Cook and Reckow [1] showed that if a propositional proof system has polynomial bounded size proofs of every tautology then NP = co-NP. The paper under review considers the Frege proof system with the three axioms: (1) Weakening: $a \to (b \to a)$, (2) Distributivity: $(a \to (b \to c)) \to ((a \to c))$ $b) \to (a \to c))$, and (3) Double Negation: $\neg \neg a \to a$. A proof in this system consists of a finite sequence of formulas ϕ_1, \ldots, ϕ_k which are either instances of one of these axioms or follow from earlier formulas in the sequence by modus ponens. The length of a proof is the length k of the sequence and the size of the proof is $\sum_{i=1}^{k} |\phi_i|$ where $|\phi_i|$ is the number of symbols in ϕ_i . The paper under review calls the system in which only instances of distributivity and modus ponens are allowed in proofs *distributivity logic*, and calls the system in which only instances of weakening, double negation, and ponens are allowed weakening and double negation logic. It is shown that if $\Gamma \vdash \phi$ is provable in distributivity logic then there is a proof of this fact of length $O((|\Gamma| + |\phi|)^3)$ and size $O((|\Gamma| + |\phi|)^4)$. Similarly, it is shown that if $\Gamma \vdash \phi$ is provable in weakening and double negation logic then there is a proof of this fact of length $O(|\Gamma| + |\phi|)$ and size $O((|\Gamma| + |\phi|)^2)$. These results say something about the strength of Frege systems. For instance, if ϕ is a tautology, consider the proof of this in the above Frege proof system. Let Γ be the set instances of weakening and double negation axioms used, then $\Gamma \vdash \phi$ in distributivity logic, and so we get an upper bound how many distributivity axioms were needed. If Γ' is the set of instances of the distributivity axioms used, then as $\Gamma' \vdash \phi$ in weakening and double negation logic, one gets a similar upper bound on how many weakening and double negation axioms are needed. It would be interesting to come up with tautologies for which a matching lower bound to the results in this paper could be obtained.

References

 S. Cook and R. A. Reckow. The relative efficiency of propsotional proof systems. Journal of Symbolic Logic. Vol. 44. pp. 36–50. 1979.