b in this case would be
allowed to occur in terms involving 2%. If V¥ is a class of L-formulas, then
W[b] are all those formulas in ¥ of the form ¢(&; b).

The notations E; and U; are used when L’ = L is understood and C is
the class of open formulas, and notations such as E; ., U; ezps Eoo s Uzk[l_)]
are used for classes such as E; 1, (openy,), U; cap(0peneqp), Eoo,r, (0peny), and
Ui’k(openemp)[g]. For i > 0, a 3P(C)-formula (resp. I1?(C)-formula) is de-
fined to be a E;y1(C)-formula (resp. U;;i-formula) whose innermost quan-
tifier is sharply bounded. Again, to emphasize the languages involved nota-
tions such as Ebk and IT? e Z'ik[b] will be used. Kent and Hodgson [10] (see

also Pollett [16]) have shown the sets defined by Zm—(resp. Hi’Q—)formulas

are precisely the ¥¥-(resp. II'-)predicates. Thus, the 2?’2—formulas corre-
spond to the NP predicates. The proof of this fact was in a language without
x&9y. Jones and Matiyasevich [9] have shown that any set in NP can be
represented as a predicate:

Jy < 200D .. 3y, < 220D [F(z,) = G(z, 7))

where p is a polynomial and F' and G are built up from z,%, using +,-,
and &3. Since pairing can be defined as an Lg-term and &5 is one of the
operations in Ly, this shows the E;9-predicates are also NP.

Remark 1 The usual formalization of NP in bounded arithmetic theories is
in terms of the E?’Q—predicates. Thus, it is interesting to ask if the theories

considered in this paper can prove 2?72 = E12. The author feels that is it is

likely one could formalize in Sy, eqp that any 2?72 machine could be simulated
by the appropriate register machine used in Jones and Matiyasevich [9] and
then in turn show that such machines can be simulated by E; o-predicates;
however, such a proof might be quite long and distract from the main point
of this article. Even if this could not be proven in the theories as they will be
introduced below, one could always add azioms for each f]?’Q—formula saying
it was equivalent to whatever Eq o-formula it was equivalent to. These axioms
would be f]go’k—formulas and would not change the proofs of the main results
of this paper.

The theories considered in this paper are formulated in the sequent cal-
culus LKB of Buss [3]. BASIC}, ¢qzp will be used to denote a theory axiom-
atized by all substitution instances of a finite set of quantifier free axioms
for the non-logical symbols of Ly ¢z,. These axioms are listed in Buss [3]
except for MSP, =, &9, and 2¥. The axioms for MSP and = are listed in
Takeuti [21]. The axioms for z&qy are: (1) z < S0,y < S0 — z&oy =z - y.
(2) a < 50,b < SO — (2¢ + a)&a(2d + b) = 2(c&ad) + adeab. Lastly, the
axioms for 2% are: (1) 2° = S0 and (2) 25¢ = 29 . §S0.

Definition 1 Let ® a class of L-formulas not necessarily closed under term
substitution. A ®-IND inference is an inference

A(c),I' = A(Sc), A

A(0),I — A(t), A

where ¢ is an eigenvariable and must not appear in the lower sequent, t is
an L-term. A and all the formulas in ' and A are in ® in both the upper
and lower sequent. To emphasize, even A(t) must be in ® for this to be
considered a ®-IND inference.

Definition 2 The system S ., is defined as

exp
BASICk’emp+i&7k(openexp)—IND
where it is further required that all cuts that appear in any Sk7 derivation

exp
must be on Zgo’k(openemp)—formulas.

The theory S, of Buss [3] mentioned in the introduction and abstract uses
the language Lj without z&2y and has the axioms of BASIC}, ., restricted
to this language as well as usual induction for bounded formulas in this
language. By cut-elimination for this S, one can see S, is contained in
S’k’emp. As S, cannot define 2 by Parikh’s Theorem, this containment is
strict.

Remark 2 The main point of the restriction on cut is to prevent derivations
of A(t) from A(a) where t involves 2%. Although S .., can derive statements
like —» (3z)z =t and a = t, A(a) = A(t), and from this (3x)z = t, A(a) —
A(t); it cannot from this conclude via a cut that A(a) — A(t). Since S ,,
proves both S, and (Jy)y = 2%, without this restriction on cut Sk,ech would
be as strong as IAy+exp.

Remark 3 Another important point that will make the system Sk’emp weaker
than I Ag+exp, is that the Ly, opp-terms themselves do not define every i]ﬁ”emp—
predicate. Since 2% is in the language, this could happen if one added symbols
for weak variants of the mu-operator to the language or closed the symbols of
the language under small amounts of recursion. It is crucial to the argument
below that given a Ly, eqp-term t(z, w), the value of the equation t(z,w) =0
can be computed in polynomial time. This is shown in Lemma 3. The fact

that one can do this allows one to diagonalize the classes f]goyk(openexp) and

5 b
27 eqp apart.

