
Nonmonotonic Reasoning with Quantified
Boolean Constraints

Chris Pollett1 and Jeffrey B. Remmel2

1 Department of Mathematics, University of California at San Diego, La Jolla, CA
92903, e-mail: cpollett@math.ucsd.edu

2 Department of Mathematics, University of California at San Diego, La Jolla, CA
92903. Currently with Sagent Corporation, Bellvue, WA, 98004, e-mail:

jremmel@sagent.com

Abstract. In this paper, we define and investigate the complexity of
several nonmonotonic logics with quantified Boolean formulas as con-
straints. We give quantified constraint versions of the constraint pro-
gramming formalism of Marek, Nerode, and Remmel [15] and of the
natural extension of their theory to default logic. We also introduce a
new formalism which adds constraints to circumscription. We show that
standard complexity results for each of these formalisms generalize in the
quantified constraint case. Gogic, Kautz, Papadimitriou, and Selman [8]
have introduced a new method for measuring the strengths of reasoning
formalisms based on succinctness of model representation. We show a
natural hierarchy based on this measure exists between our versions of
logic programming, circumscription, and default logic. Finally, we discuss
some results about the relative succinctness of our reasoning formalisms
versus any formalism for which model checking can be done somewhere
in the polynomial time hierarchy.

1 Introduction

The motivation for this paper arose naturally from the theory of constraint
programs and constraint models as proposed by Marek, Nerode, and Remmel
[15]. That is, Marek, Nerode, and Remmel extended the logic programming
with negation formalism to encorporate arbitrary constraints. The constraints
considered by Marek, Nerode, and Remmel are not restricted to statements on
real numbers as in CLP(R), see [12]. Instead, they defined a general notion
of constraint programs and constraint models and showed that stable models of
logic programs as well as the supported models of logic programs are just special
cases of constraint models of constraint programs.

In the Marek, Nerode, Remmel theory, the constraint of a clause is not re-
stricted to be of a certain form or even to be expressible in the underlying
language of the logic program. A constraint program clause is of the form

p ← a1, . . . an : Ψ

where no particular restrictions were placed on the formula Ψ . The formula Ψ is
called a constraint formula. The idea is that the constraint formula of a clause

incorporates the conditions that need to be satisfied by (some) parameters before
we start to evaluate the remaining goals in the body of the clause. Thus the
constraint controls the applicability of the clause, i.e. , if it fails, then the rule
cannot fire. The novel feature of their theory is that the constraints are supposed
to be true in the model consisting of the atoms computed in the process. That
is, one allows for an a posteriori justification of the rules applied in the process
of computation. At first glance this is a different phenomenon than occurs in
constraint logic programming. There the constraints are applied a priori. Indeed,
in constraint logic programming, once one finds the multidimensional region
containing the solutions of the constraint, the subsequent steps can only refine
this description in that the solutions must come from that region. The constraints
allowed in a constraint program may be very diverse and complex formulas.
They may be formulas in the underlying language of the program or they may
be formulas in second order or even infinitary logic. An example of this type
of constraint is a parity example where the constraint is a statement about the
parity of the (finite) putative model of the program. This type of the constraint is
a formula of infinitary logic if the Herbrand base is infinite. The only requirement
for a constraint is that there is a method to check if the constraint holds relative
to a possible model.

The motivation for allowing more general constraints originally came from
the certain applications in control theory of real-time systems. The basic idea is
that we sample the plant state at discrete intervals of time, ∆, 2∆, Based on
the plant measurements, a logic program will compute the control to be used by
the plant for the next ∆ seconds so that the plant state will be guaranteed to
meet certain required specifications. One possible way for such logic programs to
operate is that the set of rules with which we compute at any give time n∆ is a
function of the observations of the state of the plant at time n∆. In this fashion,
we can view the plant state at time n∆ as determining which constraints of the
rules of the logic program are satisfied and hence which rules can fire at time n∆.
In such a situation, we cannot expect that we will have the constraints which
are necessarily in the same language as the underlying language of the program.
For example, Ψ could be a formula that asserts that a particular integral has
value one. Therefore it seems necessary to step out of the current constraint
logic programming paradigm. Another application of the same type is to have
a logic program controlling inventory via a deductive database. In this case,
we may want to change the rules of the deductive database as a function of
outside demand. Once again one could view the satisfaction of the constraints as
depending on the database for the inventory and the set of orders that come in
at a given time. In this way one can vary the set of applicable rules as function
of the current inventory and demand.

The constraint formulas control the applicability of a clause during program
evaluation. They allow for an increased flexibility in the forms of data that can
be handled by logic programs. The actual evaluation of these constraint formulas
might be handled by specialized hardware and so model search for these pro-
grams is potentially feasible. Nevertheless, the evaluation of constraint models

which are the natural extension of the stable logic semantics to programs built
out of such clauses requires checking these constraints. Hence the checking of con-
straints becomes a new source of complexity in the the evaluation of constraint
models. Thus to study the complexity of this type logic programming with gen-
eralized constraints, or indeed any form of nonmonotonic logic with generalized
constraints, it is useful to develop constraint theories of various complexity.

Quantified propositional formulas provide a natural tool for developing con-
straint theories of varying complexity. This is because restricting the quantifier
depth of such formulas yields natural complete problems for various levels of
the polynomial hierarchy. From the practical point of view quantified Boolean
formulas as constraints allow one to check global properties of a database or
plant in a way which would be much more cumbersome if one had to rely on
propositional constraints alone.

In this paper, we define and investigate the complexity of several nonmono-
tonic logics with quantified Boolean formulas as constraints. In particular, we
give quantified constraint versions of constraint programming of Marek, Nerode,
and Remmel [15] and the natural extension of their theory to default logic. We
also introduce a new formalism which adds constraints to circumscription. We
show that standard complexity results [2, 14] for each of these formalisms gener-
alize in the quantified constraint case. If our constraint formulas are restricted to
be QBFk, quantified Boolean formulas with k alternations of quantifiers, then
model existence problem in constraint programming (LPk) is Σp

k+1-complete.
Similarly, the model existence problem for our version of default logic (DLk) is
Σp

k+2-complete. For our version circumscription (CCk) we show that it is Πp
k+2-

complete to determine if a given variable is in all models of a circumscribed
program. The fact that completeness results for these theories lift so uniformly
up through the polynomial hierarchy, i.e. our version of logic programming al-
ways remains one level below our versions of circumscription and default logic,
illustrates the crucial role that constraints play in complexity results for non-
monotonic theories.

A new method for comparing the relative strength of reasoning formalisms
was developed by Gogic, Kautz, Papadimitriou, and Selman [8] (see also Pa-
padimitriou [17] and Gogic [9]). It is based on the succinctness with which a
formalism can express a particular collection of models. The idea is that given
any reasoning formalisms A and B, we say that A is at least as representationally
succinct as B, written B ≤s A, if for each knowledge base φB in the reasoning
formalism B, there is a knowledge base φA in the reasoning formalism A, whose
size is polynomial bounded in the size of φB such that φB and φA are defined
over the same free variables and have the same set of models. Note that there
is no requirement that φA be effectively computed from φB . It is easy to see
succinctness criteria induce a transitive, reflexive relation ≤s on the class of rea-
soning formalisms. Gogic , Kautz, Papadimitriou, and Selman showed that there
is a rather remarkable hierarchy that results among various reasoning formalisms
such as propositional logic, horn logic, circumscription, and default logic given
that the polynomial time hierarchy does not collapse at low levels.

