
Strengths and weaknesses of LH arithmetic

Chris Pollett
Department of Mathematics,

University of California, Los Angeles, CA cpollett@math.ucla.edu

Randall Pruim
Department of Mathematics and Statistics

Calvin College, Grand Rapids, MI rpruim@calvin.edu

February 20, 2003– Draft

Abstract

In this paper we provide a new arithmetic characterization of the
levels of the log-time hierarchy (LH). We define arithmetic classes
Σlog

k and Πlog
k that correspond to Σk-LOGTIME and Πk-LOGTIME re-

spectively. We break Σlog
k and Πlog

k into natural hierarchies of sub-
classes Σm·log

k and Πm·log
k . We then define bounded arithmetic de-

duction systems (TΣlog
k)′ whose U{|id|}B(Σlog

k)-definable functions are
precisely B(Σk-LOGTIME). We show these theories are quite strong
in that (1) LIOpen proves for any fixed m that Σm·log

k 6= Πm·log
k ,

(2) TAC 0, a theory that is slightly stronger than ∪k(TΣlog
k)′ whose

Σb
1(LH)-definable functions are LH, proves LH is not equal to Σm-

TIME(s) for any m > 0 where 2s ∈ L, s(n) ∈ ω(log n), and (3) TAC 0

proves LH 6= E|x|m+1#l|x|Σ
k
log for all k and m. We then show that the

theory TAC 0 cannot prove the collapse of the polynomial hierarchy.
Thus any such proof, if it exists, must be argued in a stronger systems
than ours.

Mathematics Subject Classification: 03F30, 68Q15
Keywords: bounded arithmetic, independence, feasible lower bounds

1 Introduction

One way to quantify the difficulty of P = NP problem would be to exhibit a
logical theory that is capable of formalizing current attempts at answering
this question but is not powerful enough to prove or disprove this equality.

Razborov [15] has argued that most current circuit lower bound techniques
can be formalized in certain bounded arithmetic theories. Nevertheless, ex-
hibiting any bounded arithmetic theory which one can demonstrate cannot
prove the collapse of the polynomial hierarchy is nontrivial. The first non-
conditional result in this direction was given in Pollett [13]. Unfortunately,
the theory Z given there was in the original language of bounded arithmetic
which has the symbol for multiplication. Care had to be taken to make sure
the theory was too weak to manipulate constant-depth, polynomial sized
circuits in this language since, if it could, it could reason about TC0 and
almost nothing is known about lower bounds for this class. This resulted in
a theory that was so weak it seemed unlikely it could formalize any inter-
esting circuit lower bounds. Despite this, some limited attempt to show one
can translate proofs from stronger theories into meaningful results in Z was
given in Pollett [14]. In this paper, we use a weaker language for bounded
arithmetic than that given in Buss [3]. This allows us to use stronger in-
duction and comprehension principles in defining theories and yet still get
a theory that cannot prove the collapse of the polynomial hierarchy.

One of the most celebrated lower bound results known is the result that
constant depth, unbounded fan-in circuits of AND’s, OR’s, and NOT’s (i.e.,
the class AC0) cannot define parity. Thus, AC0 does not contain all p-time
functions. A commonly used uniform version of this class is the log-time
hierarchy denoted LH. In this paper, we chose our weaker language so that
we could give a new arithmetic characterization of LH. Unlike the char-
acterization of LH using FO, the levels of our characterization match up
with LH even at the NLOGTIME and co-NLOGTIME levels. To see that
this might be difficult and involve a careful choice of initial language no-
tice it is not even known (as far as the authors can determine) whether
equals is in NLOGTIME. Using our characterization we then define proof
systems (TΣlog

k)′ whose bounded U{|id|}B(Σlog
k)-definable functions are pre-

cisely those functions computable in B(Σk-LOGTIME). Here U{|id|}B(Σlog
k)

means we allow an outer length bounded universal quantifier on something
which is a Boolean combination of Σlog

k -formulas. We show none of these
systems is strong enough to prove the polynomial hierarchy collapses by ex-
hibiting a theory ZAC 0, which contains TAC 0 = ∪kTΣlog

k ⊇ ∪k(TΣlog
k)′,

which cannot prove the collapse of the polynomial hierarchy. The theory
TAC 0 is a refined version of the TAC 0 in Clote and Takeuti [5]. In fact,
although Clote And Takeuti did not observe this, it is reasonably easy to see
that TAC 0 cannot prove NP = co-NP. This is because Clote and Takeuti
showed the ∆b

1-predicates of TAC 0 are precisely AC0, on the other hand,

2

it is obvious that the ∆b
2-predicates of TAC 0 contain Σb

1, the arithmetiza-
tion of NP, and so can do parity. If TAC 0 could prove NP = co-NP then
∆b

1 = ∆b
2 in TAC 0 giving a contradiction. Our argument to show TAC 0 can-

not prove the collapse of the polynomial hierarchy is along the same lines as
Pollett [13]; however, we feel the theories in this paper can be more easily
modified (for instance, by adding modular gates) to create new theories that
are powerful enough to reason about classes for which people are interested
in lower bounds but not strong enough to prove the collapse of the hierarchy.

Also, unlike the case of Pollett [13] we argue there is interesting math-
ematics that can be carried out in TAC 0. To support our claim we prove
three results in these theories. We show there is a very simple universal
predicate for Σlog

k which LIOpen can reason about. We use this to show
LIOpen proves Σm·log

k 6= Πm·log
k for every m, and k. This implies LIOpen

proves that mLH is infinite. Our second result is that TAC 0 proves the LH
is not equal to Σm-TIME(s) for any m > 0 where s ∈ L, s ∈ ω(log n). In
particular, this shows TAC 0 can prove LH (NP. Our third result is that
TAC 0 proves LH 6= E|x|m+1#l|x|Σ

log
k for all k and m. The right hand class al-

lows a slightly larger than log-sized number of existential queries to be made
in an otherwise Σk-LOGTIME machine. This suggests that TAC 0 might be
able to prove the log-hierarchy is infinite although the argument would most
likely be quite different than that of Hastad [6].

The remainder of this paper is organized as follows: In the next sec-
tion, we present the notations and bounded arithmetic theories we will be
discussing in this paper. In Section 3, we characterize the U{|id|}B(Σlog

k)-
definable functions of (TΣlog

k)′. Then in the next section, we show the three
separations we can prove in (TΣlog

k)′ and TAC 0. Finally, in the last section
we show neither TAC 0 nor ZAC 0 proves the collapse of the polynomial time
hierarchy.

2 Preliminaries

2.1 The Logtime Hierarchy

We begin by specifying the type of machines we use to define the log-time
hierarchy. Our machines will be alternating m-tape Turing machines. If an
ATM is being used to compute an m′-ary predicate (m′ < m), then m′ of
these tapes will be input tapes which are read-only. We assume the halting
states of our machines are partitioned into accepting and rejecting states.

Contents of cells on any tape are read via a query mechanism that works

3

as follows: A number of the states of the machine are designated as query
states, and each of these is associated with two of the machine’s tapes. When
the machine enters a query state associated with tapes j and j′, then the
subsequent action of the machine can be dependent upon whether the ith
bit of tape j′ is a 1 or a 0, where i is the contents of tape j. The contents
of the tapes are not altered by this procedure.

A language is in DLOGTIME = Σ0-LOGTIME=Π0-LOGTIME if it is rec-
ognized by an ATM of the above type in log-time using only deterministic
states (including input query states). A language is Σk+1- (resp. Πk+1) -
LOGTIME if it can be recognized by an ATM of the above type that begins in
an existential (universal) state and makes at most k-alternations between ex-
istential and universal states along any branch. The log-hierarchy is defined
by LH := ∪kΣk-LOGTIME = ∪kΠk-LOGTIME. We write B(Σk-LOGTIME)
for predicates that are a Boolean combination of Σk-LOGTIME predicates.
We say a poly-sized function f(x) is computed by an ATM of one of the
above types iff BIT(i, f(x)) = the ith bit of f(x) can be computed by a sin-
gle such machine with inputs i and x. For this paper we will need to work
in the language L consisting of the symbols 0, 1, ≤l, |x|, PAD, CAT, MSP,
LSP, and #l. The symbols 0, 1 are intended to have their usual meaning;
the intended meanings of the remaining symbols are: |x| := dlog2(x + 1)e,
x ≤l y := |x| ≤ |y|, x =l y := |x| = |y|, PAD(x, y) := x · 2|y|, CAT(x, y) :=
x·2|y|+y (= PAD(x, y)+y), MSP(x, i) := bx/2ic, LSP(x, i) := x−bx/2ic·2i,
and x#ly := 22||x||+||y|| .

The terms in L can be combined to form a large number of interesting
and useful terms. Below are some abbreviations we will frequently use for
L-terms.