3 Predicates

For this section let ¥ := El,exp(zgo’k(openexp)). The predicate A is said to
be V1,exp in a theory T if T = A* = A = A" where A” is a ¥-formula and
Al tautologically equivalent to the negation of a U-formula. To indicate
which free variables may occur in terms involving 2% in both A" and A*
the notation w1 czp[b] will be used. The goal of this section is to show

-,

the /1 eqp[b]-predicates of Sy .., are precisely f]go’k[g] and, in general, the

exp
V1,exp-predicates of S ke exp ATE f]go, p(0pencyzp). The reader who believes these
results and who finds witnessing arguments tedious is invited to proceed to
the next section.

A f]gok[g] -function is a function whose graph is in f]gok[a and which is
bounded by an Ly .4p-term in b (so the output can be exponentially large
as function of l—;) Some closure properties of these functions needed for the
witnessing argument are now investigated.

Let (pz < t)A denote the function which returns the least z less than
t such that the predicate A holds if it exists and ¢ 4+ 1 otherwise. Let
cond (A4, z,y) denote the function which if A hold returns z and otherwise
returns y.

=,

Lemma 1 Let h be an f]go’k[l;}—function bounded by an Ly-term, let s(b)
be an Li eqp-term, let f,g be a f]';o’k[l_)']—functions, and let A be a i]go,k[|-
predicate. Then the following are f]go,k[g]—functions: (1) s. (2) f(@ h;b).
(3) (f,9)- (4) pz <tA. (5) cond(A4, f,g).

-,

Proof. Let ty, tf, ty be the Ly .4p-terms bounding the output of f, g, and
[respectively. Let Ay, Ay be the f]go’k[l;]—formulas for their graphs. (1)

To f]go’k[l—)] define s, consider the equation s(b) = y and the the bounding

term tg = s. For (2), since 5 is by hypothesis in Lg, 3z < t;,(Ap(a, z;0) A
A¢(d, zyy, b)) will be in f]go k[l_;] and defines the graph of f(@, h;b) = y. (3)
To define y = (f, g), consider the formula Ar((y)1) AN Ag((y)2). This formula
is equivalent to a f]go k[l;]—formula and defines the desired graph. The value y
that satisfies this graph can be bounded by (tr,tg). (4) To define the graph
of px < tA let B(v) be

A(v) AVy < tly < v D =A(v)).
The graph of pz < tA can then be defined as C(v)
(Fo<t)(Bw)Ax=v)V (mFw <t)(Blv) Az =t+1)

The formula C(v) is easily seen to be equivalent to a f]go k[E]—formula. The
term t can be used to bound the graph of the output. (5) The graph of
cond(A, f,g) can be defined as (A A Ay) V (mA A Ay). This is equivalent to
a f]go’k[g]—formula and the output of the function can be bounded by t; +1,
so can be bounded by an L ..p-term. [

Note that (1) and (2) above allow us to freely substitute L-terms into
f]go k[l;]—functions. Nevertheless, it seems hard to directly show the f]go k[g]—
functions are closed under composition. However, Lemma 1 together with
the next Lemma concerning projecting coordinates from ordered pairs turns
out to suffice for the witnessing argument.

Lemma 2 Let A be a 3P k[E] -predicate, s an Ly eqp-term, and let h be a
f]go []functzon Suppose f,qg are 3P° k[b] -functions and so are (f)i, (9)i
for i =1,2. Then the following are Zoo’k[bl-functions: (1) (cond(A, f,g))i,
i=1,2. (2) ({f.9))i, i=12. (8) (f(h))i, i=1,2.

Proof. (1) Using Lemma 1, define (cond(4, f,g)); as cond(4, (f):, (9)i)-
(2) this follows since f and g are assumed to be E [b] functions. (3)

-

This follows by Lemma 1(2), since by assumption (f);, z' =1,2 are Z k[0
functions. O

A formula is in LEq ¢ (®)[b] if it can be made into a Ej ¢z (0)[b]-formula
by padding on dummy quantifiers. A bounding term and witness predicate
for LEl,exp(\Il)[I;]—formulas is now defined.

=, =,

o If A(d@;b) € 35 ,[b] then t = 0 and WIT 4(d@;w,b) := A(@; b) A w = 0.
o If A(d@;b) € U[b] is of form Iz < tB
then t4 :=t and WIT 4(a@;w,b) :=w <t A B.
o If A(a) € El,exp(\ll)[g] is of the form (3z1 < ¢1)(Jz2 < t9)B, then
tA = (tl,t2> and
WITA(d';w,g) = aspair(w) A (w); < tp A (w)g < tg A
B(@; (w)1, (w)a, b).
For a cedent I' = {A4;,...,An} of LELemp(\Il)[l_)']—formulas, let A T' denote

their conjunction and V I" their disjunction. Let A be another such cedent.
Following Pollett [17] one can define Ego’ i[b] witness predicates WIT \r(a; w, b),

WIT ya(a; w, l;) for such cedents and also terms ¢r and ta such that Sk’emp F
I' - Aiff

Sk.exp (Fw < tp) WIT pr(@; w,b) — (Fw < tA) WIT ya(d@;w,b).