We shall show that there is a natural hierarchy that exists among the theories
LPk, DLk, and CCk introduced in this paper. We show that LPk <s DLk and
LP ∗k <s CCk <s DLk. The strictness of these inclusions is under the assumption
that the polynomial hierarchy does not collapse. LP sup

k is LPk where we consider
supported models of programs rather than stable ones. LP ∗k is LPk restricted to
programs whose supported models are pairwise incomparable. With a slightly
weaker notion of succinctness ≤ws where one does not insist that φA and φB

have the same set of variable, one can show:

LP ∗k ≡ws LPk <ws CCk ≤ws DLk ≡ws LPk+1.

We also show that LPk ≤ws LP sup
k and LPk ≤s LP sup

k . Thus LPk ≡ LP sup
k .

Similar results are proven for default logic and circumscription.
The results of this paper are presented in four sections. In the first three

sections, we develop our versions of logic programming, circumscription, and
default logic. In the fourth section we discuss our succinctness results. Besides
the above set of inclusions, in the fourth section, we discuss some results about
the relative succinctness of our reasoning formalisms versus any formalism for
which model checking can be done somewhere in the polynomial time hierarchy.

Finally, we wish to thank Victor Marek for carefully reading our first draft
to the paper and for many suggested improvements.

2 Logic Programming

We will be considering clauses of the form

p ← a1, . . . , an : B1(b1), . . . , Bn(bm) (∗)

where p, a1, . . . , an are propositional variables and B is a quantified Boolean
formula[16]. For each i, the bi represents the free propositional variables in Bi.
We call p the conclusion of the clause, we call the ai’s the premises of the clause,
and we call the Bi’s constraint formulas.

A logic program with quantified Boolean constraints is a collection of clauses of
the above type. We will often call this just a constraint logic program or program.
The Herbrand Universe for such a program consists of all propositional variables
appearing free (unquantified) somewhere in the program. Let P be a program.
Let M be a subset of the Herbrand Universe of P and let νM be the truth
assignment such that νM (x) = 1 if and only if x ∈ M . We denote by PM the
logic program obtained from P by deleting those clauses whose constraints are
not satisfied by νM and by deleting the constraints from the remaining clauses.
PM is a Horn program and has a least model NM . We say that M is a stable
model of P if it is the case that M = NM .

Every truth assignment ν uniquely extends to a truth assignment ν̄ which
evaluates all the quantified Boolean formulas and satisfies the usual Tarskian
conditions for satisfaction. A supported model for a logic program is a truth
assignment ν to its Herbrand Universe such that for each variable p, ν(p) = 1

if and only if there is a clause of type (∗) such that ν(a1) = 1, . . . ν(an) = 1,
and ν̄(B1(b1)) = 1, . . . ν̄(Bm(bm)) = 1. Otherwise, ν(p) = 0. The clause p ←:
can be used to force ν(p) to be 1. We say that a is in a model ν if ν(a) = 1.
If ν(a) = 0 then a is out of ν. Every stable model of P is a supported one, but
the reverse need not be true. We will use supported models when we prove our
succinctness results. Unless we state otherwise, however, when we say model of
a logic program we mean stable model.

We write Σq
k to denote the set of quantified Boolean formulas with at most k-

alternations of quantifier type and whose outermost quantifier is an ∃. Similarly,
we write Πq

k denote the set of quantified Boolean formulas with at most k-
alternations of quantifier type and whose outermost quantifier is an ∀. In both
cases, unless we say we are dealing with only sentences, we assume our formulas
have free variables. Lastly, we write QBFk to denote Boolean combinations of
these two classes. In the k = 0 case all of the above classes are the same: The class
of propositional formulas. We recall that the problem of determining whether a
Σq

k-sentence is true is Σp
k-complete and the problem of determining whether a

Πq
k-sentence is true is Πp

k -complete. Given an assignment ν to the free variables
of a QBFk formula B, the problem of determining whether or not ν̄(B) is true
is in ∆p

k+1.

Definition 1. LPk is the class of finite logic programs whose constraints are all
in QBFk. LP∞ = ∪k≥0LPk.

Let us pause a moment here to compare the class LP0 to logic programs that
allow for yet simpler constraints. Some results on such programs were proved by
Marek, Nerode, and Remmel in [15]. Specifically, for programs with clauses that
have propositional constraints they construct an equivalent program in the same
language where all the constraints are conjunctions of literals. The reason why
this is possible is that constraints distribute with respect to disjunction. That is,
a program transformation where replace a clause p ← a1, . . . an : B1∨B2 by two
clauses, p ← a1, . . . an : B1 and p ← a1, . . . an : B2, does not change semantics.
Consequently, all we need to do is to put constraints in disjunctive normal form
(disjunction of conjunctions) and then distribute. We repeat it for all clauses of
P if necessary.

This conversion yields a program potentially exponential in the size of the
original program. If however one allows for additional variables then we can
find a polynomial transformation. We will outline it below. First, by taking
the conjunction of all constraints, we can assume that each clause has just one
constraint. Indeed, each of the constraints of a clause is satisfied if and only if
their conjunction is satisfied. Next, since we do not changes the set of stables of
a program if we replace any constraint in the program by a logically equivalent
constraint, we can eliminate implications and push the negations downwards to
the level of literals. Thus we can assume that the constraints are built out of
literals by means of conjunctions and alternatives. Since the constraints split
with respect to alternatives, all we need to do is to handle conjunctions. We do

this as follows. Given a clause of the form

C = p ← a1, . . . , am : ∧∧r
j=0 Bj

we introduce r new constants b1, . . . , br, eliminate C and put into P

p ← a1, . . . , am, b1, . . . , bn :
b1 ←: B1

. . .
bn ←: Bn

After the execution of these operations, the resulting program P ∗ (clearly poly-
nomial in size of P) has the following properties. First, every stable (constraint)
model of P uniquely extends to a model of P ∗. Second, all the constraints of
clauses of P ∗ are either tautologies, or a single literals. We notice that in the
context of general logic programs this result is well-known. In the terminology
of Section 5 we proved that for the class LP ∗ of programs with a single con-
straint which is a tautology or a literal, we have LP0 ≤ws LP ∗ (and consequently
LP0 ≡ws LP ∗ as well).

Theorem 1.
1. The problem ∃CMLPk of determining whether an LPk program has a model
is Σp

k+1-complete.
2. The problem ∃CMLP∞ of determining whether a finite LP∞ program has a
model is PSPACE-complete.