2 · x := PAD(x, 1) |x|+ 1 := |CAT(x, 1)|
|x| .− 1 := |MSP(x, 1)| |x| .− a := |MSP(x, a)|
2|x| := PAD(1, x) 2min(|x|,a) := MSP(2|x|, |x| .− a)

a +x b := |CAT(2min(|x|,a), 2min(|x|,b))| .− 2 a .−x b := |MSP(2min(|x|,a), b)| .− 1

a ≤x b := a .−x b =l 0 a =x b := a ≤x b ∧ b ≤x a

b 1
2xc := MSP(x, 1) 2b

1
2 |x|c := PAD(1, b 1

2 |x|c)
2|x1|+|x2| := PAD(PAD(1, x1), x2) 2

∑n
i=1 |xi| := PAD(2

∑n−1
i=1 |xi|, xn)

βt(i, w) := LSP(MSP(w, PAD(i, |t|)), 2||t||) BIT(i, w) := β0(i, w)

cons(x, y) := CAT(PAD(CAT(2|y|, x), 2|x|), y) 〈x〉 := cons(x, 0)

car(w) := LSP(MSP(w, b 1
2 |w|c, b 1

2 |w|c .− 1) cdrw := LSP(w, b 1
2 |w|c)

4

(w)0 := car(w) (w)n := car(cdr(n)(w))

bool(x) := MSP(x, |x| .− 1) lbool(x, y) := PAD(bool(x), |y|)
K≤l

(a, b) := 1 .− (|a| .− |b|) K∧(a, b) := cond(a, cond(b, 1, 0), 0)

K=l
(a, b) := K∧(K≤l

(a, b),K≤l
(b, a)) K¬(a) := cond(a, 0, 1)

K≤x(a, b) := K=l
(a .−x b, 0) K=x(a, b) := K∧(K≤x(a, b), K≤x(b, a))

#0
l (x) := x #k+1

l (x) := x#l(#k
l x)

〈x1, . . . xn〉 := cons(x1, 〈x2, . . . , xn〉)
cond(x, y, z) := LSP(MSP(CAT(y, z), lbool(x, z)), lbool(1 .− |x|, z))

Note that operations involving a and b work as expected provided |x| ≥ a
and |x| ≥ b, so a and b should be thought of as “small numbers”. The
subscripts on +x and .−x will be dropped when it is clear that the a and
b involved are small enough to easily build a suitable x. By repeating xi’s
in the above we can make a term 2

∑
i ai|xi| for any fixed integers ai. β

allows block sequence coding. Roughly, βt(i, w) projects out the ith block
(starting with a 0th block) of 2||t|| bits from w. 〈x, y〉 is a pairing function
and (〈x, y〉)0 = x, (〈x, y〉)1 = y. bool(()x) is 1 if x > 0 and 0 otherwise;
lbool(()x, y) is 2|x| if x > 1 and 0 otherwise; and cond(x, y, z) returns y if
x > 0 and z otherwise.

We syntactically enlarge first order logic to include bounded quantifiers
of the form (∀x ≤l t) and (∃x ≤l t) with x not occurring in t. Since
x ≤l t means |x| ≤ |t|, a quantifier (∀x ≤l t) should be interpreted as
meaning (∀x)(x ≤ 2|t| ⊃ · · ·) and one of the form (∃x ≤l t) should be
interpreted as meaning (∃x)(x ≤ 2|t| ∧ · · ·). A quantifier is called sharply
bounded if the bounding term t is of the form |s| for some term s. A formula
is called (sharply) bounded if all quantifiers in it are (sharply) bounded.
Generalizing, given a term `, a quantifier is `-bounded if the bounding term
is of the form `(s(x)).

Let τ be a set of nondecreasing 1-ary L-terms. We write |τ | for the
set of terms |`| where ` ∈ τ . We will be interested in sets τ with the
following closure property: if `1, `2 ∈ τ and s, t ∈ L then there is a term
`′ ∈ τ and r ∈ L such CAT(`2(s), `1(t)) ≤l `′(r). In this case we will
say that τ is weakly CAT closed. A predicate φ(x) is in Σk-TIME(|τ |) if
it can be computed by a Σk-ATM in time |`′(x)| for some `′ ∈ τ . If τ is
weakly CAT closed, then the time classes we work with will be closed under
“multiplication by constants,” e.g., if τ = {id} contains only the identity
term, then running times bounded by any of 2 log n, 3 log n, . . . are allowed
for Σk-TIME(|τ |) predicates.

5

Next we would like to give an arithmetization of the classes Σk-TIME(|τ |).
Roughly, this can be done by appropriately bounding quantifiers and num-
ber of quantifier alternations for formulas in the language L. To ensure the
arithmetized classes correspond to the machine classes for k > 0 even in
the log-time case, care must be taken in how the k = 0 case is defined. In
particular, in the log-time case we would like the k = 0 formulas to be in
DLOGTIME. To begin we write EτΨ (resp. UτΨ) to denote formulas of the
form (∃x ≤l `(t))φ (resp. (∀x ≤l `(t))φ) where ` ∈ τ and φ ∈ Ψ. We write
EΨ (resp. UΨ) for E{id}Ψ (resp. U{id}Ψ).

open is the class of formulas without quantifiers. If ` is a 1-ary term,
then a variable x in a term f is said to be `-bounded if either (1) x does
not appear in f , or (2) x appears in f as `(x), or (3) x appears in f as
β`(x)(t, w), where w is `-bounded in t. (Recall that β was defined above to
do block sequence coding.)

Definition 1 The τ -bounded arithmetic hierarchy is defined as follows:

1. Στ
0 consists of all disjunctions of formulas of the form

(∃i ≤l MSP(|`(#m
l (x))|, |||`(#m

l (x))|||))φ

such that either

(a) φ is open, ` ∈ τ , and all variables (except for i) in φ are |`|-
bounded, or

(b) φ is of the form

(∃j ≤l MSP(||`(#m
l (x))||, |`(#m

l (x))|4))
φ′(β||`||(t(i), w),~a) ,

where ` ∈ τ , t is |`|-bounded, φ′(b,~a) is open and all variables
(except for i) in φ′ are ||`||-bounded.
Notice |MSP(|`(#m

l (x))|, |||`(#m
l (x))|||)| ≤ ||`||, so β|`|(0, i) = i.

2. Πτ
0 consists of all formulas of the following form

(∀i ≤l MSP(|`(#m
l (x))|, |||`(#m

l (x))|||))φ

such that

(a) φ is open, ` ∈ τ , and all variables (except for i) in φ are |`|-
bounded, or

6

(b) φ is of the form:

(∀j ≤l MSP(||`(#m
l (x))||, |`(#m

l (x))|4))
φ′(β||`||(t(i), w),~a) ,

where ` ∈ τ , t is |`|-bounded, φ′(b,~a) is open and all variables
(except for i) in φ′ are ||`||-bounded.

3. ∆τ
1 are boolean combinations of open and Στ

0-formulas.

4. Στ
1 is the class Eτ∆τ

1. Πτ
1 is the class Uτ∆τ

1.

5. Στ
k is the class EτΠτ

k−1. Πτ
k is the class UτΣτ

k−1.

We write Σlog
k and Πlog

k for Σ{|id|}k and Π{|id|}k . Similarly, we write Σb
i and

Πb
i for Σ{id}i and Π{id}i . A predicate is in Σ̌τ

k (resp. Π̌τ
k) if its ∆τ

1-subformula
is actually in Στ

0 or Πτ
0 . We will show in a moment that Σlog

k and Σ̌log
k

predicates correspond to Σk-LOGTIME and Σb
i predicates correspond to Σp

i

and Πp
i . We will use the more general definitions in the section where we

talk about the power of TAC 0.
For any class of formulas Ψ we write B(Ψ) to denote Boolean combi-

nations of formulas in Ψ. We write Στ
k(Ψ) (resp. Πτ

k(Ψ)) for the class of
formulas which would be Στ

k-formulas (resp. Πτ
k-formulas) if we treated all

Ψ subformulas as atomic. Finally, a formula B is in LΨ if there is a formula
A ∈ Ψ of which B is a subformula. As an example of using these definitions
and the Eτ notation from before, consider the expression LE{||id||}B(Σlog

k).
This is the class of subformulas of E{||id||}B(Σlog

k) formulas. These in turn
are formulas consisting of a quantifier of the form (∃x ≤l ||t||) for some term
t followed by a Boolean combination of Σlog

k -formulas.
Given our above abbreviations we define a last set of hierarchies. A

predicate A(x1, · · · , xn) is in Σm·log
k (resp. Πm·log

k) where m is a constant
if it is in Σ̌log

k (resp. Π̌log
k) and all terms in it sharply bounded quantifiers

are bounded by |#m
l (2

∑n
i=1 |xi|)| and the term in its innermost quantifier is

bounded by
||#m

l (2
∑n

i=1 |xi|)||. We write mLH for ∪k(Σ
m·log
k ∪Πm·log

k).

Lemma 1 If t is an L-term, then in DLOGTIME a Turing Machine can
(1) write |t| on a blank tape and (2) compute BIT(i, t). Hence, the open
formulas in the language L can be evaluated in DLOGTIME.

7

Corollary 1 Let τ be weakly CAT closed and also only contain terms which
are Ω(|x|). Then (1) the B(Σ|τ |0)-predicates are in DTIME(|τ |) and (2) the
B(Σ{|id|}0)-predicates are in DTIME(|id|) = DLOGTIME.

Proof. (Of Lemma 1) We prove both statements of the lemma by simulta-
neous induction on the complexity of the term t. If t is 0 or 1, the result is
obvious. If t = x (a variable), then |t| = |x| can be computed in DLOGTIME
as follows: Using a blank tape to hold the query string, first query the bits
1, 10, 100, . . . of x until the first time one finds a blank symbol; then erase
the last zero and return the tape head to the left; finally, make one more
pass left to right changing 0’s to 1’s whenever querying the resulting bit
position does not yield a blank. This will leave |x| written on the query
tape. BIT(i, x) can be computed using the query mechanism of our Turing
machines.

Now suppose that t is CAT(u, v), where u and v are terms. By induction
we can compute |u| and |v| on separate tapes. |t| = |u|+|v| can be computed
by the standard addition algorithm in DLOGTIME. To compute the ith bit
of t, we first use the standard subtraction algorithm to calculate j = i .− |u|.
Then we query the ith bit of u or the jth bit of v, depending on whether
i < |u| or i ≥ |u|.