-,

The predicate WIT\a(a@;w,b) in Pollett [17] has the property that if A
is empty then it is =(0 = 0). If A consists of just one formula A then
WITa(@;w,b) = WIT 4(d; w,b) and if A = A, A’ then

WIT A (@;w,b) = WIT 4(a; (w)1,b) V WITa (@ (w)a, b).
The predicate WIT \r(a@;w, g) is defined similarly using conjunction rather
than disjunction. In the case where I' is empty, it is defined as 0 = 0.

Theorem 1 Suppose
Sk,e:cp FI — A

where T', A are cedents of LEl’exp(\Il)[I;]—formulas. Then there is a i]go,k[g]_
function f such that

-, -,

N WIT \r(d@;w,b) D WITa(a; f(@;w,b),b).

Further, the projections of f needed to witness the individual existentials of
the formulas (the projections of f) in A are also Ego,k[b]—functions.

Proof. This is proved by induction on the number of inferences in a S, ., -
proof of I' = A. By the restriction on cut, it can be assumed that all the
sequents in the proof are in LE; ¢4, (V) [b]. By Buss [3], it can also be assumed
that the proof is in free variable normal form and restricted by parameters.
So the elimination inference for a free variable in the proof is not a cut,
(V <:left), or (3 <:right) inference and also the term substituted into the
conclusion of an induction inference only involves parameter variables of
the endsequent. In the base case, the proof consists of a sequent A —
A, where A is an atomic formula, an equality axiom, or an BASIC} ¢qp
axiom. In each of these cases the witness predicate for each of the formulas
in the sequent is of the form A A w = 0. So a witness for A can be
constructed as pairings of the 0-function which is a f]go’k[l;]—function. It is
easy to verify that the projections of such pairings of the 0-functions are also
f]goyk[l_)’]—functions. The weak inferences, structural inferences, and cut can
be handled in essentially the same way as in the S case of the witnessing
argument in Buss [3]. The (cut — rule) will be shown below to illustrate
why the cond function was needed. The remaining cases are the bounded
quantifier rules and induction. The (3 <:left) and (3 <:right) — the (V <:left)
and (V <:right) are similar, but simpler — and, the f]go 1 (0p€enezp)-IND case
are shown. ’

10

(Cut rule case) Suppose the inference is:

I =+ AA AT = A
r—-A

The induction hypothesis gives 3. k[b] functions g and h whose relevant

projections are 3 OO’k[b]—functlons such that

-,

N): WIT/\I‘(_" b) — WITA\/A(C_i g
N |: WITA/\F()—> WIT\/A(C_I: h

As was mentioned above since the proof is in free variable normal form no
free variable will be eliminated by this cut. Define the function k as

k(d;v,w,g) := cond(A4, v, w)

Notice £ is a f]go k[l;]—function because A must be a f]go’k[g] formula by
the restriction on cuts that every S, eap derivation must satisfy. Define the
function f to be

1 (@;w,B) := k(@ (9(@; w, b))1, 1(@; (0, w), 5),b) .
By Lemma 1 and Lemma 2 and by the assumption that the projections of
g and h are defined, f is in Ego’k[b] and so are its projections. The function
f also satisfies:

N | WIT ar(@;w, b) — WITya(@; f(@;w,b),b).
(3 <:left case) Suppose the inference is:

c<t,A(c),I' > A
(Fz < t)A(z), I - A

The induction hypothesis gives a 2207 k[g]—function g whose relevant projec-

tions are 2207 k[g]—functions such that

-,

N WIT c<ipanr(@;w, c, 5) D WITa(a; g(a; w,c, g),c, b).

There are three subcases to consider. In each case, we need to determine a
value for ¢ and then run g on that value.
In the first case, (3z < t)A(z) € Ejeup(V)[b]. If w witnesses (Jz <
)1

t)A(z) AT then ((w)1); is a value for ¢ such that A(c) holds and ((w)_

11

is a witness for A(c). So let f(@; w,b) := g(a; ({0, (w)1)2, (w)2)), (w)1)1,b).
Then

N WIT @,<ganr (@ w,b) O WITyA(d; f(a;w,b),b).
In the second case, (3z < t)A(z) € U[b]. If w witnesses (3z < t)A(z) A T,
then (w); is a value for b such that A(b) holds. Let

=, =,

f(d;wa b) = g(&'; <<070a (w)2>>a (w)h b)

Then

-, - -

N |= WIT <y anr (@ w,b) O WITya(d@; f(d;w,b),b).