Proof. First, we show ∃CMLPk ∈ Σp
k+1. Let P ∈ LPk. We guess a model

for P then check which of P ’s clauses have their constraint formulas satisfied.
As we said above, given a truth assignment, checking a QBFk formula can be
done in ∆p

k+1. We delete the clauses whose constraint formulas are not satisfied.
The remaining clauses have their constraint formulas satisfied so we can delete
the constraint formulas for these formulas. The resulting program is a Horn
program and finding a minimal model for a Horn program can be done in linear
time [3, 14]. Thus, this whole algorithm can be done in NP (∆p

k+1). Therefore,
∃CMLPk ∈ Σp

k+1.
For completeness, let B(b1, . . . , bm) ∈ QBFk. Consider the following logic

program P ∗. It has four groups of clauses:

(1) bi ←: ¬b̄i i = 1, . . . ,m
b̄i ←: ¬bi

(2) γ ← bi, b̄i : i = 1, . . . ,m
(3) bi ← : ¬γ i = 1, . . . ,m

b̄i ← : ¬γ
(4) γ ← : B(b1, . . . bm)

Because of clauses (2) and (3), P ∗ has a model M only if γ ∈ M . However γ
can not be derived by a clause of type (2) since clauses of type (3) only fire if we

do not have γ and clauses of type (1) will only derive one of bi or b̄i. Hence, γ
must be derived by (4). Thus, to derive γ we must be able to solve the problem
of whether ∃bB(b) is valid. But determining whether a Σq

k+1 formula is valid is
a Σp

k+1-complete problem. Thus ∃CMLPk is Σp
k+1-complete.

The LP∞ case is proven in a similar fashion.

Theorem 2.
1. The problem of deciding whether a given variable a is in a model of an LPk

program is Σp
k+1-complete.

2. The analogous problem for LP∞ it is PSPACE-complete.

Proof. The problem is in Σp
k+1 since we can just guess a truth assignment ν

such that ν(a) = 1 and check that it is a model. To see that our problem is
Σp

k+1-complete notice that the problem of whether γ is in an extension of P in
Theorem 1 is equivalent to whether a Σq

k+1-formula is valid.
The LP∞ case is similar.

Remark 1. It is not hard to generalize the notion of logic programming with
quantified Boolean constraints: One needs only generalize the notion of quan-
tified Boolean formula. For instance, rather than take our atoms of quantified
Boolean formulas to be just propositional variables we could let them be propo-
sitional variables and expressions of the form a1a2 . . . an ∈ A. That is, checking if
the concatenation of some string propositional variables is in an oracle A. Given
an assignment ν, we define ν̄(a1a2 . . . an ∈ A) = 1 if and only if the string
ν(a1)ν(a2) . . . ν(an) is in the set A. Thus, there is a well defined semantics for
such formulas. So we can define the classes Σq

k(A), Πq
k(A), and QBFk(A) and

use them in our logic programming theories. Hence, we can define LPk(A) to be
finite logic programs with QBFk(A) constraints. From Goldsmith Joseph [10]
and Schöning [18] it is known that SATk(A) is Σp

k+1(A)-complete. Hence, us-
ing exactly the same arguments we can generalize the theorems we have just
obtained for LPk.

Theorem 3.
1. The problem of deciding whether an LPk(A) program has a model is Σp

k+1(A)-
complete.
2. The analogous problem for LP∞(A) it is PSPACE(A)-complete.

Theorem 4.
1. The problem of deciding whether a given variable a is in a model of an LPk(A)
program is Σp

k+1-complete.
2. The analogous problem for LP∞(A) it is PSPACE(A)-complete.

3 Circumscription

There are several ways one could generalize circumscription to higher levels of the
polynomial hierarchy. Perhaps the easiest way would be to take QBFk formulas

and circumscribe them directly. The circumscribed models of a QBFk formula
B(a) would be the minimal models of B under set-theoretic inclusion.

However, in this paper we are taking the approach that one should separate
constraints, which might be possible to calculate a priori or possibly on some
special device, from the computational part of the reasoning scheme. Hence, our
version of constraint circumscription will consist of circumscribed programs which
are sequences of clauses of the form B(a) ←: C(b), where B is a propositional
formula and C is a QBFk formula. In such a clause, B is called the relational
formula and C is called the constraint formula. As usual the Herbrand Universe
for such a program will consist of all the free variables which appear in the
program. Given a circumscribed program P and a subset S of the Herbrand
Universe U , let νS be the variable assignment which makes element of S true
and those of U\S false. Then we define PS to be the following set of relational
formulas:

{B | B ←: C ∈ P ∧ ν̄S(C) = 1}.
We use ∧∧PS to denote the conjunction of formulas in PS . Given a circumscribed
program P and a set of variables M we define CIRC[P ; M] to be the second-
order formula:

∧∧ PM ∧ ¬∃m[∧∧ Pm ∧m ⊂ M].

A model for a circumscribed program P will be a variable assignment νM such
that CIRC[P ; M] is true.

Definition 2. CCk is the class of all finite constraint circumscription programs
with QBFk constraints. CC∞ = ∪CCk.

In the simplest common form of (propositional) circumscription one considers
a single propositional formula F and looks for minimal models of F with respect
to set theoretic inclusion. These minimal models are called the models of the
circumscribed formula F . It is not hard too see that given a propositional formula
F , the CC0 program F ←: has the same models as the circumscribed formula
F . Given a CC0 program with clauses

C(ai) ←: D(ai) for 1 ≤ i ≤ n

it is also not hard to see that this program has the same models as the circum-
scribed formula

∧∧i D(ai) ⊃ C(ai).

Thus, the theory CC0 coincides with the simplest common form of circumscrip-
tion.

Our next result is a generalization of a result of Eiter and Gottlob [4].

Theorem 5.
1. The problem ∀CCMk of determining whether a given variable is in every
model of a CCk program is Πp

k+2-complete.
2. The analogous problem for ∀CCM∞ is PSPACE-complete.

Proof. Let P be a CCk program. To check if x is in all models (recall that a
model here is a model of circumscribed formula) of P we universally examine
truth assignments νM . We then check if there exists a smaller truth assignment,
νm, such that either ν̄M (∧∧ PM) = 0 or ν̄m(∧∧ Pm) = 1 or νm(x) = 1. If there
exists M and m for which this is not the case, then x is not in all models. Hence,
∀CCMk is in Πp

k+2.
To see ∀CCMk is Πp

k+2-complete let F be a Πq
k+2 formula ∀x∃yE(x, y)

where E ∈ Πq
k . Let z, u, and w be new variables. Consider the following CCk

program:

(1) ∧∧i (xi 6≡ zi) ←:
(2) u ←: E(x,y)
(3) ¬u ←: ¬E(x,y)
(4) [u ∨ (w ∧ ∧∧j yj)] ←:

We claim F is true if and only u is in every model of P . Clause (1) ensures
that if m1 ⊆ m2 are models, then m1 must agree with m2 on the xi’s and zi’s
and guarantees for each possible subset of the xi’s there is a model of P with
exactly those xi’s. Suppose u is in every model of P . We want to show F is
true. Let us assume F is false and derive a contradiction. F being false implies
∃x∀y¬E(x, y). Let x be such that ∀y¬E(x, y). Let M be the model containing
x. Then by clause (3), ∧∧ PM must have ¬u as a conjunct. So u will not be in
this minimal model. This contradicts the assumption that u was in every model.

For the other direction, suppose F is true. We want to show every model of
P contains u. Let M be a model of P . Suppose νM (E(x, y)) = 0. Then ∧∧ PM

would be:
∧∧i (xi 6≡ zi) ∧ ¬u ∧ [u ∨ (w ∧ ∧∧j yj)].

So w and all the yjs would have to be in M . But F being true means we could
have found a smaller model since there exists a choice of yis making E true and
hence we can make w false in that model. Hence, M must have νM (E(x, y)) = 1.
But then by (2), M must contain u.

