
A Scalable Media Job Framework for an Open
Source Search Engine

Pooja Mishra and Chris Pollett

Abstract—This paper explores efficient ways to implement various
media-updating features like news aggregation, video conversion, and
bulk email handling. All of these jobs share the property that they
are periodic in nature, and they all benefit from being handled in a
distributed fashion. The data for these jobs also often comes from
a social or collaborative source. We isolate the class of periodic,
one round map reduce jobs as a useful setting to describe and handle
media updating tasks. As such tasks are simpler than general map re-
duce jobs, programming them in a general map reduce platform could
easily become tedious. This paper presents a MediaUpdater module
of the Yioop Open Source Search Engine Web Portal designed to
handle such jobs via an extension of a PHP class. We describe how
to implement various media-updating tasks in our system as well as
experiments carried out using these implementations on an Amazon
Web Services cluster.

I. INTRODUCTION

An important aspect of creating a modern search engine is
the ability to display various media sources in an appropriate
way. These media sources include news feeds, videos, images,
group discussions, blogs, etc. Often this data coming from
users of these systems sharing videos or collaborating on ideas
on thse sites. Many search engines such as Google, Yahoo,
and Bing have these features incorporated and customized
according to the needs of their users. These tasks are often
too slow to be done online within a web application, but using
traditional big data algorithms such as Map Reduce might be
overkill. In this paper, we describe an extension to the Open
Source Search Engine Yioop that allows efficient handling of
these tasks. We then look at three tasks: news aggregation,
video recoding, and bulk email and describe how they can be
handled by our system. We provide benchmarks comparing our
approach to earlier implementations of these tasks in Yioop.

As an introductory example to the issues we are trying
to address with our system, consider news aggregation. A
news aggregator is a site where a user can go to see news
headlines from a variety of news sources on the web. If, when
a user came to a news aggregator site, an aggregator had to
go out and download each news source’s web page, group
them by article kind, and display the result, the experience
would be intolerably slow. On the other hand, traditional
web crawls can take weeks or months, and this would be
followed by non-trivial indexing and data processing. News
is supposed to be timely, and so traditional web crawling is
not immediately suited to this task. Further, the importance

Pooja Mishra is with Cisco Systems. 2534 Lagoon Way San Jose CA 95132
email:pomishra@cisco.com

Chris Pollett is professor in the Department of Computer Science, San
Jose State University, 1 Washington Square, San Jose CA 95192 e-mail:
chris@pollett.org.

of various news sites, the categories of news they relate, and
so on are relatively unchanging, so complicated re-ranking
tasks, which may require heavy duty map-reduce jobs such as
page rank, might be unnecessary. One could imagine trying to
solve the problem by just having a cron job that periodically
downloads web pages from a fixed list of web sites and
does simple indexing on them. To some degree this solves
the problem if the number of news sites is on the order of
thousands or tens of thousands, but if we try aggregating
news from millions of sites, feeds, etc. this quickly becomes
unwieldy. What is needed is a more distributed approach.

From the above, we can identity three properties of a robust
solution to the news aggregation task:

1) It runs periodically with a period measured in seconds,
minutes, or hours.

2) Data processing on given news sources should be light-
weight.

3) It should scale to handle as many news sites, or feeds as
desired. To do this, it probably needs to be distributed.

By distributed in the above we mean the same solution or
job should be run by multiple machines but using different
input news sites. This entails we need some mechanism for
combining the results to get the single experience the end user
sees. Framed in terms of the Map Reduce model, we have a
Mapper that maps different news sites to different machines
for download, followed by a Reducer, which can in this case
even be at query time, which combines the results. Traditional
Map Reduce allows for multiple rounds of a map followed by
a reduce. In our case, we only need one round. So we can
solve the problem of news aggregation, with a periodically
run, single-round map reduce job.