The last subcase is when (Fz < t)A(z) € f]go’k[l;]. In this case ¢ might not

occur in a term involving 2% so it might be better to write g as ¢(@, ¢; w, 5)
Whether it does or not, one can define f as above except rather than use
((w)1)1 or (w); for ¢ use the 33°_, [b]-function pz < t-A(z).

For each of the cases by Lemma 1, the resultmg function will be in Eb
and its projection can be defined using that g’s projections are defined and
Lemma 2.

(3 <:right case) Suppose the inference is:

I' = A(t),A
t<s,I'— (3z <s)A(z),A

The induction hypothesis gives a 51207 k[l?]—function g whose relevant projec-

tions are 2207 k[if]—functions such that

=,

N[z WIT ar(a@;w,b) D WIT 5y a(d; g(a@;w

=
Sl

The definition of WIT implies

=,

N |= WIT < snr(@w,b) Dt < s A WIT \r(@; (w)2, D).

=,

So if A € W[B] define f := ((t,(g(a@; (w)2, b)), (9(d; (w)2,5))2). If A €
Ego,k[b] and s involves 2% deﬁne f = (t,(g(a; (w)2,b))2). For all other A

define f := g(a@; (w)2,b). These functions are all Eb oo,x (0] and given Lemma 1

l\?‘/l@l

and the assumption that the relevant projections of g are in f]go k[l;], SO are
the projections of f. Finally, note in each case

=

N): WITtSs/\F (@ w,b) D W[T(Exgs)A(x)vA(d; f(@; w, [;), g)

12

(2°_, (0penesy)-IND case) Suppose the inference is:

00,k

A(e),T — A(Sc), A
A(0),T — A1), A

Since both the upper and lower sequents involve only f]goyk[l_)']—formulas, a
witness function for both the upper and lower sequents just needs to map
the number of formulas in the antecedent pairings of 0 into the number of
formulas in the succedent pairings of 0. This could be done by an Ls-term
and so is a 51207 k[E]—function. Similarly, the appropriate projections of these

pairings can be done by Ls-terms and so will be f]go’k[l_)']—function. Since
the proof is restricted by parameters, there is no need have to worry that ¢
introduces any new parameter variables that are not in the endsequent.
This completes the cases that remained to be shown and the proof.
O

-

Corollary 1 (1) The /1,exp[b]-predicates of S,

predicates. (2) The 71,exp-predicates of S ., are precisely the f]go’k(openexp)—
predicates.

are precisely the i]go k[E]—

exp

Proof. (2) follows easily from (1) so only (1) is shown. (1) By definition
any Ego’k[b]—predicate will be 71,ezp[b] in S On the other hand, if

S exp PTOVES A s vl,exp[l;], let Ay, and = A be tautologicaly equivalent to
Q[E]—formulas and suppose A < A & Ay is provable in S,

-

B(d,y;b) ==

exrp’

exp’ Counsider

(=An(@b) Ay =0) V (As(@b) Ay =1).

Certainly, S ,, proves (Jy < 1)B(d,y;b) and proves B is equivalent to

some W[b]-formula. So by Theorem 1, there is a f]go’k[l;]—function f such
that

=,

N = WIT p(d; £ (d@;b), b).

Further, by Theorem 1, the projections of f needed to witness the individual
existentials of B are also % , [b]-functions. So A, which is equivalent to

(f)1 =1, will be a 53207k[a—predicate. O

4 Main result

Lemma 3 Let t(x,w) be an Ly ¢qp-term. Then the predicate t(x,w) =0 is
computable in polynomial time.

13

Proof. The idea is to take the input numbers and encode them as polyno-
mial lengthed sequences of a kind that it is easy to check if such a sequence
represents zero or not. Then for each operation in the term, rather than cal-
culating its value directly, instead an output sequence (again of polynomial
length) is calculated in terms of its input sequences. To be precise, a stack
code is defined inductively as: (1) the sequence (/0!) (intended to mean 0)
is a stack code, (2) if v and w are stack codes then so are the sequences:
(T+71,v,w) (intended to mean v +w), (=1, v) (intended to mean —v), and
(221 v) (intended to mean 2v), (3) nothing else is a stack code. Here I is
used to represent a fixed Godel code for the given symbol. The intended
value of a stack code is the number one gets by evaluating the sequence ac-
cording to the intended meaning of the symbols. Note there might be many
stack codes for a number. For instance, 92’ 4 (—2%) and 2° rewritten as stack
code sequences would both represent 1. Given a number z one can find a
polynomial length stack code for it in polynomial time by determining the
‘on’ bits in its binary representation and coming up with stack codes for each
of them. For each symbol in Ly, ¢4y, one can verify that if one has stack codes
for each of its inputs then a stack code for its output can be constructed
in polynomial time in the size of its inputs (see Pollett [18] for more details
on this). Moreover, one can do the initial encoding and the computation of
each operation in the term so that after applying each operation the stack
code has the form (rewritten in a simplified infix notation)

(270 £ 271 ... £ 27n)

where Z; are stack codes for numbers xy > 1 > .-+ > z,. Given that stack
codes can be computed in this normal form, after computing the stack code
for ¢(z, w) one can check whether it is the same sequence as (/0') to compute
whether ¢(z,w) = 0. O

Lemma 4 (1) For any Ej ¢zp-formula A(a), there is a Eq o-formula (notice
the 2) Ua(a, z) such that there is a Ly ezp-term ta for which

BASICkeap - Uala,ta(a)) = A(a).