This theorem generalizes when one adds oracle sets to the theories. Hence,
the corresponding problem for CCk(A) is Πp

k+2(A)-complete.

4 Default Logic

We now develop a version of default logic similar in spirit with the versions of
logic programming and circumscription we have just developed.

A quantified Boolean default theory, or just default theory, is a pair 〈D, W 〉
where D is a collection of default rules:

α : B1(b1), . . . , Bm(bm)
γ

and W is a set of propositional formulas. The α and γ in each rule are propo-
sitional formulas and the Bi are quantified Boolean formulas with free variables

bi. α is called the prerequisite, the Bi are called the constraints, and γ is called
the consequent of the rule. The Herbrand base, U for a default theory is the set
of free variables appearing in the default rules and W . Cn(W) is the set of all
formulas provable from W using propositional tautologies and modus ponens.
Given a set S of propositional formulas, a default rule is said to be S-applicable
if Bi ∪ S is consistent for each justification Bi. If the prerequisite of a default
rule also happens to be in S, we say that the rule is strongly S-applicable. We
write DS for the set or rules

{α

γ
|α : B1(b1), . . . , Bm(bm)

γ
∈ D an S-applicable rule}.

DS,w is the subset of DS generated by strongly S-applicable rules. Given a set
of rules X, CnX(W) is the set of all formula which can be proved from W using
propositional tautologies, modus ponens, or rules from X.

An extension for a default theory 〈D, W 〉 is a set of formulas S such that
CnDS (W) = S. A stable model for a default theory 〈D, W 〉 is a truth assignment
satisfying an extension of 〈D, W 〉. A weak extension for a default theory 〈D, W 〉
is a set of formulas S such that W ⊆ S and CnDS,w(S) = S. A supported model
for a default theory 〈D, W 〉 is a satisfying truth assignment to the variables of a
weak extension of 〈D,W 〉. It should be noted that an inconsistent theory cannot
have either type of model. When we say model of a default theory we mean
stable model. Supported models of default theories will be discussed again in
the succinctness section.

We define BDS (T) = T ∪ {γ|αγ ∈ DS and α ∈ Cn(T)}. To denote iterating
this operation n times we write BDS ↑ n(T), and we write BDS ↑ ω(T) to denote
iterating this operation ω times. If 〈D, W 〉 is a finite theory than there exists
and n such that BDS ↑ n(W) = BDS ↑ (n + 1)(W) = BDS ↑ ω(W).

We begin with a couple of observations about default theories with quantified
Boolean constraints. Their proofs are the same as in the classical default theory
case.

1. A theory S is an extension for a default theory 〈D, W 〉 if and only if S =
Cn(BDS ↑ ω(W)).

2. If S is an extension of 〈D, W 〉 then there is a subset Z of the consequences
of D such that S = Cn(W ∪ Z).

Definition 3. DLk is the class of all finite default theories all of whose rules
have QBFk constraints. DL∞ = ∪DLk.

Notice DL0 is exactly the same as the usual default logic.
We begin with a generalization of the fundamental result of Gottlob [11].

Theorem 6.
1. The problem ∃EDLk of deciding whether 〈D,W 〉 ∈ DLk has an extension is
Σp

k+2-complete.
2. The analogous problem for DL∞ it is PSPACE-complete.

Proof. Let 〈D, W 〉 ∈ DLk. To show the problem of finding an extension is in
Σp

k+2 we use the two observations above. We guess a subset Z of the conclusions
of the rules. We take S to be Cn(W ∪ Z) and check that S = Cn(BDS ↑
ω(W)). First we must figure out what DS is. It is not hard to see that a default
d = φ:B1(b1),...Bm(bm)

γ contributes φ
γ if and only if for each i, {Bi(bi)} ∪W ∪ Z

is consistent. Next, we check if {Bi(bi)} ∪ W ∪ Z is consistent. This requires
looking for a vector bi such that a Πp

k property holds. Thus, we would need a
single Σp

k+1 oracle call. To do this for each default we would need less than |D|
many Σp

k+1 oracle calls. Next we construct B = BDS ↑ ω(W). This takes at
most |DS |2 many co-NP calls to check if a given prerequisite is a consequence of
the set generated so far. Lastly we need to check that Cn(B) = Cn(W ∪ Z).

Let Φ be the conjunction of formulas in B and Ψ be the conjunction of
formulas in W ∪ Z. Then checking the above condition amounts to checking
if Φ ≡ Ψ is a tautology. So after our initial guess of Z, all our oracle calls
are to sets contained in Σp

k+1. Thus, the entire procedure outlined above is
NPΣp

k+1 = Σp
k+2.

To see ∃EDLk is Σp
k+2-complete, let B(a, b) ∈ Σq

k where a = (a1, . . . , am)
and b = (b1, . . . , bn) are the free variables in B. Consider the following default
theory 〈D∗,W ∗〉:
(1) : ai

ai

¬ai¬ai
i = 1, . . . , m

(2) : ¬γ
ai

: ¬γ¬ai
i = 1, . . . , m

(3) : B(a, b)
γ

〈D∗,W ∗〉 has an extension S implies

Cn(±a1 ∧ ±a2 ∧ . . .± am ∧ ±γ) |= γ.

The ±ai is supposed to be either ai or ¬ai depending upon which of these literals
belongs to S. From the above we thus have:

Cn(±a1 ∧ ±a2 ∧ . . .± am) |= B(a, b).

Consequently, we have

Cn(±a1 ∧ ±a2 ∧ . . .± am) |= ∀wB(a, w).

This in turn implies that the sentence ∃x∀wB(x, w) is true. We can reverse all
the above implications. That is, if ¬∃x∀wB(x,w), then there is no choice of
±xi’s which satisfies ∀wB(a, w). So γ cannot be derived. Thus 〈D, W 〉 has no
extensions.

So existence of an extension of default theories of the form 〈D∗,W ∗〉 is equiv-
alent to the Σp

k+2-complete problem of whether a Σq
k+2 sentence is valid.

DL∞ case is proven in a similar fashion.

Corollary 1.
1. The problem of deciding whether 〈D,W 〉 ∈ DLk has a model is Σp

k+2-complete.
2. The analogous problem for DL∞ it is PSPACE-complete.

Proof. To see the problem is in Σp
k+2 let 〈D, W 〉 ∈ DLk. We now slightly modify

the procedure to find an extension of a default theory used in Theorem 6. At
the same time, as we guess a subset Z of the conclusion we also guess a model
M for 〈D, W 〉. Then when we check that whether Φ ≡ Ψ is a tautology we also
check if M |= Φ. Only if both of these conditions are true is M a model 〈D, W 〉.
This procedure is still in Σp

k+2.
To see that our problem is Σp

k+2-complete notice the default theory used in
Theorem 6 has models if and only if the sentence ∃x∀wB(x,w) is true.

DL∞ case is proven in a similar fashion.

Corollary 2.
1. The problem of given a formula φ and deciding whether or not it is in an
extension of 〈D, W 〉 ∈ DLk is Σp

k+2-complete.
2. The analogous problem for DL∞ it is PSPACE-complete.