It turns out this news aggregation is not the only task that
can be solved by such jobs. In this paper, we consider two
other such tasks: video recoding and bulk emailing. For video
recoding, we imagine that videos are being uploaded to a web
site in a variety of video file formats (.asf , .flv, .ogv, .mpg,
.webm, etc) and we want to convert them to a common format
(.mp4) for the purpose of streaming them. Recoding can be
a computationally intensive task, so one would like to spread
the task among several machines to allow greater recoding
throughput. Additionally, uploaded files can be of a variety
of lengths, it can make sense to split longer files into files of
a common length to do better load balancing. So the video
recoding tasks becomes a periodic job which checks for new
videos, then for each video splits the video and distributes its
part to recoding machines, and finally, receives and assembles
the results into whole recoded videos.

Bulk emailing, for this paper, is the task of sending out

notification emails (for instance, saying there is a new post),
to all members subscribed to a group or following a thread
on a discussion board. If the size of the group is large, then it
is not practical to send out these emails during a single web
request. On the other hand, queueing the emails and sending
them from a single mail server has scaling limits. So we can
imagine a periodic job where every so many minute we split
the mails across several machines and have each machine send
out their allotment of email.

Several periodic, task-oriented, variants of Map Reduce
have been considered previously. Oozie [8] is a workflow
engine that allows one to schedule Hadoop Map/Reduces jobs.
Workflows are specified as XML documents and allow one to
run a sequence of jobs contingent on earlier jobs successes and
at given times. This does allow for the scheduling of periodic
jobs but programming for Hadoop is non-trivial represents a
barrier to using the such jobs for system maintenance task like
those described above. To some degree job task implementa-
tion can be simplified by using map reduce streaming jobs,
but then one ends up with a hodgepodge of some things being
from the Hadoop framework, some things not. For simple map
reduce jobs involving Unix system commands, one can use the
system bash-reduce [2]. This tool allows a sequence of shell
commands to be mapped out to several machines, or cores
on the same machine, and the results of these commands
can then be fed to a reducer script. bash-reduce is light-
weight, and shell scripting does encourage rapid development
for tasks such as those described above. Combined with a
cron jobs to allow tasks to be carried out in a periodic fashion
this could solve the problems we are trying to address. The
drawback of course is that shell programming is somewhat
limited compared to a full-fledged programming language,
and if we start coding some of our tasks to be executed in
a general purpose language such as C, then the system could
quickly become unmaintainable. Our media updater for the
Yioop Open Source search engine, we feel provides the ease
of development that a system like bash reduce offers, but
with the benefits of being part of single framework like an
Oozie/Hadoop set-up.

Real-time, stream-oriented data processing and complex
event processing systems are also closely related to our system.
An example of such a system might be Yahoo’s S4 system
described in Neumeyer, et al [6]. Such systems are designed
to consume a stream of real time data, compute intermediate
values on it, and possibly emit new streams. Neumeyer, et al.’s
paper described using such a system on stream of incoming
words to find the top k most frequent words. We could imagine
these words coming from feeds. In complex event processing,
one might imagine having feeds of financial information, and
the processing on the feed stream as performing tasks like buy
and sell orders. Data mining of streams with map reduce has
been considered previously. For example, Walmart’s Muppet
system [5] can perform MapUpdate tasks on incoming streams,
which is very similar to the kind of one-round map reduce, we
are considering above. The Muppet system paper [5] describes
using the system to monitor check-ins by retailers, to detect hot
Twitter topics, and to keep Twitter reputation score up to date.
These systems though rely on having a relatively heavy-weight

architecture already deployed in-order for their frameworks to
run. We hope our system is in some sense simpler for a small
to medium scale enterprise to deploy, yet garners to such an
enterprise, the same kinds of abilities as these more heavy-
weight systems.

As we have stated, our system is coded as a component of
the Yioop search engine [10]. This is an open-source search
engine created by the second author, Chris Pollett. The engine
was designed to allow it do web-scale crawls with minimal
dependencies on other projects, the main dependency being
just PHP 5.4 or higher. It is written in a scripting language
which tends to make extending and tinkering with it easier,
further the source code is thoroughly documented. Yioop
has been used in billion page web crawls, and has been
used in numerous master’s student projects at San Jose State
University. Prior to the work described in this paper, the Yioop
engine did have a news aggregator feature, did allow for video
uploads, and did support emails in response to group posts.
However, each of these features was restricted to the scale of
what could be handled by a single machine, and these tasks
were not abstracted out as jobs to be handled by a general
media handler.