(2) There is a f]'f’exp—formula Uso(e,a) such that for any f]go’k(openexp)—
formula A(a) there is a number e for which

N | Ux(ea,a) = A(a).

Proof. (1) For this proof, the separation of variables by a semi-colon into
those that do not occur in terms involving 2* and those that do will not

14

be indicated. Using the work in Pollett [16] one can show that BASIC}, ¢z
can prove enough properties of the pairing functions and block coding to
carry out the argument that is now presented. Using K. (z) = 1 = z,
Ky(z,y) := z +y, and K<(z,y) := K- (y = z), one can write any open
formula A(z,) as an equation f(z,y) = 0 where f € Li. So any Ej ¢gp-
formula ¢(x) is provably equivalent in BASIC}, ¢, to one of the form

By < t1)(t2(2,y) = 0)

where the ¢;’s are in Ly, ... Fix a coding scheme for the 11 non-#; symbols
of Ly exp as well as for the 2 variables z,y. The symbols #j, k > 2 will be
broken down into suboperations #};, 1 <17 <k —1, described below, each
of which is defined in terms of the other symbols in the language. Creating
codes for these suboperations will give a total of &' := @ + 13 symbols to
code. Use [to denote the code for some symbol. i.e., [= | is the code for =.
Choose a coding so that all codes require less than |£'| bits and we use 0 as
INOP! meaning no operation. Thus, if one tries to project out operations
beyond the end of the code of the term one naturally just projects outs
INOP!’s. The code for a term t is a sequence of blocks of length |k’| that
write out ¢ in postfix order. So z + y; would be coded as the three blocks
[zl 1T+ 1. The code for a E1 exp-formula will be ((ftﬂ, |—t2-‘>>. Ua(z,z) is
obtained from the formula

(Fw < 2)(3y1 < 2)(Vj < lel) (e, j, z,7)

after pairing is applied and converting the (V; < |e|) into the finite appropri-
ate finite conjunction. The conjunction will be finite since for any fixed A,
its code will be a finite number. Here ¢ consists of a statement saying w is a
tuple of the form ({wq,ws)) together with statements saying each w,, codes
a postfix computation of ¢, in e = ((lt;1,l,1)). If 2/ := MSP(z, 12]2]])
(roughly, the square root of z) is used as the block size, this amounts to
checking conditions for each m

[B\k’|(]a |—tm-|) =1+15

Bl (G wim) = Biar| (G = 2,wm) + Bl (G = 1, wm)] A -+

15

[5:w|(j, It]) =] B)
1o G)| = S8~ 2 0m) 1o G = L))

By (G, Tt]) = 31 2

EIE; =1, It!) = [#y A By Gy wm) | =SB (5 = 1,wm)])

A LSP(B.((3: wm), |8z (4, wim)| = 1) = 0] A

By (G ftf,ﬂ) = 3] o 18121 Gy wm) | =SB (s wim) 11312 (G w1
A LSP(B)1((j, wm); Bl (4, wm)| = 1) = 0] - - -

[5:|k’|(ja o) = [2‘“1)
|5|z’|(]7 wAm)| = S(/B|2’L(] = 1,wp))

[B|k’|(]a |—tm-|) =INoP!) B\z’\(]awm) = B\z’\(] - 17wm)]'

Notice how a valid code of a term involving #3 has this operation coded
as two operations {#é] followed by [#g]. For #, uses codes k — 1 sub-
operations #fc in a similar manner. The formula ¢ also has a condition
Yy < B‘Z/‘(|e|, wp,) A to bound the existential quantifier to the value of #;. Tt
should be observed that none of the conditions mentioned make use of the
#3,..., #r, or 27 functions. Finally, ¢ has a condition saying B|Z/| (le],we) = 0.
Since BASIC}, ¢zp can prove simple facts about projections from pairs, it can
prove by induction on the complexity of the terms in any f]ﬁ”emp—formula A
that Ules,z,t4(x)) = A(x) provided ta(zx) is large enough to bound the
codes of the computations of ¢; and t,. t4(x) can be chosen to be an Ly, ¢z)-
term because the sequences involved in the above are of finite length and
at each step in the computation of a term the size of a given intermediate
value can grow by at most a function of 2¥ times the size of the previous
values.