Proof. The problem is in Σp
k+2 since we can use the previous corollary to guess

a model M and then check if M |= φ. To see that it is Σp
k+2-complete notice

that the problem of whether γ is in an extension of 〈D∗,W ∗〉 in Theorem 6 is
equivalent to whether a Σq

k+2-formula is satisfiable.
DL∞ case is proven in a similar fashion.

The theorem and the corollaries above generalize when one adds oracle sets to
the theories DLk. Hence, the corresponding problems for DLk(A) are Σp

k+2(A)-
complete.

5 Succinctness

In [8] a notion of representation succinctness was developed as a means of com-
paring the relative strength of various reasoning formalisms. We will now es-
tablish several succinctness results about nonmonotonic logics with quantified
Boolean constraints. These results generalize those of [8].

Definition 4. Let A and B be any reasoning formalisms. We say that A is at
least as representationally succinct as B, written B ≤s A if the following is true:
For each knowledge base φB in B there is a knowledge base φA in A such that
(a) φB and φA are defined over the same free variables and have the same set
of models, and (b) the size of φA is polynomially bounded in the size of φb. We
write A 6≤s B if (a) and (b) fail to hold.

It should be noted that the method of going from φA to φB need not to
be effective. Next, the definition makes it is obvious that ≤s is transitive and
reflexive. We can slightly weaken the definition of succinctness by replacing (a)
in the above with the following:

(a′) φA contains all of φB’s variables and all models of φA are expansions of
models of φB.

We will call succinctness with respect to (a′) weak succinctness and will write
B ≤ws A if A is at least as weakly representationally succinct as B.

It is follows from the definitions that if B ≤s A then B ≤ws A. Moreover,
(a′) implies that φA can not have a model unless φB has one.

We adopt the convention that (k ≥ 0). Let LPk with respect to supported
models will be denoted LP sup

k . LPk with respect to stable models we will just
write as LPk. We then have:

Theorem 7. LP sup
k ≤s LPk and LPk ≤ws LP sup. Thus, LPk ≡ws LP sup

k .

Proof. Let P be an LP sup
k program. A variable a is in a supported model M of

P if and only if there is a clause of the form

a ←: p1, . . . , pn : B1, . . . , Bm

and νM (pi) = 1 for 1 ≤ i ≤ n and ν̄(Bj) = 1 for 1 ≤ j ≤ m. Thus, we
can view the premises and constraints of such a clause as a single constraint:
namely, ∧∧i pi ∧ ∧∧j Bj . The program P ′ one obtains by replacing the premises
and constraints of clauses in P by such single constraints will still have the same
supported models. But now given a set M , P ′M will consist of clauses of the
form a ←:. So if M is a stable model any such a in P ′M would have to be in
M . So a is in a stable M if and only if there is a clause in P ′ whose single
constraint is satisfied by M . Clearly, this is the same condition as for a being
in a supported model of P ′. Hence, the stable models of P ′ are the same as the
supported models of P ′ and in turn the supported models of P . Consequently,
LPk ≤s LP sup

k .
Now take P in LPk. Let a1, . . . , an be the variables of P . Let N be the

number of clauses in P . The problem of simulating P with an LP sup
k program

can be viewed as the problem of rewriting P ’s clauses without premises. Given an
arbitrary subset M of the Herbrand Universe we need some way to simulate the
derivation of variables when we evaluate the Horn program PM . In evaluating
PM , we need at most n rounds before we reach a fixed point. To perform our
simulation we introduce new variables ri,t for 1 ≤ i ≤ N and for 1 ≤ t ≤ N . ri,t

is supposed to keep track of whether rule i of P has fired by time t. Let h be
the function which takes clause numbers and returns the number of the variable
which is at the head of the clause. Let P ′ be the following LP sup

k program:
For each clause in P of the form:

ah(k) ←: B
We add to P ′ the clauses:
(1) rh(k),t ←: B where 1 ≤ t ≤ n.
Next, for each clause in P of the form:

ah(k) ← ah(i1), . . . , ah(im) : B
We add to P ′ the clause:
(2) rh(k),t+1 ←: B∧(∨∨h(j)=h(i1) rj,t)∧ . . .∧(∨∨h(j)=h(im) rj,t) where 1 ≤ t ≤ n−1.
Finally, we add to P ′ the clauses:

(3) ah(i) ←: ri,n for 1 ≤ i ≤ N
Suppose M ′ is a model of P ′ (since the clauses of P ′ have no premises,

supported and stable models of P ′ will be the same). Let M be M ′ restricted to
the variables of P . Clauses in the Horn program PM inherit a numbering from
the clauses they came from in P . Hence, clauses (1) and (2) of P ′ will guarantee
that ri,t is valid in M ′ if and only if the i-th rule of PM could fire at time t in
the evaluation of PM . So if ri,n is true then ah(i) could be derived in PM . Thus,
rule (3) assures us that a variable is in M if and only if it could be derived in
evaluating PM . So M will be a model of the Horn program PM and hence a
stable model of P .

Suppose M is a model P . We can extend this to a model of P ′ by assigning
rit true if rule i has fired in PM by time t, and by assigning rit false, otherwise.
This completes the argument.

As before, let DLk with respect to supported models be denoted DLsup
k , and

DLk with respect to stable models we will just denoted by DLk. One can easily
modify the argument given above to porove the following.

Theorem 8. DLsup
k ≤s DLk and DLk ≤ws DLsup

k . Thus, DLk ≡ws DLsup
k .

We will show below that CCk 6≤s LPk. We know LP sup
k 6≤s CCk since models

of CCk programs are pairwise incomparable as sets, yet supported models of an
LPk program can be subsets of each other. However, if we slightly modify the def-
inition of LP sup

k to only consider programs whose supported models are pairwise
disjoint then CCk is as representationally succinct as the resulting theory. Call
this new theory LP ∗k . We can convert any LP sup

k program P over the variables
the p1, . . . pn into an LP ∗k program P ′ over the variables p1, . . . , pn, p′1, . . . , p

′
n.

To make P ′ we add to P the clauses pi ←: ¬p′i and p′i ←: ¬pi where 1 ≤ i ≤ n.
It is easy to see that P ′ has the same number of models as P and every model
in P can be extended to a model of P ′. Further, each of P ′’s models are pair-
wise incomparable. Thus, LP ∗k is a natural modification of LP sup

k since this
construction shows LP sup

k ≡ws LP ∗k . Hence, by Theorem 7 it also shows that
LP ∗k ≡ws LPk.

Theorem 9.
1. LP ∗k ≤s CCk but CCk 6≤s LPk unless Σp

k+1 ⊆ ∆p
k+1/poly.

2. If K is a reasoning formalism for which model checking can be done in ∆p
k+1

then CCk 6≤s K unless Σp
k+1 ⊆ ∆p

k+1/poly.

Proof. To see LP ∗k ≤s CCk let P ∈ LPk. By conjoining constraint formulas we
can assume that the clauses in P are of the form:

ai ← pi1, . . . pin : Bi.

Consider the circumscribed program P ′ made up of clauses of the form:

ai ←: ∧∧j pij ∧Bi.