Similar arguments can be used in the cases where the t is made from other
terms using PAD, MSP, LSP, or #l. That predicates can be evaluated in
DLOGTIME is clear from the fact that they can be expressed as terms that
evaluate to 0 or 1 using K≤l

, etc. ¤
Proof. (Corollary 1) The DTIME(|τ |) predicates are closed under AND and
NOT, so it suffices to show

(∃i ≤l MSP(|`(#m
l (x))|, |||`(#m

l (x))|||)) φ(i, x)

is in DTIME(|τ |) where φ is open and variables in φ are |`|-bounded for some
` ∈ τ . The universal form of Πτ

0-predicate is proved similarly. For ease of
notation, we are assuming that the only variables occuring in φ are i and x.

We first write
2|MSP(|`(#m

l (x))|,|||`(#m
l (x))|||)|

on a blank tape in DLOGTIME ⊆ DTIME(|τ |). This can be done because
the length of this term is O(||`(x)||) for some ` ∈ Ω(|x|) and each bit can
be computed in O(||`(x)||) time. In a combined time not exceding O(|`(x)|)
we can count backwards from this value to 0. This will allow us to iterate
through the necessary values of i.

8

The number of values of i such that i ≤l MSP(|`(#m
l (x))|, |||`(#m

l (x))|||)
is O(|`(x)|/||`(x)||), so if we can show that for each i, φ can be evaluated
in O(||`(x)||) time, then we can evaluate φ for all values of i in O(||`(x)|| ·
|`(x)|/||`(x)||) = O(|`(x)|) time.

In Definition 1, φ is either open or has an additional existential quantifier
like the above but with one more length nesting. We describe how to handle
the open case, the second case can be handle by repeating the argument of
the last paragraph with the additional length nesting followed by the open
case. By Lemma 1, the length of any term t and any bit of a term t can be
computed in DLOGTIME of its inputs. Consider the terms that may appear
in φ. If we have a term like |`(x)| we can write it on a new tape in time
O(||`(x)||) time, and then to access any bit of this number it takes time
O(||`(x)||).

Similarly, if we have a term like β|`(x)|(t, w) and we assume for each i
after some initial preprocessing t is computable in time O(||`(x)||), then we
can write out the ||`(x)|| bits of β|`(x)|(t, w) in O(||`(x)||) time. Operations
involving i can be computed in log-time of |i|, that is, in time O(|||`(x)|||).
So for each i, we can compute φ(i, x) in DTIME(||`||). ¤

Lemma 2 Let τ be weakly CAT closed and also only contain terms which
are Ω(log n). For k ≥ 1, both the Στ

k and Σ̌τ
k (resp. Πτ

k and Π̌τ
k) predicates de-

fine the same sets of natural numbers as Σk-TIME(|τ |) (resp. Πk-TIME(|τ |))
where |τ | is |`| for ` ∈ τ . In particular, this implies Σb

i -formulas define the
same sets of natural numbers as Σp

i -predicates and for k ≥ 1, Σlog
k -formulas

define the same sets of natural numbers as Σk-LOGTIME.

Proof. We will sketch the Σlog
1 case. It is straightforward to then generalize

this to k > 1 and τ different from {|id|}. If φ is in Σlog
1 then we can

construct a machine Mφ which in a sequence of existential moves guesses
the outermost existential quantifier of φ and then uses this value to compute
the ∆log

1 part of the formula. Since ∆log
1 is in DLOGTIME by Lemma 1,

Σ̌log
1 ⊆ Σlog

1 ⊆ Σ1-LOGTIME.
For the other direction, let M be a Σ1-LOGTIME ATM with m tapes.

We need to show that the predicate accepted by M can be represented as
a Σ̌log

1 predicate. We do this by introducing a suitable encoding scheme
for the computation of M . Unfortunately, a tableau for (a path of) such
a computation is in general of size O(log2(n)) and so may be too large.
Our strategy will be to write down a logarithmically-sized “outline” w of
such a tableau (much of which contains redundant information anyway),

9

and a nondeterminism path p, from which we can still carry out the local
verifications necessary to tell the results of the computation (along the path
p).

Choose a constant K (dependent on the machine M but not on the input
x) such that

1. K = 2c is a power of 2;

2. K2

4 log(|x|) bounds the running time of M on all paths and all inputs
of length n; and

3. K is larger than the product of the number of states of M ,

4. K is more than twice the number of tape symbols (including blanks)
in the alphabet of M .

In particular, this means that we can code instructions and tape symbols
(tagged to indicate whether or not the head is reading the symbol) using
numbers between 0 and K, all of which have length at most c. We can ap-
proximate K log |x|

log log |x| by the L-term Tx = MSP(PAD(MSP(||x||, |x|4),K), 1).

We write Bx for the term K2|x|4 .
Notice the following useful facts about Bx:

1. Bx is a power of 2, so 2|Bx| = 2Bx and rBx = MSP(PAD(r,Bx), 1).

2. BxTx ∈ O(log n).

3. The running time of M on input x is bounded by Rx := BxTx.

From now on we will write B for Bx, T for Tx, and R for Rx. For our
abbreviated tableau encoding of a computation path of M , we will divide
both the steps of the computation of M and the cells of the tapes of M
into T ∈ O(log |x|

log log |x|) blocks of length B ∈ O(log log |x|) each. We will use
βz(r, w) to access the rth block of length |z| out of w. Our encoding of (a
path of) the computation consists of a bit string cons(w, p), where w and p
are made up of the following pieces:

1. The first cR bits of w code via block coding (R blocks of c bits per
block) the state the machine is in at each time t ∈ [0, R).

Let
INST(t) := βK(t, w)

denote the code for the instruction executed at time t. We will call
these bits the instruction bits of w.

10

2. The next mR bits (mT blocks of B bits) of w code the index of the
block in which the m′th tape head is located at each time rB for
r ∈ [0, T). Notice |r| ≤ |T | ≤ B, so this requires at most B bits to
encode. Let

BLOCK(m′, r) := β2B (m′T + r + cT,w)

denote the index of the block in which the head of tape m′ is located
at time rB. Here, and in the formulas below, ‘+’ is really ‘+2R ’ but
we drop the subscript for readability. We are adding cT to move past
the initial cR = cTB bits of w that code the state of the machine at
each step.

3. The next 3mT blocks of w code for each r ∈ [0, R) the contents (tagged
to indicate tape head presence) of the 3B tape cells that include the
block where the m′th tape head is located at time rB and the block
to the left and right of this block. The code for the block at time rB
is given by

BCONT(m′, r, α) := β2B (3m′T + αT + r + mT + cT, w)

where α = 0, 1, 2 are the codes for the left, middle, and right blocks
respectively. Notice we are first coding all the left blocks, then the
blocks where the tape head is located, then the right blocks.

4. The next mT blocks of w code for each r ∈ [0, R) and each m′ ∈ [0,m)
the relative position of the head on tape m′ within these 3 blocks (left,
middle, right) at time rB.

POS(m′, r) := β2B (m′T + r + 4mT + cT, w) .

is a number of length at most |3B| ≤ B so this is a somewhat wasteful
encoding.

Note that between time rB and (r + 1)B the head on any tape only
has time to move in the current tape block and at most one of the
blocks immediately to the left or to the right, but not both.

5. The next 3mT blocks of w code for each α ∈ {0, 1, 2} (interpretted
as in BCONT) and each r ∈ [0, T), the index of the last time block
prior to the rth time block during which the α part of tape block
BLOCK(m′, r) was one of the three subblocks being considered (or 0
if never). So we let

PREV(m′, r, α) := β2B (3m′T + αT + r + 5mT + cT, w) .

11

6. The next 3mT blocks of w code in an analogous fashion to the above
the index of the time block of the next visit (or B − 1 if none). We
define the term

NEXT(m′, r, α) := β2B (3m′T + αT + r + 8mT + cT, w) .

in the same fashion as PREV.

7. The next 11mR bits code for each r ∈ [0, T) and s ∈ [0, B/ log B)
(and α as necessary) the log-scaled down versions of items 2 – 6 That
is, we break down the time period between time rB and (r + 1)B
into B/ log B blocks of size log B and record the contents of the sub-
block of size log B on each tape containing the head (and its left and
right neighboring subblocks) and then the next, and previous sub-
blocks for each of these. We can define, in anology to BLOCK(m′, r),
PREV(m′, r, α), NEXT(m′, r, α), BCONT(m′, r, α) and to POS(m′, r),
SUBBLOCK(m′, r, s), SUBPREV(m′, r, s, α), SUBNEXT(m′, r, s, α),
SUBBCONT(m′, r, s, α) and SUBPOS(m′, r, s). (There is no need to
code a log-scaled version of INST.)

8. The last 24mK log B(24mK log B2
) bits (which we will call the LOOKUP

bits) code for each of the possible configurations of 3K log B bits on
each of the m tapes as well as their head position, how M would evolve
for log B steps. Notice this number of bits is less than 24mK log B3

.
Since B ∈ O(|x|3), this number is less than ||x||/|||x|||.

9. The encoding above will require a total of O(log |x|) bits. To this we
add the string p containing the at most R ∈ O(log |x|) nondeterministic
guesses made by M . (Note, we may assume that M always has exactly
two choices.) We let GUESS(t, p) := BIT(t, p).

Now we need to construct a predicate ϕ(x) that asserts that machine
M accepts the input x. ϕ(x) will be a formula (∃w ≤l |s|)ψ(x,w) where
ψ is a Πlog

0 -formula asserting w codes a computation of M on x followed
by a string of nondeterministic guesses used on input x. ψ consists of the
conjunction of the following:

1. Blank tapes at start. Computation begins in start state. What we
really require here is that whenever a block is first accessed its tapes
squares are blank. A block is said to be accessed for the first time if
its previous pointer is 0. We use 0 as our code for blank and assume

12

without log of generality that the starting state of M is state 0, so this
check becomes just:

βK(0, INST) = 0 ∧
(∀r ≤l T) ∧∧m′ ∧∧αPREV(m′, r, α) =l 0 ⊃ BCONT(m′, r, α) =l 0

Here ∧∧m′ and ∧∧α are just finite conjunctions over the values of m′ and
α. Given our definition of PREV and BCONT this check can be seen
to meet the definition of Πlog

0 .

