In classical logic it is known that the theory S_1^2 can be axiomatized over the base theory $BASIC$ using either Π_b^1-$PIND$ or Σ_b^1-$PIND$ [1]. Here Π_b^1 formula correspond to $coNP$ predicates and the Σ_b^1-formulas correspond to the NP predicates. $PIND$ is a “polynomial” induction schema. This paper shows via a model theoretic proof that if one considers intuitionistic theories the analogous result does not hold.

The papers defines a Kripke model to be T-normal for some theory T if each of its worlds satisfies T. Given two classical models M, N of $BASIC$, the model M is said to be a weak end extension of N, if M extends N and if its elements which can be bounded by a length of some element in the model extend the corresponding elements in N. This notion is meaningful in models of weak arithmetic since in general exponentiation is not total. For the intuitionistic case we say K' is a weak end extension of K if each of its worlds weak end extends a corresponding world in K. One of the papers main results is that: Any reversely well-founded $BASIC$-normal weak end extension Kripke model whose terminal worlds model S_1^2 forces $BASIC+\Pi_b^{1+}$-$PIND$. The plus in Π_b^{1+} is used to denote Π_b^1-formulas not containing negation or implication. By a result of Johannsen [2] there is a model of S_2^1 which has a submodel M' that weak end extends to M such that limited subtraction is not total in M'. Since S_2^1 can define limited subtraction and is $\forall \Sigma_b^1$-conservative over IS_2^1 (intuitionistic S_2^1), this shows $BASIC+\Pi_b^{1+}$-$PIND$ does not imply IS_2^1.

The second main result of the paper is that the union of the worlds in any linear weak end extension Kripke model of $BASIC+\Pi_b^{1+}$-$PIND$ satisfies $BASIC+\Pi_b^{1+}$-$PIND$. Using this result the paper shows that if IPV, the intuitionistic theory of PV plus polynomial induction on NP formulas, proves $coNP$-$PIND$ then the classical closure of of IPV, CPV, is equal to PV_1. By a result of Krajiček, Pušlák, and Takeuti this is known to imply the collapse of the polynomial hierarchy. A corollary of this is that IS_2^1 does not prove Π_b^{1+}-$PIND$ unless the polynomial hierarchy collapses.

The paper is well presented with clear and short proofs.

References