Suppose M is a supported model of P . For each tail of a clause that M satisfies
in P , M will satisfy the corresponding tail in P ′. Now if M satisfies the tail of a
clause P it must also satisfy the head. P ′M is the conjunction of these heads and
hence will be satisfied. As models for P are pairwise disjoint there is no m ⊂ M
such that m is a model of Pm. Hence, there is no m such m satisfies ∧∧ P ′m.
On the other hand, suppose M ′ is a model of P ′. If the tail of a clause in P ′

is satisfied by M ′, the head must also be satisfied since M ′ satisfies PM ′ . Thus,
the corresponding clause in P will also be satisfied. If tail of a clause is false in
P ′ its corresponding clause will be false in P as well. Thus, M ′ is a model of P .
As P was an arbitrary program in LP ∗k , we have shown LP ∗k ≤s CCk.

To see CCk 6≤s LPk it suffices to show the second statement. That is, CCk 6≤s

K for any reasoning formalism for which model checking can be done in ∆p
k+1.

Suppose F = ∃xE(x) is a Σq
k+1-sentence. Then we can convert F to a prenex

normal form Σq
k+1-sentence whose matrix is in 3CNF. Our first step in this proof

is to come up with a single formula which will allow us to code up sentences of
this type. Our formula will use the variables x01, . . . , x0n, . . . , xk1, . . . , xkn. There
are 8 · ((k+1)n

3

)
possible 3CNF clauses over these variables. For each possibility

our formula will have a variable ci. We will denote the literals in clause i by
li1, li2, li3. We are now ready to state our formula.

Let Gn(c, x0) be the formula:

∀x11 . . . x1n∃x21 . . . x2n . . . Qk1 . . . xkn(∧∧
1≤i≤8·((k+1)n

3) ci ⊃ li1 ∨ li2 ∨ li3)

Given Σq
k+1-formula F , let n be the number of variables in F . By choosing the

values of the ci’s appropriately we can encode F as F ′ = ∃x0Gn(c, x0). This
encoding is polynomial in the size of F .

Let P [n] be the following circumscribed program:

(1) ∧∧i ci 6≡ c′i ←:
(2) x0i ←: y
(3) y ←: ¬Gn(c, x0).

Let mF be the set that contains y, all the x0i’s, and ci if li1 ∨ li2 ∨ li3 is
in the matrix of F , and c′i otherwise. We claim F is satisfiable if and only if
mF is not a model of the program P [n]. Indeed, if F is modeled by M (i.e.
satisfiable), then extend M by adding those ci’s and c′i’s which are in mF . Since
νM (Gn(c, x0)) = 1, P [n]M will be just ∧∧i ci 6≡ c′i and M models this formula.
M does not contain y and is contained in mF . So mF is not a model of P [n].

To prove converse, assume that mF is not a model of P [n]. Then there must
be an M ⊂ mF such that νM (∧∧ P [n]M) = 1. By (1) in P [n], M and mF must
each contain the same ci’s and c′i. M must not contain y otherwise by (2) we
would have M = mF . Thus, there must be some choice of x0 which satisfied
Gn. This would in turn mean that F is satisfiable.

Suppose now that CCk ≤s K where model checking in K is in ∆p
k+1. Then

for each n there is an at most polynomially larger program P ′[n] in K with the
same models as P [n]. The program P ′[n] will be our polynomial sized advice.
We can now check if a given n variable Πq

k+1 formula ¬F is valid: we check if mF

is a model of P ′[n]. This can be done in ∆p
k+1. Thus, Πp

k+1 ⊆ ∆p
k+1/poly which

in turn implies Σp
k+1 ⊆ ∆p

k+1/poly as ∆p
k+1/poly is closed under complement.

We notice that both the Theorem 9 and its proof generalize one of the main
results of [8].

Corollary 3. CCk 6≤ws LPk unless Πp
k+1 ⊆ Σp

k+1/poly.

Proof. Let P [n] be as above. Suppose CCk ≤ws LPk. Let P ′[n] be the LPk

program corresponding to P [n]. To check if a given n variable Πq
k+1 formula ¬F

is valid, we check if mF can be expanded to a model of P ′[n]. This can be done
in Σp

k+1. Thus, Πp
k+1 ⊆ Σp

k+1/poly.

Theorem 10. CCk ≤s DLk but DLk 6≤s CCk unless Σp
k+1 ⊆ Πp

k+1/poly.

Proof. To see CCk ≤s DLk let P ∈ CCk. Suppose P has free variables p1, . . . pm

and it is made up of clauses of the form Ai ←: Bi where 1 ≤ i ≤ n. Let V (p) be
the formula ∧∧i Bi ⊃ Ai. Let W be empty and let D be

{
dj =

: ¬pj , V (p)
¬pj

∣∣∣1 ≤ j ≤ m.
}

Suppose M is model of P . M must satisfy V (p). We can obtain an extension
of 〈D,W 〉 by applying those dj ’s for which the pj 6∈ M . Since M is minimal
no more defaults will fire. The only model of this extension is M . On the other
hand, if S is an extension of 〈D,W 〉 then its only model is the one that sets
the pj ’s to zero only if dj fired. Further, this model is a minimal model of the
formula V (p) and hence a minimal model of P .

To see DLk 6≤s CCk unless Σp
k+1 ⊆ Πp

k+1/poly, we consider a special type
of Σq

k+1-sentence. We call a Σq
k+1-formula pure if it is in prenex normal form,

its matrix is in 3CNF and, for each clause, either all the literals are positive
or all the literals are negative. Satisfiability for a pure propositional formulas is
NP -complete [7]. It follows that deciding whether a given pure Σq

k+1-sentence
is valid is Σp

k+1-complete.
We are now ready to define the default theory we will need in our succinctness

result. We will use the following formula P (X,Y , c, c′) to allow us to code up
pure Σq

k+1-sentences involving n variables:

∀x11 . . . x1n∃x21 . . . x2n · · ·Qk1 . . . xkn[∧∧
1≤i≤((k+1)n

3) (ci ⊃ li1 ∨ li2 ∨ li3)

∧ ∧∧
1≤i≤((k+1)n

3)(c
′
i ⊃ l′i1 ∨ l′i2 ∨ l′i3)]

A literal ljv is either a variable xit or a formula Xi. A literal l′jv
is either a literal

of the form ¬xit or a formula Yi. The three literals in the disjuncts are supposed
to run over all possible ways one could pick lj1 , lj2 , lj3 or l′j1 , l

′
j2

, l′j3 from their
corresponding set of variables. The variables ci and c′i are supposed to control if
a given disjunct of three literals is turned on. We define the formulas Xi and Yi

below. Xi is the formula:

¬b ∨ ¬z1 ∨ · · · ∨ ¬zi−1 ∨ zi ∨ ¬zi+1 ∨ · · · ∨ ¬zn

Yi is the formula:

b ∨ ¬z1 ∨ · · · ∨ ¬zi−1 ∨ zi ∨ ¬zi+1 ∨ · · · ∨ ¬zn

Let ∆[n] = 〈D, W 〉 be the default theory with W defined by:

W = ∨∨n
i=1 ¬Xi ∨ ∨∨n

i=1 ¬Yi ∨ (b ∧ ∧∧n
i=1 zi)

and D consisting of the following defaults:

(1)
: P (X, Y , c, c′) ∧ ci

ci

: P (X, Y , c, c′) ∧ c′i
c′i

for 1 ≤ i ≤ (
n
3

)

(2)
: ¬ci

¬ci

: ¬c′i
¬c′i

for 1 ≤ i ≤ (
n
3

)

(3)
: ¬Xi

Yi

: ¬Yi

Xi
for 1 ≤ i ≤ n.