2. Proper initial head location. Tape head is at left of all tapes at start
of computation.

∧∧m′ POS(m′, 0) =l 0 .

Given the definition of POS this will be a Πlog
0 predicate if we add a

trivial dummy quantifier.

3. Tape contents only change by action of the machine. If M leaves the
vicinity of a tape block and returns later, the contents of the tape
block should be the same when it returns as they were when it left.

(∀r ≤l T) ∧∧m′ ∧∧α[PREV(m′, NEXT(m′, r, α), α) = r

∧ ¬NEXT(m′, r, α) = r + 1 ⊃
BCONT(m′, BLOCK(m′, NEXT(m′, r, α)), α)=BCONT(m′, r, α).

4. Move at most one tape block each time block. For each tape m′, if the
block at time rB is t, then the block at time (r + 1)B is t, t − 1 or
t + 1. This can be expressed as:

(∀r ≤l T)(BLOCK(m′, r) = BLOCK(m′, r + 1)
∨ BLOCK(m′, r) = BLOCK(m′, r + 1) .− 1
∨ BLOCK(m′, r) = BLOCK(m′, r + 1) + 1).

We are dropping the subscripts on +, .−, and = for readability.

5. Main information is consistent with log-scaled information. For each
r ∈ [0, T), tape m′, and s ∈ [0, log B), the information in SUBBCONT,
SUBPREV, SUBNEXT, SUBPOS, SUBBLOCK must be consistent
with BCONT(r,m′, α) and yield BCONT(r + 1,m′, α).

This can be checked with a formula of the second type in the definition
of Πlog

0 predicate, i.e., by a formula ∀r ≤ T ∀s ≤ log B θ, where θ is a
conjunction of the following:

13

(a) Initial locations consistent.

• SUBBLOCK(m′, r, 0) = MSP(POS(m′, r), ||B||).
• SUBPOS(m′, r, 0) = LSP(POS(m′, r), |B|).

(b) Initial contents consistent.

• SUBPREV(m′, r, s, α) = 0 ∧ s < |B| ⊃
SUBBCONT(m′, r, s, α) = βB(s,BCONT(m′, r, 0)).

• SUBPREV(m′, r, s, α) = 0 ∧ |B| ≤ s < |B| ⊃
SUBBCONT(m′, r, s, α) = βB(s− |B|, BCONT(m′, r, 1)).

• SUBPREV(m′, r, s, α) = 0 ∧ 2|B| ≤ s ⊃
SUBBCONT(m′, r, s, α) = βB(s−2|B|, BCONT(m′, r, 2)).

(c) Final contents consistent. Similar to 5(b).

6. The log-scaled information is consistent with the LOOKUP bits. This
amounts to checking that SUBBCONT(r+1, s, m′, α) agrees with what
you get by looking up SUBBCONT(r, s, m′, α) in the LOOKUP bits
and seeing what the resulting blocks would be after log B steps. Again
this can be check with the second quantifier type of Πlog

0 predicate.

7. The LOOKUP bits are consistent with the behavior of the machine M .
For each possible 3K log B bits on each of the m tapes as well as their
head position, that the next log B blocks of size 4K log B correctly
represent how M would evolve. Since the number of things we have
to check is less than T we can use the first quantifier type of Πlog

0

predicate to check this.

Again by the same arguments as for BLOCK this will be DLOGTIME
computable.

8. Halting configuration. Check the last state recorded in the INST bits
is an accepting state. This can be done by a simple projection.

Since each of these checks can be put in the form of a Πlog
0 -predicate, M

can be computed by Σlog
1 -predicate. ¤

2.2 BASIC and other Bounded Arithmetic Theories

We now introduce some arithmetic theories, beginning with BASIC . The
version of BASIC presented below is inspired by the BASIC of Buss [3] but
where we have modified our axioms to the symbols of our language.

14

Definition 2 Recall that x =l y is an abbreviation for x ≤l y ∧ y ≤l x.
The binary predicate x = y is an abbreviation for the formula

a =l b ∧ (∀i ≤l |a|)(BIT(i, a) =l BIT(i, b)).

Equality axioms are axioms of the form

t = s ⊃ f(t) = f(s) or

t = s ∧ A(t) ⊃ A(s)

where f ,t, and s are terms and A is atomic.

Definition 3 The theory BASIC consists of the following

1. All substitution instances of the following finite set of quantifier free
axioms for the non-logical symbols of our language:

¬(0 =l 1) ¬x =l 0 ⊃ PAD(x, 1) =l CAT(x, 1)
|0| =l 0 y ≤l x ∨ x ≤l y
|1| =l 1 x ≤l y ∧ y ≤l z ⊃ x ≤l z
0 ≤l x x ≤l y ⊃ |x| ≤l |y|
x ≤l PAD(x, y) ¬x =l 0 ⊃ x ≤l PAD(x, 1) ∧ ¬PAD(x, 1) =l x
x ≤l CAT(x, y) x ≤l z ∧ z ≤l PAD(x, 1)⊃x =l z ∨ z =l PAD(x, 1)

2. All substitution instances of equality axioms.

3. All substitution instances of the following additional axioms involving
equality:

0 = |0| PAD(x,PAD(y, z)) =PAD(x,PAD(z, y))
1 = |1| PAD(PAD(x, y), z))=PAD(x,PAD(y, z))
MSP(PAD(x, y), |y|) = x MSP(x, |i|+ 1) = MSP(MSP(x, |i|), 1)
LSP(PAD(x, y), |y|) = 0 x = CAT(MSP(x, z),LSP(x, z))
|x#ly| = 2||x||+||y|| MSP(CAT(x, y), |y|) = x
MSP(x, 0) = x LSP(CAT(x, y), |y|) = y
MSP(x, |x|) = 0 ¬y ≤l 0 ⊃ |y| = |PAD(MSP(y, 1), 1)|
LSP(x, 0) = 0 LSP(x#ly, 1) = 0
LSP(x, |x|) = x

PAD(MSP(x, 1), 1) = x ∨ CAT(MSP(x, 1), 1) = x

15

Proofs in our theories will be carried out in the sequent calculus sys-
tem LKB which is the usual first order sequent calculus extended with the
following inferences to handle bounded quantifiers:

A(t),Γ→∆
t≤ls,∀x≤lsA(x),Γ→∆

a≤lt,Γ→A(a),∆
Γ→∀x≤ltA(x),∆

a≤lt,A(a),Γ→∆
∃x≤ltA(x),Γ→∆

Γ→A(t),∆
t≤ls,Γ→∃x≤lsA(x),∆

This is the same system as in Buss [3] or Krajicek [9] except wherever they
used ≤ used we use ≤l. The only initial sequents we allow are axioms and
sequents of the form A → A where A is atomic.

We next give some additional axiom schemes and rules we will consider.

Definition 4 Let τ be a set of L-terms.

1. A Ψ-LINDτ axiom is an axiom LIND`
A:

A(0), (∀x ≤l |`(t(b))|)(A(x) ⊃ A(x +`(t) 1)) → A(|`(t(b))|) ,

where t ∈ L, ` ∈ τ , and A ∈ Ψ.

2. Given a formula A(z), COMPA(t), is the axiom

∃y ≤l t ∀z ≤l |t| (BIT(y, z) = 1 ⇐⇒ A(z)) .

The Ψ-COMP axioms are all formulas of the form COMPA(t) where
A ∈ Ψ and t is a term in L. We write COMPΨ for the class of
formulas of the above form where A ∈ Ψ.

As an example, let id(a) = a. Then Ψ-LIND{id} is closely related to the
LIND induction for Ψ-formulas studied in Buss [3]. Since by Parikh’s theo-
rem the exponential function is not provably total in the theories we are con-
sidering, induction up to the length of a number is potentially weaker than
normal induction. Other common sets of terms are {|id|}, {||id||} or {|id|m}
where |id|0 = id and |id|m = ||id|m−1|. Sets of the form {|id|m} are singleton
sets; however, we will also consider sets of terms such as {2k|id|m | k ∈ N},
{22k|id|m | k ∈ N}, or {222k|id|m |k ∈ N}, where m is a fixed integer.

Remark 1 Length bounded induction is sufficient to prove that the string
y guaranteed to exist by comprehension is also unique.

Definition 5 The following theories will be of interest:

1. For any i ≥ 0, Si
2 := BASIC + Σb

i -LIND{id}.

2. LIOpen := BASIC + open-LIND{id}.

16

3. TΣlog
k := BASIC + B(Σlog

k)-LIND{id} + B(Σlog
k)-COMP.

4. S2 := ∪iS
i
2.

5. TAC 0 := ∪kTΣlog
k .

6. ZAC 0 := ∪iZAC 0
i , where ZAC 0

i := TAC 0 + Σb
i -LIND{|id|i+2}.

We will often restrict ourselves to the deduction system (TΣlog
k)′ which

is a restriction of TΣlog
k in the system LKB where we only allow cuts on

LU{||id||}B(Σlog
k)-formulas.

In the next section we will perform enough bootstrapping to argue that
in an appropriate expansion of the language L, Si

2 is conservative over both
the Si

2 of Buss [3] and our Si
2.

Remark 2 The same proofs as in Pollett [12] for that papers variant on
LIOpen can be used to show this papers LIOpen proves:

1. (∃w ≤l 〈s, t〉)[(w)1 ≤l s ∧ (w)2 ≤l t ∧ A((w)1, (w)2)] ⇐⇒ (∃x ≤l

s)(∃y ≤l t) A(x, y).