We now discuss the organization of the rest of this paper.
In the next section, we give some background on Yioop
software and describe our media updater framework in Yioop.
This is followed by one section each for the example jobs
identified above. These sections include some performance
experiments. The last section then summarizes our results and
draws conclusions.

II. BACKGROUND

In this section, we provide details on Yioop software needed
to understand its media updater system.

When deployed in a distributed setting, identical copies
of the Yioop software are installed on multiple machines or
virtual machines. Each machine is configured with the address
of a name server machine – the machine responsible for
coordinating the activities of the other machines. On a given
machine, five different kinds of Yioop processes might be run:
A web app used to handle web requests to the search engine,
a queue server for maintaining a by-document partition of
search indexes and queues of what to crawl next, a mirror
process which might be used to mirror an index held by
a different machine, a fetcher process for downloading and
performing initial processing of crawl documents, and a media
updater process for handling the kinds of jobs described in the
introduction. We list all the processes for completeness, but
the jobs we will write only involve the web app on the name
server and the media updater.

The name server itself runs the same software as all the
other machines, however, it stores in its database what ma-
chines make up the cluster and what activities are currently
being run by the cluster. The web interface of the name server
can be used by an administrator to configure the machine list
and the active activities.

Each of the five processes except the web app mentioned
above has a basic event loop. As part of the event loop, a given

process uses an HTTP request to the name server to find out
what activities it should be performing. For example, a fetcher
process might contact the name server to find out what is the
current web crawl being performed, and what are the urls of
the queue servers involved in this crawl. Given this information
the fetcher might contact the web app on the machine with a
running queue server to get a list of urls to download next.
A queue server process might use information from the name
server to know what url hash ranges it is responsible. A mirror
process similar gets information from the name server to know
what machine it is mirroring.

Prior to the work of the present paper, the media updater
process was run only on the name server and was only used to
periodically download feed urls specified in the name server’s
database. Our first enhancement was to allow this media
updater process to run on all machines in a Yioop cluster.
As part of its event loop, the media updater contacts the name
server for a list of jobs that should be run. In what follows,
we assume we have a media updater running on the server
together with media updaters running on client machines.

Media updater jobs are specified as a subclass of a PHP
MediaJob class. This class has eight main methods which may
be overridden:

init() is run after the class’ constructor and is intended to be
what the user uses as a constructor.

checkPrerequisites() returns a boolean about whether the job
should be run. It allows the job coder to check things like
the system time to determine when a job should run.

nondistributedTasks() is run only on the name server when
the Yioop administrator has specified that the media up-
dater should run in non-distributed mode.

prepareTasks() is run on the name server’s media updater
only. It gets the data needed by the job ready before it is
mapped to a client machine.

getTasks() is run by the name server web app when a client
makes an HTTP request for data for the MediaJob. It is
supposed to take data output by prepareTasks() and
send the client its portion of this data.

doTasks() is run after the client media updater has received
the getTasks() data. It then does processing on this
data.

putTasks() is run by the name server web app when a client
makes an HTTP request to send processed information
back to the web server.

finishTasks() is run on the name server’s media updater only.
It applies a reduce operation, or final computations, after
the data has been sent back to name server.

The media updater’s event loop, after finding out a list
of MediaJob’s to runs, invokes each found job’s init()
method, then periodically cycles through the job list calling
each job’s run() method. This method of the base MediaJob
class calls checkPrerequisites(), and if this returns

true, calls the other methods listed above, depending on if the
job is being run in a distributed or non-distributed context,
and depending on whether it is being run on the name server
or a client. Given this background, we now discuss our three
example jobs built using this framework.