Notice that 〈D,W 〉 is polynomial (in fact cubic) in n.
Let F = ∃x0E(x0) be a pure Σq

k+1-sentence over n variables. We can view F
as being over some subset of the variables in xij where 0 ≤ i ≤ k and 1 ≤ j ≤ n.
To each clause in its matrix we can find a corresponding clause in P (X,Y , c, c′).
To find the corresponding clause to a clause in F containing a literal x0j or ¬x0j

we view x0j as Yj and ¬x0j as Xj . Let mF be the subset of the Herbrand base
of ∆[n] which contains b and z1 . . . zn, and contains ci, c

′
i if the corresponding

clause appears in F . We claim mF is a model of an extension of ∆[n] if and only
if F is valid. Suppose F is valid and let x0i1 . . . x0im be a vector which satisfies
E. Let Z contain ci if ci ∈ mF and ¬ci if ci 6∈ mF . Likewise, let Z contain c′i if
c′i ∈ mF and ¬c′i if c′i 6∈ mF . For each 1 ≤ i ≤ n let Z contain Yi if i is an ‘on’
bit in the assignment satisfying E and if not let Z contain Xi. Cn(Z ∪W) will
be a an extension. Since F was valid, P (X,Y , c, c′) is consistent with W and
Z. Thus, rules (1) and (2) will let us derive back precisely the ci, c′i, ¬cj , and
¬c′j ’s in Z. Next, the rule (3) forces us to derive back the same Xi’s and Yi’s. It
is easy to see that mF is a model of Cn(Z ∪W). On the other hand, if mF is
a model of ∆[n], we need to show F is valid. Let S be the extension that mF

models. S must have exactly those ci’s and c′i’s needed to code F into P . This
follows from the definition of mF and the fact that mF models S. Now in order
for DS to be able to derive back these ci’s and c′i’s there must be some choice
of the Xi’s and Yi’s such that P is consistent with S. The rules (3) imply that
only one of Xi and Yi can hold for each i. We can thus assign x0i true if Yi holds
and x0i false otherwise. Since P was consistent with S and as F was encoded
with the ci’s and c′i into P this assignment must satisfy E. Hence, F is valid as
E satisfiable.

Suppose DLk ≤s CCk. Then for each n there is circumscribed program D[n]
with the same models as the theory ∆[n] and polynomial in the size of ∆[n].
These D[n] will be our polynomial sized advice. To decide if a pure Σq

k+1-sentence
on n variables is valid one need only check if mF is a model of D[n]. This involves
checking that no subset M of mF satisfies ∧∧D[n]M , which can be done in Πp

k+1.
Thus, we reduced a Σp

k+1 problem to a Πp
k+1/poly one.

Theorem 11. DLk ≤ws LPk+1.

Proof. Consider a DLk theory 〈D,W 〉 using variables x1, . . . , xn. By Theorem 8
it suffices to consider the case where defaults in 〈D, W 〉 are prerequisite-free. Our
first task is to come up with a formula Model〈D,W 〉(x) which will be true if and
only if a truth assignment to x is a model of 〈D, W 〉. By conjoining constraint
formulas together we can assume defaults in 〈D,W 〉 to be of the form:

: Ci(x)
γi(x)

.

Let ZW (x, y) be the following formula:

∧∧i (γi(x) ⊃ (W (y) ∧ γi(y)).

ZW will play the role that Z ∪ W plays in extension existence. In extension
existence, however, we need to guess a subset of the conclusion of rules. In the
present case, we will be given a model, so it will be only necessary to see which
conclusions the model satisfies. We now introduce a formula which expresses
that the ith rule of D contributes to DS . Let DS,i(x) be the formula:

∀yCi(y) ∧ ZW (y,x).

Using ZW and DS,i we can now express Model〈D,W 〉(x) as the formula:

ZW (x, x) ∧ ∀z[(DS,i(x) ⊃ γi)) ≡ ZW (z, x)]

This is a QBFk+1 formula so it can be used in LPk+1 programs. The following
short LPk+1 program P has the same models as 〈D, W 〉:
(1) xi ←: Model〈D,W 〉(x1, . . . , xn) ∧ xi i = 1, . . . , n

(2) x1 ←: (¬Model〈D,W 〉(x1, . . . , xn)) ∧ ∧∧1≤i≤n (¬xi).

Let ν be a truth assignment. Suppose ν is model of 〈D, W 〉. Then clauses (1)
permit derivations of all those xi’s for which ν(xi) = 1. Moreover, no other xi’s
can be derived. On the other hand, if we have a truth assignment ν to the xi’s
which is not a model of 〈D, W 〉 then there are two cases. Either none of the xi’s
with ν(xi) = 1 will be derivable from P or ν has all the xi’s set to zero in which
case x1 can be derived from P . In either case, ν is not a model of P .

Thus, the models of P are precisely the models of 〈D, W 〉. Notice that the
clauses in P have no premises so stable and supported models of P will coincide.
So we have shown both DLk ≤ws LPk+1 and DLk ≤ws LP sup

k+1.

Let ModelφK (x) be the predicate which is true if and only if x is a model
of the knowledge base φK in the reasoning formalism K. Since satisfaction of a
QBFk formula is a Σp

k+1-complete problem, it seems likely that we can express
ModelφK

(x) as a QBFk formulas for many formalisms for which model checking
is in ∆p

k+1. Then using essentially the same program as in Theorem 11 we can
show:

Corollary 4. Suppose K is a propositional reasoning formalism for which the
predicate ModelφK

(x) can be expressed as a QBFk formula. Then K ≤ws LPk.

This gives some evidence that LPk, CCk, and DLk are nice hierarchies in
which to study the succinctness of reasoning formalisms for which model checking
is in the polynomial hierarchy.

Theorem 12. LPk ≤s DLk but DLk 6≤s LPk unless Σp
k+1 ⊆ Πp

k+1/poly.

Proof. The second part of the theorem follows from Theorem 9 and Theorem
10. To prove the first part, let P ∈ LPk. We translate P into the default theory
〈D, ∅〉 where clauses of the form

p ← a1, . . . , an : B1(b1), . . . , Bn(bm)

become defaults:
a1 . . . , an : B1(b1), . . . , Bn(bm)

p
.

It is easy to see P and 〈D, W 〉 have the same models.

Theorem 13. LPk+1 ≤ws DLk.

Proof. Given an LPk+1 program P with QBFk+1 constraints we first want to
convert it to an LPk+1 program with all constraint formulas Σq

k+1 or Πq
k+1.

By conjoining the constraint formulas we can assume each clause has only one
constraint formula. By pushing negations inward we can assume each constraint
formula involves only AND’s and OR’s of Σq

k+1 and Πq
k+1 formulas. We eliminate

propositional connectives one at a time for these QBFk+1 constraint formulas
by repeatedly using one of the following transformations. A clause of the form:

a ← p1, . . . , pn : B ∧ C

where B ∧ C 6∈ Σq
k+1 becomes

b1 ← p1, . . . , pn : B ∧ b2

b2 ← p1, . . . , pn : b1 ∧ C
a ← b1 ∧ b2 :

where bi are new variables not appearing in P . Notice in any model of the
resulting program either a, b1 and b2 are true or they are all false. Thus, so far
the transformation is a weakly succinct one. A clause of the form:

a ← p1, . . . , pn : B ∨ C

where B ∨ C 6∈ Σq
k+1 becomes

a ← p1, . . . , pn : B
a ← p1, . . . , pn : C.