(2) First, in view of Lemma 3, given a f]go p(openegy)-formula A, the
openezp matrix of A can be replaced by a El’z—’formula. Thus, A can be
converted into a f]goyk—formula. So from now on it is assumed that A is from

220,1:' Consider the following valid kind of quantifier replacement

(Vo < s)(Fy < t(x,a))A(z,y,a) & .
(Fw <2 (t°(s,a)#(2°))) (Vz < s)A(z, B(z, [t (s, a) . 1, w))

16

where ¢t and s are in Ly, t* is an inductively defined nondecreasing term
bounding ¢ and B(z, |¢|, s, w) := min(B(z, |t|,w), s) where min(z,y) := = +
y —max(z,y). Using this kind of replacement and the fact that |2°| -1 = s,
any Zb p-formula can be shown equivalent to a El egp-formula. Moreover,
the term bounding the outermost existential can be bounded by applying
to a finite number of terms of the form 2° where s is in L;. Thus, any
$b 00k p-formula A can be coded by the triple, coding in the same fashion as in

(1), the three terms in the %P exp-formula obtained by doing the above kind
of quantifier exchanges to A. Thus, A would be equivalent to the formula
Ule,z,z) :=

(Gw < 2)(Byr < 2) (V5 < le])(Vy2 < |z])d(e, j, 7, 7))

after an appropriate term was substituted for z. Here ¢ is an appropriately
modified version of the ¢ from (1). Given that the largest of the three terms
is the outermost existential and as just mentioned it can be be bounded by
applying # to a finite number of terms of the form 2° where s is in Ly,
one can find a fixed term t of growth rate 22° for some Lj-term s which
can bound the size of the computations needed to calculate the value of
any three such terms. Using this ¢ and applying pairing to U’ to make it
a f]ﬁ’yemp—formula we get any f]go’ x-formula (and, hence, also as remarked at
the beginning of this proof, any f]go p(openegy)-formula) A is equivalent to
Us(ea,z) :=U'(ea,z,t) for an appriopriately chosen code e4. [

Lemma 5 E; . # f]go’k(openemp).

Proof. Suppose the class of Ej ;) predicates and f]go w(openey,) predicates
were the same. Then as Eoo k(openemp) predicates are close under comple-

ment Zb k= Eteap = Uteap = H1 eap = Ego eap and so ~2Us(a,a) would

be in 3P o0, p(0penegp). But this formula is easily seen not to be equivalent to

any Ego’k(openemp) -formula. O

Definition 3 A derivation system T proves a sequent I'(a) — A(a) uni-
formly by proof P if one can substitute any term t in the language for the
variable a everywhere in P and still obtain a valid derivation inT. T proves
classes ¥ and ® equivalent uniformly if for every formula ¢ € @ there is
some formula 1 € ¥ such that ¢ < 1 has a uniform proof in T.

By examining the rules of inference allowed in an S eap proof, one can
check that the only kinds of inferences that could cause a proof to fail to

17

be uniform are cut-inferences and f]go 1 (0penesp)-IND inferences. As a free-
cut free BASIC}, ., derivation uses no induction and has cut only on open
formulas, any BASIC}, ¢qp derivation is uniform. Thus, Lemma 4(1) has a
uniform §y . -proofs.

Theorem 2 Sk’emJ cannot prove By = Uy g uniformly where 2 < k' < k.
Since, as argued in the preliminaries, the E; 2-sets are precisely the predicates

in NP, this means S, exp CanMOt prove NP = co-NP uniformly.

Proof. Suppose Sk,e:l:p proves Eq ;= Uj p uniformly. This means that for
each E; j/-formula C there is some U; j/-formula D such that Sk’emp FC=D
uniformly. Let A(z) := 3y < t(z)D(z,y) be an arbitrary E; ¢4p-formula in
one variable. Let Ua(z,z) be the formula from Lemma 4. So Uy is in
Ei2 C E;w, and, thus, by assumption, provably equivalent to some Uy /-
formula U/(z, z) in S, by a uniform proof. Since these proofs were all
uniform, Sk’ eap PTOVES ’

exp

A=Ux(z,ta(z)) = Ul(z,ta(z))

where t4 is the bounding term on U4 in Lemma 4. The last formula is a
U1 exp-formula. Hence, it follows that S, exp PTOVES

b b
El,e:np = Ul,e:z:p = Eoo,egr:p 2 Zoo,k(open&ﬂp)'

Further, by the first equality above every Eq ¢, set would be /1 ¢zp in Sk7 eap:

b

are precisely %7,

As the V1,eqp-formulas of Sy (openegp) by Corollary 1,

exp
one also gets that Ej ¢zp = Ego p(0peneszp). But this contradicts Lemma 5.
O

5 MRDP Lower Bound

In this section, it is shown that Sk’ exp Cannot prove the MRDP Theorem.
To show this, we begin with a proof of the folklore observation mentioned
in the introduction:

Lemma 6 If S, exp PTOVES the MRDP Theorem then S, exp PTOVES Eteap =
Ul,emp'

Proof. To see this, suppose S, exp PIOVES the MRDP Theorem. Then for
every Uy ¢qp-formula A(Z) there is a formula F(Z) := (3y)P(Z,9) = Q(Z,)

18

where P, Q are polynomials such that 5, . A = F. In particular, S,

proves A — (3§)P(Z,¥) = Q(Z,4). By Parikh’s theorem [15], since S ,,

is a bounded theory one can bound the ¢’s by an Ly ¢zp-term ¢ giving an
E1 eqp-formula Fy. Note Fy O F' D A so A < F» completing the proof. [

exp

Theorem 3 S

k.exp does not prove the MRDP Theorem.