III. NEWS UPDATE JOB

Let’s consider what properties might be expected of a
news handler in a search engine, taking our inspiration from
two of the most-known news aggregators, Yahoo News and
Google News. As early as the mid-nineties, Yahoo had a
headlines section obtaining news from Reuters [12]. Over
time additional news feed sources have been added, and Yahoo
also began creating its own news content. In addition, different
mechanisms to rank the popularity of news items, for example,
via link clicks or frequency emailed, have been deployed [7].
User personalizations, such as the ability to follow selected
news streams, have been provided [11]. Google News was
created more recently than Yahoo. It was first released in
beta in 2002 and officially in 2006 [3]. It uses automated
story selection, but where humans could add sources. Both
Yahoo and Google integrate news as part of search results
and also allow users to search within news. Since the same
or related news story may come from multiple sources, both
systems also support grouping and deduplicating news stories.
From examining these systems, one can come up with a list
of features we would like of a web-based news aggregating
system:

1) Integrates external news feeds and internally generated
content.

2) Refreshes frequently so that news stays current.
3) Is searchable and allows content to appear within general

search engine search results.
4) Uses a ranking mechanism that can be meshed with the

ranking mechanism of the standard search results.
Even before the work of the current paper, Yioop had facilities
to accomplish the above. We outline how these facilities work
in order to understand what the distributed news updater
job needs to do. In the administrative web panels of Yioop,
administrative users can add and delete RSS, Atom, JSON,
or HTML scrape pages. Url’s and relevant XPath’s entered
for these pages are then stored in the Yioop database. This
allows an administrator to manage external news feeds. The
Yioop search engine comes with the ability for user’s to create
groups with varying levels of editing privileges. Each group
has associated with it a feed and this feed can be output in
RSS if desired. Using this mechanism, popular feeds can be
added to the list of news feed sources. User groups also have
a mechanism for voting up or down particular feed items.
Prior to this project, the media updater on the name server
would once an hour download the search sources that the
administrator had specified. It would then compare feed items
both based on hashes of content as well as GUIDs to determine
which items had not been previously stored and then add them
to a table in the Yioop database. Items greater than a week in
age would be deleted. Finally, an inverted index of the rows
of the feed item table would be created to facilitate search.

Since early in the development of the Yioop project, Yioop
has supported crawling and storing web crawl indexes across
several machines. Indexes are partitioned across machines
using document partitioning: A given machine in the Yioop
cluster will store the inverted index for all documents in the
web crawl whose URLs were in a particular hash range. When
a query is processed from the web interface, the same query
is then run on each partition making up the index, and the
results are combined. Originally, news results were stored
only on the name server. When a query was processed, the
query was processed against the name server news results and
combined with any index results on the name server, this in
turn was combined with query results from other machines in
the cluster. A special “meta word”, media:news, is added to
all news documents, so that if a user wants to search just news
results this meta word can be added to the query to perform
the desired restriction. Since each Yioop machine in a cluster
has the same code base, and does a check for news to combine
with existing query results, to make the original news updater
distributed, one could imagine by hand evenly allocating the
feed source urls between the machines in the cluster, and then
running news media updaters on each machine using only
its allocated sources. The distributed query mechanism from
before could then be used to serve news in search results.

To implement this in an automated fashion using the new
Yioop media job framework, we make a subclass NewUpdate-
Job of MediaJob. The administrator is responsible for adding
feeds only to the name server and we assume that this has been
done prior to running this job. Then when a MediaUpdater runs
its NewUpdateJob, its run() method detects if it is being run
on the name server or client. In the former case, its behavior
would look like:

NewUpdateJob Behavior on a Name Server Web App.

getTasks ($machine i d) :
Uses c l i e n t $machine i d to get those u r l '

s o f feeds whose hash maps to $machine
i d .

r e t u r n i n fo rma t i on f o r these feeds to
reques t ing c l i e n t

Notice NewUpdateJob does not override
prepareTasks(), putTasks(), or finishTasks(),
and these would be inherited as empty methods from the base
class. On a client, NewUpdateJob’s behavior would like:

NewUpdateJob Behavior on a Client.

checkPrerequ is i te () :
Checks i f i t has been more than an hour

s ince news was updated . This could be
made less i f des i red .

doTasks ($ tasks) :
$ tasks i s an ar ray o f feed in fo rma t i on

got ten by an HTTP request to the name
server e a r l i e r i n the run () method . On

the name server , getTasks () would
have been invoked to f u l f i l l t h i s
request .

foreach ($ tasks as $ feed) :

Download the page f o r $feed ' s u r l .
For each feed i tem i n downloaded page

, check i f i t ' s new and not a
d u p l i c a te . I f so , add i t to the
l o c a l database tab l e f o r feed
i tems .