2. (∀w ≤l 〈s, t〉)[(w)1 ≤l s ∧ (w)2 ≤l t ⊃ A((w)1, (w)2)] ⇐⇒ (∀x ≤l

s)(∀y ≤l t)A(x, y).

From our definitions LIOpen ⊆ (TΣlog
k)′, so (TΣlog

k)′ can prove this as well.

Lemma 3 TΣlog
1 = TAC 0.

Proof. Let Ψ ⊇ Σlog
1 be the class of formulas for which TΣlog

1 proves com-
prehension. Ψ will be closed under term substitution. It suffices to show Ψ
is closed under ¬, ∧, and (∃x ≤l |t|). Let A,B ∈ Ψ. For closure under nega-
tion, notice that given COMPA(t) and COMP¬BIT(i,w)=1(t) it is straightfor-
ward to prove COMP¬A(t). Similarly, from COMPA(t), COMPB(t), and
COMPBIT(i,w)=1∧BIT(i,v)=1(t) it is not hard to prove COMPA∧B(t). Lastly,
consider D := (∃j ≤l |z|)A(i, j, z, x). Let C := A(βt(j, i), j, z, x). Then
COMPD follows from COMPC and COMP (∃j≤l|z|)(BIT(i,βt(j,v))=l1). ¤

Note this lemma does not imply (TΣlog
k)′ = TAC 0 or even (TAC 0)′ :=

∪k(TΣlog
k)′ equals TAC 0. However, it does show that our restriction on cut

will be important, as it restricts our ability to compose functions.

17

3 Definability

Let Ψ be a set of formulas. A deduction system T can Ψ-define a function
f(x), if there is a formula Af (x, y) ∈ Ψ such that T ` ∀x∃!y Af (x, y) and
N |= Af (x, y) ⇔ f(x) = y.

If, in addition, T proves y ≤l t — that is, if T ` ∀x∃!y ≤l t Af (x, y) —
then we say T can boundedly Ψ-define f . A predicate is ∆b

i with respect to a
theory T if it is provably equivalent to both a Σb

i -formula and a Πb
i -formula.

It should be observed that in a system where Parikh’s theorem holds, such
as TAC 0 or Si

2, the notions of bounded definability and usual definability
provably coincide. However, in the deduction systems above that have a
restriction on cut, Parikh’s Theorem might not provably hold.

Definition 6 1. (µx ≤l |z|)[φ] returns the least x ≤l |z| such that φ holds
and returns |z|+ 1 if no such value exists.

2. (#x ≤l |z|)[φ] returns the number of x ≤l |z| such that φ holds.

3. f is defined by |τ |-bounded primitive recursion (BPR|τ |) from multi-
functions g and h, and terms t ∈ L, and r ∈ L if there is an ` ∈ τ and
a function F such that

F (0, ~x) = g(~x)
F (n +`(t) 1, ~x) = min(h(n, ~x, F (n, ~x)), r(n, ~x))

f(n, ~x) = F (|`(t(n, ~x))|, ~x) .

Definition 7 A function f is Ψ-comprehension defined in T if there is a
Ψ-formula A such that f can be Ψ-defined in T by proving (∀x) COMPA(t).
That is, N |= BIT (i, f(x)) = 1 ⇐⇒ A(x, i), T ` ∀x∃y ≤l t∀i ≤l

|t|BIT (y, i) = 1 ⇐⇒ A(x, i), and T proves that y is unique.

Uniqueness of y is usually proven by using a notion of bit-extensionality.
which says that if two numbers have the same bit string then they are equal.
This can be proven in LIOpen from Pollett [12]. Comprehension definition
has some nice properties with respect to the theories we will be considering.

Lemma 4 1. Let k > 0. If s and m are L-terms and f , g, and h are
B(Σlog

k)-comprehension defined in (TΣlog
k)′, then so are

(a) f(s), 〈f, g〉, (f)j, and βs(i, w);

(b) cond(f, g, h), provided f ≤l 1;

18

(c)
∑|s|−1

j=0 f(j)2j·2||m||, where m := f+(|s|, x).

2. If φ ∈ B(Σlog
k), then (TΣlog

k+1)
′ can Σlog

k+1-comprehension define (µx ≤l

|z|)[φ].

Proof. That f(s) is B(Σlog
k)-comprehension definable follows from term

substitution of s for the parameter of f in its defining formula. For the
rest of (1) we only show how to do cond(f, g, h) and

∑|t|−1
i=0 f(i)2i·2||m|| as

the rest can be done similarly. Let f ,g, and h be B(Σlog
k)-comprehension

defined using formulas Af , Ag and Ah. We can B(Σlog
k)-comprehension define

cond(f, g, h) using the formula

(Af (0, x) ∧ Ag(i, x)) ∨ (¬Af (0, x) ∧ Ah(i, x)) .

Notice we are using that f ≤l 1 in this case, so only its 0th bit matters.
To define

∑|s|−1
j=0 f(j, x)2j·2||m|| we can use the formula

Af (i .−s PAD(MSP(i, ||m||), |m|), MSP(i, ||m||), x)

For (2), given φ we can Σlog
k+1-comprehension define (µx ≤l |z|)[φ] using

A[i] := (∃j ≤l |z|)[BIT(i, j) =l 1 ∧ φ(j) ∧
(∀j′ ≤l |z|)(j′ ≤z (j +z 1) ⊃ ¬φ(j′))] ∨
(∀j ≤l |z|)[¬φ(j) ∧ BIT(i, |z|+ 1) = 1].

Inside the [· · ·] is a B(Σlog
k)-formula, so prenexifying shows the result. ¤

Definition 8 Given t ∈ L we define a monotonic term t+ called the domi-
nator for t by induction on the complexity of t.

• If t is a constant or a variable, then t+ := t.

• If t is LSP(f, g) or MSP(f, g), then t+ := f+.

• If t is f ◦ g for any binary operation ◦ other than LSP or MSP , then
t+ := f+ ◦ g+.

• If t is |f | then t+ := |f+|.
Lemma 5 (1) TAC 0 proves its Σb

1(LH)-definable functions are closed under
composition. (2) T := TAC 0 + Σb

1(LH)-LINDτ proves its Σb
1(LH)-definable

functions are closed under BPR|τ |. (3) If i > 0, then Si
2 in the union of the

languages of Buss [3] and of this paper is conservative over both the Si
2 of

Buss [3] and the Si
2 of this paper.

19

Proof. For (1), suppose f = h(g1(~x1), . . . gn(~xn)) and that TAC 0 can
Σb

1(LH)-define h(z1, . . . zn) and gj(~xj) where 1 ≤ j ≤ n. Then there are
Σb

1(LH)-formulas H, G1, . . . , Gn such that TAC 0 ` (∀~z)(∃y ≤l t) H(~z, y)
and TAC 0 ` (∀~xj)(∃y ≤l tj) Gj(~xj , y), for 1 ≤ j ≤ n.

TAC 0 ` (∀~x1) · · · (∀~xn)(∃y ≤l t)(∃y1 ≤l t1) · · · (∃yn ≤l tn) (G1(~x1, y1)
∧ · · · ∧ Gn(~x1, y1) ∧ H(y1, . . . yn, y)).

Since LIOpen ⊆ TAC 0 can do pairing, the formula inside the (∃y ≤ t) is
equivalent to a Σb

1(LH)-formula in TAC 0.
For (2), suppose f is obtained by BPR|τ | from g and h which are Σb

1(LH)-
definable in T where r, t ∈ L, and ` ∈ τ . Let G and H be the Σb

i (LH)-graphs
of g and h such that T ` (∀~x)(∃y ≤ t1) G(~x, y) and T ` (∀n, ~x, u)(∃v ≤
t2) H(n, ~x, u, v). We can assume that r(0, ~x) ≤ t1(~x). So let A(n, ~x,w, y) be

G(~x, βr(0,~x)(0, w))) ∧
βr+(|`(t)|)(n,w) = y ∧
(∀j < |`(t)|)((H(j, ~x, βr+(|`(t)|,~x)(j, w), βr+(|`(t)|,~x)(Sj, w))
∧ βr+(|`(t)|,~x)(Sj, w) < r(n, ~x)) ∨ βr+(|`(t)|,~x)(Sj, w) = r(n, ~x))

and let B(n, ~x) be (∃y ≤ r)(∃w ≤ 2 · (|`(t)|#lr
+)) A(n, ~x, z, w, y). Let

F (n, ~x, y) denote the formula within the (∃y ≤ r). This formula is equivalent
to a Σb

1(LH)-formula in T and we can define f if we can show

(∀~x, n)(∃y ≤ r) F (`(t(n, ~x)), ~x, y).

So it suffices to show (∀~x, n) B(|`(t)|, ~x). Now B is also equivalent to a
Σb

1(LH)-formula, so T can use LINDτ
B axioms. Since T proves (∀~x)(∃y ≤

t1)G, it proves B(0, ~x). Suppose T ` B(m,~x), where m ≤ |`(t)|. So there
are v, w, y satisfying A(m,~x,w, y). If we set y′ = h(m,~x, y), and

w′ = y′ · 2min((m+1)·2||r+||,|`(c)|·2||r+||) + LSP(w, (m + 1) · 2||r+||) ,

then T ` A(m + 1, ~x, z, w′, y′). Here we use (m + 1) · 2||r+|| to abbreviate
CAT(m, 2||r+||). Hence, T ` B(m + 1, ~x). By the LINDτ

B axioms, T `
(∀~x, n)B(|`(t)|, ~x).