Proof. By the previous lemma, if S, exp PTOVES the MRDP Theorem then

A

_ _yb
El,emp = Ul,emﬁ = Zoo,e:cp'

On the other hand, the things that S, exp PTOVES are both Eq ezp and Uy eqp
are contained in its \/1 ¢qzp-predicates. Hence,

El:f%ﬂp = i](t))o,eacp g XA]go,k(Openea:p))-

As the f]go,exp—predicates contain the f]go i (0peneyy)-predicates, it follows

that Ei ¢zp = f]go’k(openexp). But this contradicts Lemma 5. O

6 Generalizations

In this section, it will be argued that the results of this paper can be gener-
alized to finite levels of the Grzegorczyk Hierarchy.

Consider the following variation of the branches of the Ackermann func-
tion defined for n > 2: (1) ho(z) = 2%, (2) hpy1(0) = hyp(0), and (3)
hnt1(Sz) = hp(hpe1(z)). As an example of these growth rate, it is not
hard to verify that hs(z) will be an z-high stack of 2’s with a 0 in as the
final exponent. One can define a rounded down inverse function, h,!(z),
for each of the h, functions, as the unique number satifying h,(h; ' (z)) <
z < hp(h,'(z +1)). It is not hard to show that these growth rates are
elementary equivalent with the usual Ackermann branches hj(z) = = + 1
and h),_ , = h®) (x), so will not effect the definition of the levels of the
Grzegorczyk Hierarchy. These levels are defined for n > 2 as the classes, &,,
which are the closure under composition of the functions h,, 1, z — y, z¥,
and the operation of bounded p-recursion. The union of these finite levels
gives precisely the primitive recursive functions. See Odifreddi [14] for more
information about this hierarchy.

Let Lg, := Ly eqp, and for n > 2 define Lg, ,, := Lg, U {hy, h'}. Next
denote by Lgn, the language Lg, less the symbols for 2% and h,, for 3 <m <
n. Observe that the functions h, ! are each p-time computable, so the sets

19

given by E; Ly -formulas will still be NP-sets. Also, observe a u operation

bounded by a Lg -term can be defined using an Lg, bounded existential
followed by a Lg, bounded universal and with a Lg, bounded p-operator
you can simulate as a 0 — 1-function the value of a Lg, bounded quantifier.
Thus, it is straightforward to show that the 51207 Lg, ~Sets are precisely the
sets in &,.

Let BASIC¢, be BASIC; ¢,y extended by additional open axioms for
the symbols A, and h,‘n1 for 3 < m < n and define I, ;11 as BASIC¢,

together with the inference f]go’Lg (openLgnJrl)—IND and the restriction on
cuts to be only on XA]b Le, (open, Enin)-formulas. A predicate that is provably
equivalent to both a Zl Te,, (Ego Le, (Opeann+1))-formula and the negation

of such a formula is called a V1,Le H—predicate. By the same kind of argu-
ment as in the Sy ., case one case show the 71,1, H—predicates of IE, nt1

are precisely the f]go L. (openg, +1)—SetS. As in the Sj . case, one can
also show that for any Ey z, -formula A(z) there is an E, Lg -formula

Ua(z,z) and a Lg, ,-term ¢4 such that I, ,11 proves A(x) <:;+[1]A(m,t,4).
this is because one can verify in a computation that y = h,(z) by the
equation h, !(y) = z. Also, one can generalize the stack code idea to show
that equations #(z,w) = 0 in the language of L¢, ., can be evaluated in
polynomial time in the inputs. Thus,

2oo JLe, (openLgnH) = Zgo,Lgn'

1Lz -sets are just the sets in NP. So
n+1

one can argue in the same fashion as in the Sy, ¢, case that if I&,, ;11 proves

either NP = co-NP uniformly or the M RD P theorem then

Recall it was just argued that the E

b _yb
ZOO,Lgn (OpenL£n+1) - ZOO,Lgn+1 .

This would imply, however, that &£, = &,4+1 which is well known to be
false [14]. Thus, it can be concluded that:

Theorem 4 For n > 2, I€, 41 cannot prove NP = co-NP uniformly and
also cannot prove the MRDP theorem.

7 Conclusion

In this section, further avenues of research are suggested.