Delete exp i red feed i tems from feed tab le
Rebui ld index shard f o r feed i tems .

If the Yioop cluster administrator decides to configure
their site so as not to use a distributed media updater,
and only runs the media updater on the name server,
then the nondistributedTasks() method of New-
sUpdateJob is used. The run() method in this case,
first calls checkPrerequisite() to determine if it
is time to time download feeds again, and if so, calls
nondistributedTasks() . This in turn obtains all
the feed urls from the name server’s database and calls
doTask($tasks) with this information.

As we indicated in the introduction of this paper, the two
listings above can be viewed as carrying out the “mapping
portion” of a map reduce algorithm. The pre-existing query
mechanism which runs the same query on each machine then
merges the results could be viewed as playing something-like
the role of a query time “reduce operation”.

A. News Update Job Performance Testing

Performance experiments for our news update job conducted
on a cluster on AWS machines, each with the following
specifications: 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1
GiB memory, running Ubuntu Linux. A Yioop instance was
installed on one of these machines and then cloned using
the API option in AWS. After distributing the code, news
sources were added to the name server. Timing measurements
were then performed using different numbers of machines
and different numbers of news sources. The results of these
measurement are plotted in Fig. 1. As one can see, as the
number of news sources increases, the time required to build
the index shard steadily increases. However, the time can be
reduced by adding additional machines to the cluster. Two
machines in the cluster reduce the time almost exactly by
50 percent, which demonstrates that hashing sources’ urls to
machines is evenly distributing the work needed to index all
the feeds.

IV. VIDEO CONVERT JOB

The NewsUpdateJob example did not as part of the job
make use of a reduce operation. We next consider the job
of converting videos to a particular format to illustrate a
MediaJob that does this.

Many search engines have the capability to upload videos
and view them later. One popular example is Google sub-
sidiary, YouTube. Wikipedia also allows one to associate pub-
lic domain videos with wiki pages. Calculation of relevance
of a video to a search query can be done by looking at graphs
such as those based off co-viewed videos of users and may
involve a map reduce algorithm not unlike page rank [1]. In the
Yioop search engine, videos can be uploaded to group wiki

Fig. 1: NewsUpdateJob Performance

pages and to posts in a group’s feed. There is also built-in
public group wiki which can be used to configure the overall
look and feel of a Yioop installation. The upload feature can
be used to display videos off arbitrary Yioop pages provided
the uploader has permissions on that page. Further wiki pages
in Yioop can be of different types one of which is a gallery
type suitable for displaying photos or videos. Videos in Yioop
are streamed using HTTP pseudo-streaming [9]. To ensure
that videos are streamable across a wide spectrum of modern
browsers, the media job we are going to describe in this section
was created to convert uploaded videos to mp4.

Prior to the work of this paper, Yioop could be configured
to convert videos on the name server. After conversion it
would ensure that converted videos got moved to the correct
folder for the wiki page in question. This name server only
conversion was computationally intensive for the name server,
and tended to slow down other important processes such as
query processing. So on the main live test site, yioop.com, it
was turned off. To scale and make feasible video conversion,
we wrote a subclass VideoConvertJob of MediaJob. Our job
makes use of the free software project known as FFmpeg [4]
to handle video manipulation.