This type transformation adds no variables and does not change the models of
P . Hence, applying both these types of transformations to clauses in P will yield
a program P ′ and the total transformation is a weakly succinct one. Once every
constraint is either Σq

k+1 or Πq
k+1, we convert the resulting logic program P ′

into a default theory 〈D,W 〉 where W = ∅. Each clause in P ′ of the form:

a ← p1, . . . , pn : A

is converted into a default of the form:

∧∧ pi : A

a
.

Given a model M of P ′ it is obvious that Cn(M) will be an extension of
〈D, W 〉, so M will be a model of 〈D, W 〉. Conversely, the variables which appear
in an extension of 〈D, W 〉 will give a model of P ′.

To make 〈D, W 〉 a DLk theory we replace each Σq
k+1 constraint formula

A = ∃x1, . . . xnB(x, c) by a new variable γA. We then add defaults of the form:

: bi

bi

: ¬bi

¬bi
for1 ≤ i ≤ n (∗∗)

and
: B(b, c)

γA

where bi are new variables. The defaults (**) guarantee any extension of the
resulting theory will have some choice of the bi’s. Thus, γA will be in any such
extension if and only if ∃bB(b, c).

We replace each Πq
k+1 constraint formula A = ∀x1, . . . , xnB(x, c) by a new

variable γA and add a default:
: B(b, c)

γA

where bi are new variables. When we try to find an extension S of the resulting
default theory, B(b, c) will be consistent with S if and only if ∀bB(b, c) holds.
So γA will be if S if and only if ∀bB(b, c) holds.

Thus, extensions of 〈D, W 〉 can be made extensions of 〈D′, W ′〉 by adding
appropriate choices of γA’s. Eliminating such variables from an extension of
〈D′,W ′〉 will yield an extension of 〈D, W 〉.

Consequently, 〈D′,W ′〉 is a weakly succinct transformation of 〈D, W 〉 and so
also of P . Thus, LPk+1 ≤ws DLk .

We get then the following corollary:

Corollary 5. DLk ≡ws LPk+1.

Using the results of Baker, Gill, Solovay [1] and Furst, Saxe, Sipser [6] we
can construct an oracle A for which Σp

k(A) 6= Πp
k (A) for k ≥ 1. The various con-

ditional succinctness inequalities we have obtained above thus become strict for

the formalisms LP ∗k (A), LPk(A), CCk(A) and DLk(A). Similarly, if we choose
a PSPACE-complete oracle then as the polynomial hierarchy collapses to the
first level with respect to this oracle so to do our succinctness hierarchies. In the
same vein, the translations used above show that LP∞ ≡ws CC∞ ≡ws DL∞.

We now spend a moment to mention the results of the interesting paper
of Eiter, Lu, and Subrahmanian [5] which also appears in this volume. Their
setting is predicate logic programming. They develop a notion of constrained
interpretation and constrained logic program to avoid having to define the stable
models of logic programs in terms of minimal Herbrand models of their ground
instantiations which may, in general, be infinite. In the function free case their
constraints turn out to be first-order formulas in the language with equality.
For bounded numbers of quantifier alternations the problem of satisfaction or
validity of such formulas is complete for various levels of the polynomial hierarchy
and so in turn problems concerning constrained logic programs are complete for
various levels of the hierarchy. It might be possible to interpret their results
into a reasoning formalism with quantified Boolean constraints since if we have
an equality X = Y where X,Y can range over finitely many values we can
do a propositional translation of this equality as ∧i(xi ⇔ yi) where xi and yi

represent the bits in the coding of X and Y . Such translations might be of
practical importance in a hardware implementation of their scheme and warrant
further study.

References

1. T. Baker, J. Gill, and R. Solovay .“Relativizations of the P =? NP question ”.
SIAM Journal of Computing. , 1993. 431-442.

2. M. Cadoli and M. Schaerf. ‘A survey on complexity results for non-monotonic
logic” Journal of Logic Progrmming. , Nov. 1993, vol.17,(no.2-4):127-60.

3. W.F. Dowling and J.H. Gallier. “Linear-time algorithms for testing the satisfiability
of propositional Horn formulae”. Journal of Logic Programming, 3:267–284, 1984

4. T. Eiter and G. Gottlob. “Propositional circumscription and extended closed-world
reasoning are Π2-complete”. Theoretical Computer Science, 114:231-245, 1993.

5. T. Eiter and J. Lu and V.S.Subrahmanian. “Computing non-ground representa-
tions of stable models”. In: Logic Programming and Nonmonotonic Reasoning,
LPNMR’97 This volume

6. M. Furst and J.B.Saxe and M. Sipser. “Parity, circuits and the polynomial hierar-
chy”. Math Systems Theory, 17:13-27, 1984.

7. M. R. Garey and D. S. Johnson. Computers and Intractibility: A Guide to the
theory of NP-completeness. W.H. Freeman and Company, 1979

8. G. Gogic , H. Kautz, C. Papadimitriou, and B. Selman. “The comparative lin-
guistics of knowledge representation”. In Proceedings of International Joint Con-
ference on Artificial Intelligence, IJCAI-95. Springer Lecture notes in Artificial
Intelligence; 1042. pages 862-869, 1995.

9. G. Gogic. Complexity Aspects of Knowledge Representation. Ph.D. Thesis. Com-
puter Science Department, U.C. San Diego. 1996.

10. J. Goldsmith and D. Joseph. Three results on the polynomial isomorphism of
complete sets. In Foundations of Computer Science, volume 27, 1986.

11. G. Gottlob. “Complexity results for nonmonotonic logics”. Journal of Logic and
Computation, 2:397–425, 1992

12. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In: Proceedings of the
14th ACM Symposium on Principles of Programming Languages, pages 111–119,
Münich, 1987.

13. J. Jaffar and M. Maher Constraint Logic Programming: A Survey. Journal of
Logic Programming 19-20, pages 503–581. 1994.

14. V.W. Marek and M. Truszczyński. Nonmonotonic Logic. Springer Verlag. 1993.
15. V.W. Marek, A. Nerode and J.B. Remmel. “On logical constraints in Logic Pro-

gramming”. In: Logic Programming and Nonmonotonic Reasoning, LPNMR’95,
Springer Lecture Notes in Artificial Intelligence 928, pages 43–56, 1995.

16. A.R. Meyer and L.J. Stockmeyer. “The equivalence problem for regular expressions
with squaring requires exponential time”. In Proceedings of the 13th annual sym-
posium on switching and automata theory, pages 125–129. New York, NY: IEEE
Computer Society, 1972.

17. C.H. Papadimitriou. “The complexity of knowledge representation”. In Proceedings
of the 11th Annual IEEE Conference on Computational Complexity, pages 244-248.
IEEE Computer Society, 1996.

18. U. Schöning. “A note on complete sets for the polynomial hierarchy”. ACM
SIGACT News 13 pages 30–34. 1981