20

One obvious first avenue would be to find out how much the requirement
of uniform proof of NP=co-NP can be weakened. It is reasonable to wonder
as well how far the results of the last section can be continued higher up
into the extended Grzegorczyk Hierarchy. The arguments of this paper are
reasonably insensitive to expansions of the underlying language by function
symbols of subexponential growth. This gives reasonably strong evidence
that IAg+exp might be the weakest theory able to prove the MRDP theorem
in a language with exponentiation. Nevertheless, it might be interesting to
consider stronger theories than Sy .., that are weaker than IAg+exp by
adding other axiom schemas such as restricted forms of comprehension or
replacement axioms. This paper also leaves open whether S .,, can prove
E? = H? uniformly for any ¢ > 1.

As a final comment on lines of further research, it would be to get an
unconditional result concerning the provability of NP # co-NP in bounded
arithmetic. Razborov [20] has shown that assuming the existence of pseudo-
random number generators secure against attacks by quasi-polynomial sized
circuit families that S5(a) cannot prove super-polynomial lower bounds on
circuit size for N P-predicates. Here « is a second order predicate symbol
with a polynomial bounded domain. In view of the results paper, it seems
likely to the author there are models of S2(a) in which NP # co-NP, so there
might be hope of constructing models in which pseudorandom number gen-
erators of the appropriate strength exist.

8 Acknowledgements

The author would like to thank Arnold Beckmann and Jan Johannsen for
e-mail conversations related to an earlier version of this paper.

References

[1] L.M. Adleman and K. Manders. The computational complexity of deci-
sion procedures for polynomials. In Proceedings of the Sizteenth Annual
Symposium on the Foundations of Computer Science, pages 169-177,
1975.

[2] L.M. Adleman and K. Manders. Diophantine Complexity. In Proceedings
of the Seventeenth Annual Symposium on the Foundations of Computer
Science, pages 81-88, 1976.

[3] S.R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

21

[4] P. Clote and G. Takeuti. First order bounded arithmetic and small
boolean circuit complexity classes. In P. Clote and J. Remmel, editors,
Feasible Mathematics II, pages 154-218. Birkhauser, Boston, 1995.

[5] H. Gaifman and C. Dimitracopoulos. Fragments of Peano’s arith-
metic and the MRDP theorem. Monographie 30 de L’Enseignement
Mathématique, pages 187-206, 1982.

[6] A. Grzegorczyck. Some classes of recursive functions. Rozpr. Mat. Vol.4.
pages 1-45, 1953.

[7] J. Hastad. Almost optimal lower bounds for small depth circuits. In Pro-
ceedings of the Fighteenth Annual ACM Symposium on theory of Com-
puting, pages 6-20, 1987.

[8] P. Hajek and P. Pudldk. Metamathematics of First-Order Arithmetics.
Springer-Verlag, 1993.

[9] J.P. Jones and Y. Matiyasevich. Register machine proof of the theorem
on exponential diophantine representation. Journal of Symbolic Logic,
49:818-829, 1984.

[10] C.F. Kent and B.R. Hodgson. An arithmetical characterization of NP.
Theoretical Computer Science, 21:255-267, 1982.

[11] J. Krajicek. Bounded Arithmetic, Propositional Logic and Complezity
Theory. Cambridge University Press, 1995.

[12] Y. Matiyasevich. Enumerable sets are Diophantine. Dokl. Acad. Nauk,
191:279-282, 1970.

[13] Y. Matiyasevich. Hilbert’s Tenth Problem. MIT press, 1993.
[14] P.G. Odifreddi. Classical recursion Theory Vol.Il. Elsevier, 1999.

[15] R. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic
Logic, 36:494-508, 1971.

[16] C. Pollett. Structure and definability in general bounded arithmetic
theories. Annals of Pure and Applied Logic. Vol. 100. pages 189-245,
October 1999.

[17] C. Pollett. Multifunction algebras and the provability of PH |. Annals
of Pure and Applied Logic. Vol. 104 July 2000. pp. 279-303.

22

[18] C. Pollett. On the Bounded Version of Hilbert’s Tenth Problem. To
appear Archive for Mathematical Logic.

[19] A.A. Razborov. Bounded arithmetic and lower bounds in Boolean com-
plexity. In P. Clote and J. Remmel, editors, Feasible Mathematics II,
pages 344-386. Birkhauser, 1995.

[20] A.A. Razborov. Lower bounds for propositional proofs and indepen-
dence results in bounded arithmetic. In Proceedings of 20th International
Symposium on the Mathematical Foundations of Computer Science, page
105. Springer-Verlag, 1995.

[21] G. Takeuti. RSUV isomorphisms. In P. Clote and J. Krajicek, editors,
Arithmetic, Proof Theory and Computational Complexity, volume 23 of
Ozford Logic Guides, pages 364-386. Clarendon Press, Oxford, 1993.

23