This same argument, as well as the arguments of Lemma 4, shows
that the Σb

1(LH)-definable functions of S1
2 are closed under composition and

BPR{|id|}. Using BPR{|id|} it is then relatively easy to Σb
1(LH)-define S,+,

·, and 2|x||y| in our version of S1
2 . Using LIND we can prove the various

definitional properties of these functions. Similarly, in Buss’ version of S1
2

20

one can define PAD, MSP, LSP, and #l. Using these definitions one can
in a straightforward but tedious fashion show that Si

2 in the union of these
two languages is conservative over Si

2 in either language. ¤

Definition 9 We denote ∪kΣ
log
k by LH. We denote the closure of the LH-

functions under BPR|τ | by LH|τ |.

Theorem 3.1 Let k > 1. Then:

1. (TΣlog
k)′ can B(Σlog

k)-comprehension define the B(Σk-LOGTIME) func-
tions.

2. Both TAC 0 and (TAC 0)′ can Σb
1(LH)-define the functions in LH =

uniform AC0.

3. TAC 0+Σb
1(LH)-LINDτ can Σb

1(LH)-define the functions in LH|τ |.

Proof. (1) follows from Lemma 2 and the definition of B(Σk-LOGTIME)
function as being a poly-bounded function whose bit-graph is in B(Σk-
LOGTIME). That (TΣlog

k)′ can prove the value produced by using B(Σlog
k)-

COMP is unique follows immediately from our definition of equality ap-
plied to the bit-string produced by a B(Σlog

k)-COMP axiom. (2) follows
from (1) since TAC 0 := ∪kTΣlog

k and that the LH functions are just the
∪kB(Σk − LOGTIME) functions. (3) follows from (2) and Lemma 5. ¤

We next briefly describe how to establish the converse of the above result.
First we define a witness bounding term and witness predicate for LEΠlog

k+1-
formulas as follows:

• If A(~a) ∈ LU{|id|}B(Σlog
k) then tA = 0 and WIT k

A(w,~a) := A(~a) ∧ w =
0.

• If A(~a) is of the form (∃x ≤l t)B(x,~a) where B(x,~a) ∈ U{|id|}B(Σlog
k)

then tA := t and

WIT k
A(w,~a) := w ≤l t ∧ B(w,~a) .

The following lemma follows from the definition of witness predicate:

Lemma 6 Let A(~a) ∈ LEΠlog
k+1. Then:

WIT k
A is a LU{|id|}B(Σlog

k) -predicate.

LIOpen ` (∃w ≤l tA(~a))WIT k
A(w,~a) ⊃ A(~a).

21

We extend the witness predicate to cedents in the standard way given in
Buss [3]. The next theorem is used to prove the converse of Theorem 3.1.

Theorem 3.2 Suppose k ≥ 1 and

(TΣlog
k)′ ` Γ → ∆ ,

where Γ and ∆ are cedents of LEΠlog
k+1-formulas. Let ~a be the free variables

in this sequent. Then there is a function f which is B(Σlog
k)-comprehension

defined in (TΣlog
k)′ by Af such that (TΣlog

k)′ proves:

(∀i ≤ |t|)(BIT(i, y) = 1 ⇔ Af (i, w,~a)),WIT k
∧Γ(w,~a) → WIT k

∨∆(y,~a). (1)

Notice that the sequent in (1) contains only LU{|id|}B(Σlog
k)-formulas, so

(TΣlog
k)′ can reason about this sequent using cuts. From now on we abbre-

viate a sequent like (1) as

(TΣlog
k)′ ` WIT k

∧Γ(w,~a) → WIT k
∨∆(f(w,~a),~a).

Proof. The proof is by induction on the number of sequents in a (TΣlog
k)′

proof of Γ → ∆. By cut elimination, we can assume that all the sequents
in the proof contain only LEU{|id|}B(Σlog

k)- formulas. In the case of a proof
involving only an initial sequent, the only kind of initial sequents involving
EU{|id|}B(Σlog

k)-formulas are B(Σlog
k)-COMP axioms. So in all other cases

we can create a witness function for the succedent using pairings of the
0 function. (Notice that this is true even of B(Σlog

k)-LIND axioms.) Let
A(i,~a) be a B(Σlog

k)-formula. Then a witness for a COMPA(t) axiom will
be just the B(Σlog

k)-function given by the bit-graph of A. The inductive step
now breaks into cases according to the last inference in the (TΣlog

k)′ proof.
Most of the cases are similar to those in previous witnessing arguments so
we only show three cases: the (∀ : right) case, the cut-case, and the (AND :
right) case.

(∧:right case) Suppose we have the inference:

Γ → A, ∆ Γ → B, ∆
Γ → A ∧ B, ∆

The induction hypothesis gives g and h that are B(Σlog
k)-comprehension

defined such that

(TΣlog
k)′ ` WIT k

∧Γ(w,~a) ⊃ WIT k
A∨∆(g(w,~a),~a)

(TΣlog
k)′ ` WIT k

∧Γ(w,~a) ⊃ WIT k
B∨∆(h(w,~a),~a).

22

Notice that since we only can have conjunctions of open formulas in our
proof, A and B must be open, which means that WIT k

A is an open-formula
in BASIC . So we can express A as an L-term fW using K≤l

, K∧, and K¬.
We define the term k as

k(v, w,~a) := cond(fW (v,~a), v, w) .

Now define f by

f(w,~a) := 〈0, k((g(w,~a))1, (h(w,~a))2,~a〉.

The function f is B(Σlog
k)-definable by Lemma 4. Since the formula A ∧ B

must be open, we have WIT k
A∧B = A ∧ B ∧ w = 0 and which takes 0 as a

witness. Thus the function f provides a witness, if needed, to the remaining
formulas in the succedent and one can verify that

(TΣlog
k)′ ` WIT k

∧Γ(w,~a) → WIT k
A∧B∨∆(f(w,~a),~a).

(Cut rule case) Suppose we have the inference:

Γ → A, ∆ A,Γ → ∆
Γ → ∆

The induction hypothesis gives g and h that are B(Σlog
k)-comprehension

defined such that

(TΣlog
k)′ ` WIT k

∧Γ(w,~a) → WIT k
A∨∆(g(w,~a),~a)

(TΣlog
k)′ ` WIT k

A∧Γ(w,~a) → WIT k
∨∆(h(w,~a),~a).

We define the function k as

k(v, w,~a) := cond(fW (v,~a), v, w)

Here fW is as in the ∧:right case. We define the function f to be

f(w,~a) := k((g(w,~a))1, h(〈0, w〉,~a)) .

Since we are considering (TΣlog
k)′-proofs, A must be an LU{|id|}B(Σlog

k)-
formula. By Lemma 4, f is in B(Σlog

k)-comprehension definable and it is
easy to see that

(TΣlog
k)′ ` WIT k

∧Γ(w,~a) → WIT k
∨∆(f(w,~a),~a).

23

(∀:right case) Suppose we have the inference:

b ≤l t,Γ → A(b), ∆
Γ → (∀x ≤l t)A(x), ∆

By the induction hypothesis there is a B(Σlog
k)-comprehension defined func-

tion g such that

(TΣlog
k)′ ` WIT k

b≤lt∧Γ(w,~a, b) → WIT k
A∨∆(g(w,~a, b),~a, b) .

By cut-elimination, (∀x ≤l t)A(x) is a LEΠlog
k+1-formula, so t must be of the

form t = |s| and A ∈ LΣlog
k . Let y be (µi ≤l |s|)¬A(i). Using Lemma 4, we

B(Σlog
k)-comprehension define a function h that outputs

|s|∑

i=0

g(〈0, w〉,~a, i)2min(i·2||m||) ,

where m is as in the lemma. The first component of the ordered pair is 0
because WIT b≤lt(w, b) = b ≤l t ∧ w = 0. Since each of the definitions of
sums and projections in Lemma 4, involved only simple substitutions into
the original formula being comprehended over, (TΣlog

k)′ can prove simple
facts about h provided h is suitably defined. In particular, it can show that
β2||m||(i, h) = g(〈0, w〉,~a, i). Let f be β2||m||(y, h). This is in (TΣlog

k)′ by
Lemma 4 and

(TΣlog
k)′ ` WIT k

Γ(w,~a) → WIT k
∀x≤l|s| A∧∆(f(w,~a),~a) .

This completes the cases and the proof. ¤

Corollary 2 For all k ≥ 1, (TΣlog
k)′ proves its boundedly U{|id|}B(Σlog

k)-
definable functions can be B(Σlog

k)-comprehension defined. Hence, for any
k > 1, the boundedly U{|id|}B(Σlog

k)-definable functions of (TΣlog
k)′ are pre-

cisely B(Σk-LOGTIME).

Proof. Suppose (TΣlog
k)′ proves → (∃y ≤l t)A(x, y) and A ∈ U{|id|}B(Σlog

k).
A witness for the empty cedent is 0. So Theorem 3.2 gives the desired
B(Σlog

k)-comprehension defined function f so that (TΣlog
k)′ ` A(x, f(0, x)).

¤

Theorem 3.3 (1) The Σb
1(LH)-definable functions of TAC 0 are precisely

LH. (2) The Σb
1(LH)-defined functions of TAC 0 + Σb

1(LH)-LINDτ are pre-
cisely LH|τ |.

24

Proof. That these theories can define their respective function classes is
the content of Theorem 3.1.

For the other direction, first that note that because Parikh’s Theorem
does hold in these theories (one can use the argument in Hajek Pudlak [4] to
show this) if one of these theories can prove ∃yA(x, y), then there is a term
t ∈ L such that it can prove (∃y ≤ t)A(x, y). So we can prove the converse
to Theorem 3.1 by carrying out a witnessing argument in much the same
way as was done in Theorem 3.2. We first modify the witness predicate as
follows:

• If A(~a) ∈ L ∪k Σlog
k then tA := 0 and WITA(w,~a) := A(~a) ∧ w = 0.

