
This paper consists of two parts both of which attempt to provide tautolo-
gies which might be hard for a propositional proof system P . Finding hard
tautologies is of interest as a possible approach to the NP versus co− NP
problem. The first part of the paper continues the study of the τ(g)b(x)
tautologies begun in Kraj́ıček [1]. These tautologies express that b ∈ {0, 1}m

is not the output of g(x) for a function g : {0, 1}n −→ {0, 1}m with m > n
computed by a polynomial sized circuit family. In the earlier Kraj́ıček pa-
per, τ(g)b(x) tautologies, where g computes a certain pseudo-random number
generator, were put forward as candidate hard tautologies for propositional
proof systems like extended Frege. Another choice of g suggested in this
earlier paper was the function tt which takes as input a circuit C of size at
most 2k/2 with k inputs and outputs the truth table for C. The first part
of the present paper gives two example tautologies, which if they had short
proofs, would imply the τ(g)b(x) tautologies have short proofs. The second
part of the present paper gives a family of tautologies which would be hard
for P if a certain condition about an implicit proof system is met.

The first tautologies presented in the first part of the paper are based on
tournaments. Razborov [3] gives a mO(1) sized circuit family {Dm} with 2m
inputs which computes the edge relation of a tournament on {0, 1}m vertices
that has no dominating set of size n. If Cn computes tt for n bit inputs,
then one can define En(x, y) as Dn(Cn(x), Cn(y)) if x 6= y, as 1 if x = y,
and 0 otherwise. The graph with this edge relation is a tournament on the
vertices consisting of strings in {0, 1}n. From the theory of tournaments, it
has a dominating set of size n; however, given the properties of Dm and Cn

this dominating set is presumably hard to find. Let An ⊆ {0, 1}n be such a
dominating set. The hard tautologies express

∨
a∈An

x = a ∨ En(a, x). It is
shown that if there is any g as in the first paragraph which is exponentially
iterable for a proof system P , then these hard tautologies require super-
polynomial sized P -proofs. Exponentially iterable means any disjunction of
the form τ(g)B1(q

1)∨τ(g)B1(q
1, q2)∨· · ·∨τ(g)Bk

(q1, . . . , qk) requires 2nε
sized

P -proofs. Here qj are m-tuples that the input variables to the given disjunct
must be among, and the Bk are m-output circuits, each output computed
as either a variable of some qj for j < k or computed as a constant. In
particular B1 has no variables.

The second tautologies presented in the first part of the paper are based
on viewing {0, 1}m as a vector space with a coordinate-wise addition ⊕m

and an inner product 〈, 〉. Define relations R′
n(x, y, z) as Cn(x)⊕ Cn(z) and

S ′(x, y) as 〈x, y〉 = 1. Let x ∼ y if and only if Cn(x) = Cn(y) and let Rn
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and Sn be R′
n/ ∼ and S ′

n/ ∼ respectively. The tautologies considered express
that there is a sequence of n-tuples u1, . . . , un such that for any n-tuples x
and y either ¬Rn(u1/ ∼, u2/ ∼, y/ ∼) or for some ui, Sn(ui/ ∼, x/ ∼). The
result is, again, if there is any g as above which is exponentially iterable for a
proof system P , then these tautologies require super-polynomial sized proofs.

The second part of the paper makes use of the notion of implicit proof
system from Kraj́ıček [2]. Given two proof systems P and Q with P contain-
ing resolution, one can define an implicit system [P, Q] whose proofs consist
of pairs (α, β) where β(i, j) is a circuit that is supposed to check if j encodes
the ith instantaneous description of a computation of a polynomial time ma-
chine checking a Q-proof of some tautology τ , and α is a P proof of the fact
that all the β(i, j)’s satisfy the local conditions of a valid computation of a
Q-proof on some input. Kraj́ıček [2] shows [EF ,EF ] proofs system simulate
the ∀Πb

1-consequences of the bounded arithmetic theory V 1
2 . Here EF is the

extended Frege proof system. In the present paper this is used to show that
there are sO(1)-sized [EF ,EF ]-proofs of tautologies based on search problems
connected to the weak pigeonhole principle (WPHP) and to Ramsey theory.
The former search problem asks given a size s circuit D computing a map
from m to n where m > n, to find two different elements which map to the
same point; the latter asks to find a homogeneous set of size in m in a graph
on {0, 1}2m whose edge relation is computed by a size s circuit D. On the
way to showing the main result of the second part of the paper, it is shown
that the search problem WPHP, finding a collision in a family of p-time hash
functions, and decoding RSA can all be P/poly many-one reduced to the
RAM search problem. The main result of the second part of the paper is
that if there is an implicit proof system [P, Q] such that the tautology based
on RAM has nO(1) sized proofs for circuits of size s between n and nO(1), yet
the tautology based on WPHP has nω(1) sized proofs for circuits of size t a
different function of size between n and nO(1); then a tautology asserting no
homogeneous set of size 2n exists in a graph given whose edges are computed
by a particular circuit from Razborov [3] requires super-polynomial sized P -
proofs. Here it is require that P contains resolution and Q contains tree-like
resolution.

Both parts of the paper are self-contained and interesting, and the paper
as a whole is remarkably succinct given the amount of material covered.
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