When a file is uploaded to a wiki page as page resource,
its media type is checked to see if it is a video file which
should be converted. If it is, and we are running is a distributed
media updater mode, then after it is moved to that wiki page’s
resource folder, a subfolder of the convert directory is created,
and a text file with file information and another indicating that
a video needs to be split for conversion are written. All of
this processing is relatively fast, and to this point, processing
is done by the web app on a file upload. The remainder of
the processing is done by the VideoConvertJob. This job as
written has a checkPrerequisites() which only runs
the job when Yioop is in a distributed media mode setting,
and for this reason, the nondistributedTasks() is the
default do nothing method of the base MediaJob class. For
this job, there are two groups of methods on the name server:
Those that run in the media updater and those that run in
the web app. The media updater name server methods are as
follows:

Name Server MediaUpdater VideoUpdateJob Methods.

prepareTasks () :
f o r each video conver t sub fo lde r :

i f a s p l i t f i l e e x i s t s :
Read the f i l e i n f o f i l e to get

i n f o rma t i on on the video to be
converted

S p l i t the video i n t o 5 minute
segments using FFmpeg .

Output segments to video conver t
f o l d e r .

Remove s p l i t f i l e .
Wr i te a conver t count f i l e w i th

the number o f f i l e s to conver t
f i n i shTasks () :

f o r each video conver t sub fo lde r :
i f the number i n conver t count f i l e

equals the number o f mp4 segments
uploaded to the video converted

sub fo lde r :
Move f i l e i n f o f i l e and count

f i l e to video converted
f o l d e r .

Delete video conver t sub fo lde r .
f o r each video converted sub fo lde r :

i f a conver t count f i l e e x i s t s but
an assemble f i l e does not :
Wr i te an assemble f i l e to

i n s t r u c t FFmpeg how to
concatenate video segments to

b u i l d converted f i l e
f o r each video converted sub fo lde r

i f an assemble f i l e e x i s t s :
Use assemble f i l e w i th ffmpeg to

concatenate converted video
segments to w i k i resource
f o l d e r

Delete video converted sub fo lde r
assemble

Create a thumbnai l f o r converted
video wi th FFmpeg

After prepareTasks() has run on a video convert
folder, its segments will be ready to be sent to the client for
conversion. The process of segmenting a file using ffmpeg is
much faster and lightweight than the process of converting
from one video format to another, which will be seen in
our experimental results in the next section. The method
finishTasks() above handles videos after converted segments
have been sent back from clients to the name server. It
can be viewed as the “reduce step” of the Map Reduce
paradigm. It checks if all the segments of the video file have
been uploaded, and if so, concatenates them to make a final
converted video file back in the wiki page’s resource folder.
The VideoConvertJob methods that run in the name server’s
web app are responsible for getting video segments to give to
client’s for conversion, and for receiving converted segments
and moving them to the correct folder. They are:

Name Server Web App VideoUpdateJob Methods.

getTasks ($machine id , $data = n u l l) :
f o r each conver t sub fo lde r :

f o r each video segment to conver t as
$ f i l e p a t h :

i f not e x i s t s timestamp f i l e f o r
segment or timestamp i s

exp i red :
break out o f both f o r each

loops
Wri te a new timestamp f i l e f o r $ f i l e p a t h
r e t u r n assoc ia t i ve ar ray w i th the f i l e

name of $ f i l e p a t h , i t s sub fo lde r name
, and f i l e ' s contents .

putTasks ($machine id , $data) :
Here $data conta ins an assoc ia t i ve ar ray

w i th the converted video segment f i l e
name, the conver t subfo lder , and
converted segment data

Compute converted sub fo lde r name from
conver t sub fo lde r name

Create converted sub fo lde r i f i t doesn ' t
e x i s t s

i f the segment name does not e x i s t i n the
converted sub fo lde r :

Make f i l e i n converted sub fo lde r w i th
segment f i l e name and converted

segment data
Delete the o r i g i n a l , unconverted

segment from the conver t sub fo lde r

Notice, unlike the NewsUpdateJob, neither getTasks nor
putTasks makes use of its $machine id argument. The name
server methods, as we have seen, do all the bookkeeping,
which, although somewhat more intricate, are less compu-
tationally expensive than the actual video conversion which
occurs on the client. This VideoUpdateJob methods on the
client to do the conversion are as follows:

Client MediaUpdater VideoUpdateJob Methods.

checkPrerequ is i te () :
i f i n d i s t r i b u t e d mode :

r e t u r n t rue
r e t u r n f a l s e

doTasks ($ tasks) :
Here $ tasks conta ins an assoc ia t i ve

ar ray w i th the f i l e name, conver t
sub fo lde r name, and data

f o r a video segment to conver t . doTasks
() i s c a l l e d from the base classes
MediaJob ' s run ()

method a f t e r i t has made a request to
the Name Server to execute getTasks ()
.

Remove any p rev ious l y e x i s t i n g conver t
sub fo lde r w i th the same name

Make a new conver t sub fo lde r
Wr i te $ task ' s data to a f i l e w i th $ task ' s

f i l e name i n the f o l d e r j u s t created
.

Convert j u s t w r i t t e n video segment f i l e
to mp4 using FFmpeg .

Create an assoc ia t i ve ar ray w i th the
converted f i l e name, f o l d e r name, and

converted data
r e t u r n array , so run () method can send

i t to the name server

1) Video Updater Performance Testing: Fig. 2 shows the
results of our performance tests for the VideoUpdateJob. To

test the VideoUpdateJob, again an AWS cluster was configured
and the time it took to convert the videos was measured,
varying the number of machines and the length of the video
to convert. The one machine case measures the original non-
distributed code. As one would expect, on any number of
machines, a longer video takes longer to convert. We also see
a similar improvement in speed going from one to two to three
machines, that we did in the news update job situation. For
a fifty minute video, on a single machine it takes about 300
seconds to convert a video, 170 seconds in the two machine
case, and 120 seconds in the three machine case. So both the
two and three machine cases and about the same amount, 20
seconds, above the ideal speed-up of a factor or 2 in the first
case, or 3 in the second. This factor can be attributed to the
bookkeeping, segmenting times, and network communication
times. These would be roughly the same for the two and three
machine case. Although it may look from the graph that there
is little advantage of our distributed set-up for shorter videos in
going from two to three machines, one has to remember the
above graph is for the conversion of a single file, averaged
several times. In a typical scenario, one would have several
outstanding files to be converted, and here having additional
machines would help.

Fig. 2: VideoUpdateJob Performance

V. BULK EMAIL JOB

Our last example is perhaps the simplest of our three
examples. Prior to our work there were several situations
in which Yioop might need to send out emails: new user
registration, password recovery, notifications of new posts in
discussion groups, and notification of membership requests to
groups. To send a single email from the web app in response to
a user’s request would in general not be very time consuming,
but to notify all members of a large discussion group of
a new post might an impractically long time. Yioop sends
emails using a MailServer class which either directly uses
PHP’s built-in mail() function or by using its own simple
implementation of SMTP.

The first step to improving the web app only approach to
sending email was to add a Server Settings activity that allows
a Yioop site administrator to choose between web app-based

emails, or media updater based emails. In the first case, the
prior email system of Yioop is used. To handle the second
situation, the MailServer class was modified so that it could
write emails into text files in a mail directory. A given text
file in this folder has its creation timestamp as its name and is
appended to for a five minute interval with all newly received
emails, after which a new text file is started. We then created
the BulkEmailJob, a subclass of MediaJob, to handle sending
the emails from the media updater. If the media mode is
non-distributed, then when this job is run, periodically, the
nondistributedTasks() method is called. It looks in the mail
directory for a file older than five minutes, read it, sends
out the emails it contains, and deletes it. In the distributed
setting, on the name server we have only the following method
overridden:

Name Server Web App BulkEmailJob Methods.

getTasks ($machine i d) :
$sendable f i l e = f a l s e
f o r each $emai l f i l e i n mai l d i r e c t o r y :

i f o lde r than 5 minutes :
$sendable f i l e = $e m a i l f i l e
break

i f $sendable f i l e i s f a l s e :
r e t u r n f a l s e

Create an assoc ia t i ve ar ray w i th name $
sendable f i l e ' s f i l e name and wi th
data i t s contents

r e t u r n ar ray

The $sendable_file’s file name is used only for log
messages that the media updater outputs. To handle actually
sendings emails contained in an email file on the client, the
following two overridden methods come into play:

Client BulkEmailJob Methods

checkPrerequ is i te () :
i f i n d i s t r i b u t e d mode or set to use

mai l server i n media updater :
r e t u r n t rue

e lse
r e t u r n f a l s e

doTasks ($ tasks) :
$ tasks i s an assoc ia t i ve ar ray w i th the

name of the to−process emai l f i l e and
i t s data contents

S p l i t data contents i n t o an ar ray o f
emai ls to send

foreach emai l to send :
send emai l

r e t u r n f a l s e to i n d i c a t e no putTasks

VI. CONCLUSION

We have presented the media updater framework for the
Yioop open-source search engine. A design goal of this
framework was to make it easier for people to code periodic
search engine, wiki, or web-site related jobs developed using
Yioop, with the intention that the execution of these jobs will
scale to larger deployment settings. Jobs in our framework
run periodically. The NewsUpdaterJob, VideoUpdateJob, and

BulkEmailJob example jobs we have explained, show that
it is relatively easy to write lightweight, distributed jobs in
our framework. The experiments we conducted with these
jobs illustrate the advantage of running these kind of periodic
jobs in a distributed setting. As the Yioop project itself has
minimal dependencies on other projects and is written in the
popular scripting language PHP, it has been relatively easy
for many students at San Jose State to get up to development
speed on this project. It seems promising that the media job
framework will facilitate future improvements to Yioop such
as the ability to periodically process movie and weather feeds,
perform traffic analytics, and to perform supplementary crawls
for the main crawl used to serve search results.

REFERENCES

[1] S.Baluja, R. Seth, D. Sivakumar, Y. Jing, J.Yagnik, S. Kumar, D.
Ravichandran, and M. Aly. Video Suggestion and Discovery for YouTube:
Taking Random Walks Through the View Graph. Proceeding of WWW
2008.

[2] Bash Reduce GitHub Page. Retrieved on Sep. 11, 2015 from
https://github.com/erikfrey/bashreduce.

[3] Krishna Bharat. And now, News. The Official Google Blog. Jan. 23,
2006.

[4] FFmpeg. Retrieved Dec 4., 2015 from
http://ffmpeg.org/.

[5] W.Lam, L.Liu, S.Prasad, A.Rajaraman, Z.Vacheri, and A.Doan. Muppet:
Mapreduce-style processing of fast data. Proceedings of the VLDB
Endowment (PVLDB), 5:18141825, 2012.

[6] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4:
Distributed Stream Computing Platform. In Data Mining Workshops,
International Conference. IEEE Computer Society. pp 170–177. 2010.

[7] P. O’Connell. New Economy; Yahoo charts the spread of the news by
e-mail, and what it finds out is itself becoming news. New York Times.
Jan. 29, 2001. http://www.nytimes.com/2001/01/29/business/
\qquadnew-economy-yahoo-charts-spread-e-mail-what-it-finds-
\qquaditself-becoming.html

[8] Oozie 4.2.0 Documentation. Retrieved on Sep. 11, 2015, from,
http://oozie.apache.org/docs/4.2.0.

[9] Wikipedia Progressive Download page. Retrieved Oct. 8, 2015 from
https://en.wikipedia.org/wiki/Progressive\ download.

[10] Yioop Documentation from Seekquarry. Retrieved on Sep. 11, 2015 from
http://www.seekquarry.com/p/Documentation.

[11] A. Silberstein , J. Terrace , B. F. Cooper , R. Ramakrishnan. Feeding
Frenzy: Selectively Materializing Users Event Feeds . In SIGMOD 2010.

[12] Yahoo! Headline. Nov. 28, 1996. Internet Archive.
https://web.archive.org/web/19961128074525/http://www8.yahoo.com/
headlines/