• If A(~a) is of the form (∃x ≤l t)B(x,~a) where B(x,~a) ∈ ∪kΣ
log
k then

tA := t and
WITA(w,~a) := w ≤l t ∧ B(w,~a) .

• If A(~a) is of the form (∃x ≤l t)(∃y ≤l s)B(x, y,~a) where B(x,~a) ∈
∪kΣ

log
k then tA := 〈t, s〉 and

WITA(w,~a) := w ≤l tA ∧ B((w)1, (w)2,~a) .

We extend WIT to cedents in the same way as in Buss [3]. We will give a
proof of the the theorem only for T := TAC 0 +Σb

1-LINDτ , the other results
are similar. We argue by induction on the number of sequents in a T proof
of Γ → ∆ that there is an LH|τ | function f such that T ` WIT∧Γ(w,~a) ⊃
WIT∨∆(f(w,~a),~a). Most of the cases are handled in the same way as in
the argument of Theorem 3.2. The cut-case changes and we need to handle
Σb

1-LINDτ .

(Cut rule case) Suppose we have the inference:

Γ → A, ∆ A,Γ → ∆
Γ → ∆

.

By the induction hypothesis there are LH-functions g and h such that

T ` WIT∧Γ(w,~a) ⊃ WITA∨∆(g(w,~a),~a)
T ` WITA∧Γ(w,~a) ⊃ WIT∨∆(h(w,~a),~a).

We define the function k by

k(v, w,~a) := cond(fW (v,~a), v, w)

25

Here fW is as in the ∧:right case of Theorem 3.2. We define the function f
to be

f(w,~a) := k((g(w,~a))1, h(〈(g(w,~a))1, w〉,~a)) .

By Lemma 5, f is Σb
1(LH)-definable, and since LH|τ | is closed under compo-

sition, f will be in LH|τ |. It is not hard to show that

TAC 0 ` WIT∧Γ(w,~a) ⊃ WIT∨∆(f(w,~a),~a) .

(Σb
1(LH)-LINDτ case) Without loss of generality (see Buss [3]) we can

reformulate Σb
1-LINDτ as the following kind of induction inference:

A(b), Γ → A(b +`(t) 1), ∆
A(0), Γ → A(|`(t)|), ∆

where ` ∈ τ . By hypothesis there is a g ∈ LH|τ | such that

T ` WITA(b)∧Γ(w,~a) ⊃ WITA(b+`(t)1)∨∆(g(w,~a),~a).

Let h(m,w,~a, b) be

cond(WITA(b+`(t)1)∨∆(m,~a, b),m, g(〈m,β(2, w)〉,~a, b))

Define f by BPR|τ | in the following way

F (0, w,~a) = 〈(w)1, 0〉
F (b + 1, w,~a) = min(h(F (b, w,~a), w,~a, b), t∨A(Sb)∨∆)

f(u,w,~a) := h(min(u, |`(t)|), w,~a) .

Recall that t∨A(b+`(t)1)∨∆ is a term guaranteed to bound a witness for
A(b +`(t) 1) ∨ ∆ (defined by using pairings of the terms bounding the wit-
nesses for the individual formulas). It is easy to see that

T ` WITA(0)∧Γ(w,~a) ⊃ WITA(0)∨∆(f(0, w,~a),~a)

From this one can show that

T ` WITA(0)∧Γ(w,~a) ∧ WITA(b)∨∆(f(b, w,~a), b,~a)
⊃ WITA(b+`(t)1)∨∆(f(b +`(t) 1, w,~a), b +`(t) 1,~a) ,

from which it follows by Σb
1(LH)-LINDτ that

T ` WITA(0)∧Γ(w,~a) ⊃ WITA(|`(t)|)∨∆(f(|`(t)|, w,~a),~a) .

26

This completes the cases we will show of the witnessing argument.

From this it follows that if T Σb
1(LH)-defines a function by proving (∃y ≤l

t)A(x, y), where A is (∃z ≤l t)B(x, y, z) and B ∈ ∪k(Σ
log
k), then we get

an LH function f such that WITA(x, (f(0, x))1, (f(0, x))2). This implies
A(x, (f(0, x))1), so the function defined by T was in LH. ¤

The next two results are easy modifications of results in Pollett [12].
Since Si

2 has Σb
1-quantifier replacement [3, 12], it can actually show that any

Σb
i (LH)-formula (resp. Πb

i (LH)-formula) is equivalent to a Σb
i -formula (resp.

Πb
i -formula).

Theorem 3.4 (i ≥ 1) Suppose that for all ` ∈ τ , ` ∈ O(˙{|x|}). Let 2τ̇ be
the set of terms 2` where ` ∈ τ̇ . Then

1. TAC 0 + Σb
i (LH)-LIND2τ̇ ¹B(Σb

i+1)
TAC 0 + Σb

i+1(LH)-LINDτ ;

2. the ∆b
i+1(LH)-predicates of both these classes are PΣp

i−1(˙|τ |).

Theorem 3.5 (i ≥ 0, k ≥ 2) The ∆b
i+k(LH)-predicates of Si

2 are precisely
PΣp

i+k−1(1).

4 Separations in (TΣlog
k)′ and TAC 0

We begin by showing that there is a simple universal predicate for Σ̌τ
k.

Lemma 1 Let τ contain only terms which are Ω(log n). Then there is an
L-formula Uk(e, x, z) such that for any φ(x) ∈ Σ̌τ

k there exist a fixed number
eφ, a term ` ∈ τ , and a term t ∈ L such that

LIOpen ` Uk(eφ, x, `(t(x))) ≡ φ(x)

and such that for all terms ` ∈ τ , we have Uk(e, x, `(t(x))) ∈ Στ
k.

Proof. First note that since we are assuming terms in τ are nondecreasing,
we can replace the innermost quantifier bounds in φ with bounds that are
a function (involving MSP) of |`(#m

l (x))| and replace all other quantifier
bounds in φ with bounds of the form `(#m

l (x)) for some large enough m.
We can push the actual bounds into the open-matrix. This works even for
the innermost quantifier because of the part of our definition of Στ

0 and Πτ
0

involving h-boundedness with respect to the innermost quantifying variable.

27

So using K≤l
, K¬, and K∧ to rewrite the open matrix as a single equation,

φ can be written provably in BASIC in the form:

(∃y1 ≤ `(#m
l (x))) · · · (Qyk ≤ `(#m

l (x)))[(Q′yk+1 ≤ ms(x)) (t1 ≤l 0) ∧
(Q′yk+2 ≤ ms(x))(Q′yk+3 ≤ MSP(||`(#m

l (x))||, |`(#m
l (x))|4))(t2 ≤l 0)],

where ms(x) := MSP(|`(#m
l (x))|, |||`(#m

l (x))|||) and the quantifiers Q and
Q′ depend on whether i is even or odd. Here all variables in t are |`|-bounded.
We fix some coding scheme for the 9 symbols of L. We use d e to denote the
code for some symbol, e.g., d≤l

e is the code for ≤l. We also have codes for
dβy1e, . . . , dβy

k+3
e, dβxe, and codes d|`(y1)|e, . . . , d|`(yk+3)|e,d|`(x)|e. We choose

our coding so that all codes require less than |2k + 14| bits and we use 0 as
dNOPe meaning no operation. The code for a term t is a sequence of blocks
of length |2k + 14| that write out t in postfix order. So PAD(|`(x)|, |`(y1)|)
would be coded as the three blocks d|`(x)|ed|`(y1)|edPADe. The symbol dβxe is
codes the function which takes two arguments a and b and returns βa(b, x).
The symbols dβyie have a similar function. The code for a Στ

k-formula will
be the pair of the codes of the innermost two terms.

We now describe Uk(e, x, z). It will be obtained from the formula

(∃w ≤ z)(∃w′ ≤ z)(∃y1 ≤ z)(∀j ≤ |e|)(∀y2 ≤ z) · · · (Qyk ≤ z)
((Q′yk+1 ≤ MSP(|z|, ||z||)) φk((e)1, j, x, ~y, w) ∧
(Q′yk+2 ≤ MSP(|z|, ||z||))(Q′yk+3 ≤ MSP(||z||, |z|3))φk′((e)1, j, x, ~y, w′)

after grouping together like quantifiers. Here φk consists of a statement
saying w codes a postfix computation of the term given by (e)1 and φk′

consists of a statement saying w′ codes a postfix computation of the term
given by (e)2. For φk this amounts to checking conditions

[β2k+14(j, e) = d|`(x)|e ⊃ βB(j, w) = |`(x)|] ∧
[β2k+14(j, e) = dPADe ⊃ βB(j, w) = PAD(βB(j .−2, w), βB(j .−1, w)] ∧
· · ·
[β2k+14(j, e) = dNOP e ⊃ βB(j, w) = βB(j .− 1, w)].

Finally, φk has a condition saying βB(|e|, w) ≤l 0. Since any subterm of t
is no larger than a number which results from applying #l to things that
are |`|-bounded, the length of a w that works can be bounded by ||`(x)||k
for some k. So w is less than 2||`||k . B in the above can thus be of the from
2||`||k

′
for some k′ < k and this number will be less than `. which is less

28

than `(#m
l (x)). Similar conditions are checked in the φk′ case and the same

argument shows w′ is less than `.
Since LIOpen can prove simple facts about projections from pairs, it can

prove by induction on the complexity of the term t (which is finite) in any
Στ

k-formula φ(x) that Uk(eφ, x, `(#m
l (x))) ≡ φ(x). ¤

Theorem 4.1 LIOpen proves that Σm·log
k 6= Πm·log

k . Hence, LIOpen proves
that mLH is infinite.

Proof. Let A(x) be any Σm·log
k formula. We show LIOpen ` (∃xA(x)) 6≡

(¬Uk(x, x, |#m
l (x)|)). This suffices since ¬Uk(x, x, |#m

l (x)|) is in Πm·log
k . Let

eA be the code Uk for A. Then LIOpen proves (¬U log
k (eA, eA, |#m

l (x)|)) ≡
(¬A(eA)) and, therefore, (¬Uk(eA, eA, |#m

l (x)|)) 6≡ A(eA).
Thus LIOpen proves for every k that Σm·log

k 6= Πm·log
k . Hence, LIOpen

proves that mLH is infinite. ¤

Theorem 4.2

TAC 0 proves LH 6= Σk-TIME(logO(1) n) for any k > 0.

TAC 0 proves LH 6= Σb
k for any k > 0.

TAC 0 proves LH 6= E|x|m+1#l|x|Σ
log
k for all k and m.

Notice that although LH ⊆ Σb
1, we are not claiming TAC 0 can prove this.

Since E|x|m+1#l|x|Σ
log
k is almost Σlog

k , except for a slightly larger outermost
existential, (3) gives some evidence that TAC 0 proves LH is infinite. Proof.

The second statement can be proven in the same fashion as the first, so
we will only prove the first and third statements. A universal predicate for
Σk-TIME(logO(1) n) will be just Uk(e, x,#e

l (|x|)). The statement LH = Σk-
TIME(s) means that for any formula A ∈ ∪kΣ

log
k ,

(∃eA)(∀x)Uk(eA, x, #e
l (|x|)) ≡ A ,

and that there is an LH formula U such that

(∀x)U(〈e, x,#e
l (|x|)〉) ≡ Uk(e, x, #e

l (|x|)) .

By De Morgans Laws, to prove the negation of LH = Σk-TIME(logO(1) n) it
suffices to prove the negation of any finite subset of this infinite family of
statements. Let φ be the conjunction of the following statements:

(∃e¬U)(∀x) Uk(e¬U , z, #e¬U
l (|x|) ≡ ¬U(z)

29

and
(∀x)U (〈e, x, #e

l (|x|)〉) ⇔ Uk(e, x,#e
l (|x|))

We will argue informally that TAC 0 ` φ ⊃ ¬φ and so TAC 0 ` ¬φ. First
notice that TAC 0 proves φ ⊃ LINDUk

and that TAC 0 proves φ implies
any Πk-TIME(logO(1) n) predicate can be written as a Σk-TIME(logO(1) n)
formula. Using pairing, this means that TAC 0 can prove that any for-
mula A in the ∪m(Σm-TIME(logO(1)n)) hierarchy is equivalent to a Σk-
TIME(logO(1) n) predicate and so TAC 0 proves LINDA. Suppose U is a
Σlog

m predicate. Using LIND , TAC 0 can effectively reason about the stan-
dard diagonalization language L (Mocas [10] Theorem 3.2.1) used to show
Σlog

m 6= Σm-TIME(logO(1)). This implies ¬φ since φ implies there is a Uk

code (and hence a U code) eL for φ, which says that L ∈ Σlog
k ⊆ Σlog

m .
The third statement is proven similarly. First one argues in TAC 0 that

LH = E|x|m+1#l|x|Σ
log
k implies

LH = E|x|m+1#l|x|Σ
log
k = U|x|m+1#l|x|Σ

log
k

since LH is closed under complement. This implies that

LH = ∪vΣv-TIME(logm+1 n · log n)) .

TAC 0 can prove that the universal predicate U for E|x|m+1#l|x|Σ
log
k is equiv-

alent to some Σlog
v -formula for some fixed m, and TAC 0 can diagonalize Σlog

v

from Σv-TIME(logm+1 n · log n)) as in the previous argument. ¤

5 Independence

In this section, we prove TAC 0 and ZAC 0 cannot prove that the polynomial
time hierarchy collapses.

Theorem 5.1 If ZAC 0 ⊆ Si
2 for any i, then the polynomial hierarchy col-

lapses to B(Σp
i+2).

Proof. ZAC 0 ⊆ Si
2 implies ZAC 0

i+2 ⊆ Si
2. The ∆b

i+2(LH)-predicates of
Si

2 are PΣp
i+1(1) by Theorem 3.5. By Corollary 3.4, the ∆b

i+2-predicates of
ZAC 0

i+2 are PΣp
i+1(˙({|id|i+5})). It is not hard to exhibit complete problems

for the latter class. Hence, if ZAC 0
i+2 ⊆ Si

2, then

PΣp
i+1(1) = PΣp

i+1(˙({|id|i+5})) ,

30

and so for some k, PΣp
i+1 [k] = PΣp

i+1 [k + 1]. The result then follows from
Chang and Kadin [8, 7]. ¤

Definition 10 Define 2 ↑ 0(x) := x, 2 ↑ i + 1(x) := 22↑i(x). Let τi be the
set of iterms of the form 2 ↑ j(p(|x|j)) for j ≥ i + 3 and p any polynomial.
Let τZ := ∪iτi.

As a consequence of Theorem 3.4 and the fact that a statement provable
in ZAC 0 must in fact be provable in ZAC 0

i (recall ZAC 0
i+1 contains ZAC 0

i)
for some large enough i, we have:

Lemma 2 1. (i > 0) TAC 0+Σb
i (LH)-LINDτi ¹B(Σb

i+1)
ZAC 0.

2. (i > 0) The Σb
1(LH)-definable functions of ZAC 0 are precisely AC0

|τZ |.

To prove that ZAC 0 cannot prove the collapse of the hierarchy, we first
show that if ZAC 0 proves PH ↓ then ZAC 0 = S2. This is the content of the
next theorem.

Theorem 5.2 If ZAC 0 proves that the polynomial hierarchy collapses then
ZAC 0 = S2.

Proof. Since ZAC 0 := ∪iZAC 0
i , if ZAC 0 proves that the polynomial

hierarchy collapses, then there must be an i and a k such that ZAC 0
i proves

that the Uk of Lemma 1 is equivalent to a Πb
k-formula. Hence, ZAC 0

i proves
that Σb

k = Πb
k. Since ZAC 0

i ⊆ ZAC 0
i+1, without loss of generality we can

assume that k ≤ i. It follows that ZAC 0
i proves Σb

m-LIND{|id|i+3} for all m.
So if we choose m := 2i+9 we get TAC 0+Σb

m-LIND{|id|i+3} ⊆ ZAC0
i . Then

i + 3 applications of Theorem 3.4 show Si
2 ⊆ ZAC 0

i . Since ZAC 0
i proves

Σb
k = Πb

k and k < i, it must contain Sm
2 for every m. ¤

Theorem 5.3 Parity is not Σb
1(LH)-definable in ZAC 0. Hence, ZAC 0 and

TAC 0 cannot prove that the polynomial hierarchy collapses.

Proof. By Lemma 2, the Σb
1(LH)-definable functions of ZAC 0 are contained

in AC0
{|||id|||}. These functions can all be computed by p-uniform log log-

depth poly sized, unbounded fan-in AND, OR, NOT circuits. By Hastad [6],
no log log-depth poly sized, unbounded fan-in AND, OR, NOT circuits can
compute parity. The theorem then follows from Theorem 5.2 since Parity
is in polynomial time and S1

2 ⊆ S2 can Σb
1(LH)-define any polynomial-time

function [3]. ¤

31

References

[1] M. L. Bonet and T. Pitassi and R. Raz No feasible interpolation for
TC0-Frege Proofs. In Proceedings 38th Symposium on Foundations of
Computer Science, pages 254–263, 1997.

[2] M. L. Bonet and T. Pitassi and R. Raz Non-automatizabilty of Bounded
Depth-Frege Proofs. In Proceedings of Computational Complexity ’99,
1999.

[3] S.R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[4] P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetics.
Springer-Verlag, 1993.

[5] P. Clote and G. Takeuti. First order bounded arithmetic and small
boolean circuit complexity classes. In P. Clote and J. Remmel, editors,
Feasible Mathematics II, pages 154–218. Birkhäuser, Boston, 1995.

[6] J. Hastad. Almost optimal lower bounds for small depth circuits. In Pro-
ceedings of the Eighteenth Annual ACM Symposium on theory of Com-
puting, pages 6–20, 1987.

[7] R. Chang and J. Kadin. The boolean hierarchy and the polynomial
hierarchy: a closer connection. In Proceedings Fifth Annual Structures
in Complexity Conference, pages 169–178, 1990.

[8] J. Kadin. The polynomial time hierarchy collapses if the boolean hier-
archy collapses. SIAM Journal on Computing, 17(6):1263–1282, August
1988.

[9] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic and Complexity
Theory. Cambridge University Press, 1995.

[10] S.E. Mocas. Using Bounded Query Classes to Separate Classes in the
Exponential Time Hierarchy from PH. Ph.D. Thesis, Northeastern Uni-
versity. 1993.

[11] J. Johannsen. Weak Bounded Arithmetic, the Diffie-Hellman Problem
and Constable’s Class In Proceedings of Logic in Computer Science 1999.

[12] C. Pollett. Structure and definability in general bounded arithmetic
theories. Annals of Pure and Applied Logic. Vol. 100. pages 189–245,
October 1999.

32

[13] C. Pollett. Multifunction algebras and the provability of PH ↓. Annals
of Pure and Applied Logic. Vol. 104 July 2000. pp. 279–303.

[14] C. Pollett. Translating I∆0(exp) proofs into weaker systems. Mathe-
matical Logic Quarterly. 46:246-256(No.2) May 2000.

[15] A.A. Razborov. Bounded arithmetic and lower bounds in Boolean com-
plexity. In P. Clote and J. Remmel, editors, Feasible Mathematics II,
pages 344–386. Birkhauser, 1995.

33

