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1 Introduction

The weak pigeonhole principle (WPHP) states that given a function from a
set of size n2 into a set of size n, there are two elements in the domain that
map to the same element in the range. This principle gives one the ability
to do a limited amount of counting with regard to the function in question.
The weak pigeonhole principle has been used in the context of propositional
proof complexity to define sequences of true formulas which do not have short
resolution or constant depth Frege proofs [1, 2]. It has also been well-studied
in the context of first order logic. Here one adds the principle for some class
of relations—for instance, the polynomial-time (p-time) computable relations
or the ∆0 relations—to a weak system of arithmetic and considers what new
results are provable in the strengthened system. An early result of this type
by Paris et al. [23] is that I∆0+WPHP(∆0) proves there are infinitely many
primes. The pigeonhole principles in both contexts are intimately related via
well known translations of first order bounded arithmetics into sequences of
propositional proofs [22, 18].

Besides the traditional injective pigeonhole principle described above, many
other flavors have been considered in the literature. These include the sur-
jective pigeonhole principle which says that there is no surjective function
from a set of size n onto a set of size n2, the bijective pigeonhole principle
which combines the injective and surjective principles, and the multifunction
pigeonhole principle which is like the injective principle but defined in terms
of multifunctions rather than just functions. In weak theories of arithmetic it
might not be provable that these different formulations coincide.

Recently Jeřábek [12, §3] has shown that the surjective pigeonhole principle
for p-time functions is connected with circuit lower bounds. He shows that
in bounded arithmetic S 1

2 the surjective weak pigeonhole principle for p-time
functions is equivalent to the statement that for every n that is the length
of some number there is a string S of length n that is not computed by any
circuit with code of length n−1. To say that a circuit C computes a string S of
length m means that C takes as input a number i < m in binary and outputs
the i-th bit of S. Here S 1

2 is a theory which roughly has length induction for NP
predicates. It is thus natural to ask whether the other forms of the pigeonhole
principle can be connected to circuit principles. Jeřábek’s result is for the
pigeonhole principle expressed using p-time functions so it is also reasonable
to try to extend his results to the case where the surjection is expressed as
the graph of a function rather than by a function symbol, thereby allowing
consideration of functions more complex than p-time.

Razborov [26, App. C] has argued that Shannon’s counting argument cannot
obviously be formalized in S 1

2 . As a consequence S 1
2 cannot, at least in a direct
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way, formalize Kannan’s result [14] that there is a set in NEXPNP that is not
in P/poly. To a large degree, these statements are consequences of Parikh’s
Theorem which shows that S 1

2 cannot define functions of super-polynomial
growth. Nevertheless, it is open whether S 1

2 can prove a “weak Kannan result”:
for each k there is a set Ak that does not have O(nk)-size circuits (to say that
a set A has O(f(n))-size circuits means that there are circuits C1, C2, . . .
and a constant c such that Cn has size cf(n) and accepts exactly the length n
strings in A). It is also still open whether there is a set A defined by a bounded
arithmetic formula such that for each k > 0 S 1

2 can prove the statement “A
does not have O(nk)-size circuits.” A positive answer to this latter question
would imply S 1

2 could prove P 6= NP, and so, of course, P 6= NP would hold in
the real world. Jeřábek’s result to some extent gives an upper bound on the
theory required to prove a weak Kannan result, for if we can obtain a smallest
string that is not computed by any very small circuit, we can construct a
fixed set which does not have O(nk)-size circuits. This kind of argument can
be carried out in the theory S 3

2 , where S i
2 is defined roughly as the theory with

length induction for the i-th level of polynomial hierarchy. This is because
S 3

2 can do the necessary minimization and Paris et al. [23] have shown that
S 3

2 proves the weak pigeonhole principle for p-time functions (see Kraj́ıček
[17] and Maciel et al. [21] for an exposition and tightenings of the original
result). It is interesting to ask whether one can make any progress on showing
a matching lower bound on the theory required.

The intent of this paper is to show that to some extent all of the questions
posed above can be answered. Let sWPHP(Ψ), psWPHP(Ψ), and mWPHP(Ψ)
denote respectively the surjective, partial surjective, and multifunction weak
pigeonhole principle for the relations in Ψ. Our first result is that for each k
S 1

2 proves psWPHP(Πb
1) implies that for all lengths n there is a string S of

length 2nk that is not block-recognized by any circuit with code of length nk,
and that S 1

2 proves that this principle implies psWPHP(Σb
1). To say that

a circuit C M -block-recognizes a string S of length N means that C has
|dN/Me|+ M input bits and for b < dN/Me and s < 2M , C(b, s) outputs 1 if
and only if s is the b-th length-M block of S. We then analyze this proof to
give some information about relational versions of the surjective weak pigeon-
hole principle. In particular, we show that to replace psWPHP with sWPHP
we must replace Πb

1 with Boolean combinations of Σb
1 formulas.

It is natural to ask if one can obtain a result that is closer to involving just
p-time functions, as Jeřábek’s result does. To this end, we define a class of
relations ITER(PV , {‖id‖O(1)}) which can be computed as poly-log length
iterations of a polynomial relation. The precise statement of this requires
that when x is in such a set that is defined using a p-time relation R, the
sequence of computation values R(x, y1), R(y1, y2), . . ., R(yt−1, yt) where t
is O(log |x|), is uniquely defined. Note that just because we can recognize
that R(x, y1) holds in p-time does not imply that there is a p-time func-

3



tion which computes y1 from x, even if y1 is polynomially bounded. This
iteration principle is similar to one considered by Kraj́ıček in the context of
the propositional proof complexity of the surjective pigeonhole principle [15].

ITER(PV , {‖id‖O(1)}) contains PV and is contained in the class Σb
2. We show

that over S 1
2 , mWPHP(ITER(PV , {‖id‖O(1)})) is equivalent to the existence

of a string S < 22nk
that is not iteratively block-recognized by any circuit of

size nk. Hence, this principle over S 1
2 also implies mWPHP(PV ).

Our results can be used to say something either about the likelihood of prov-
ing circuit lower bounds in weaker theories or about the security of RSA
against various kind of attacks. Kraj́ıček and Pudlák [19] (see also Thapen
[28, Lemma 3.15]) have shown that if there is an algorithm witnessing the
injective weak pigeonhole principle for p-time functions (this is contained in
iWPHP(PV ) which allows p-time relations) from a class C satisfying PC = C,
then RSA is vulnerable to attacks from C. We apply Kraj́ıček and Pudlák’s
result to conclude that if S 1

2 proves either of our hard-string principles then
RSA is vulnerable to polynomial time attacks. One can somewhat strengthen
the theory and still obtain results which we believe are open. For example, if
S 2

2 proves our circuit principle, then RSA is vulnerable to attacks computed
in the polynomial closure of polynomial local search. These results rely on the
fact that mWPHP(PV ) implies iWPHP(PV ). It is unknown over S 1

2 whether
sWPHP(PV ) implies iWPHP(PV ), which is why an analogous result does
not follow immediately from Jeřábek’s result. As far as the authors know, it
is open whether RSA is vulnerable to polynomial local search attacks; the
main problem with breaking RSA using such an algorithm would be to find
a neighborhood function which could indicate when one was getting closer
to the message text. We make the observation here though that Hanika [11],
extending work of Ferreira [9], has defined a generalized search class GLS†

which captures the Σb
1-definable multifunctions of S 3

2 . Given that S 3
2 proves

mWPHP(PV ), and so also iWPHP(PV ), it follows from Kraj́ıček and Pudlák
that RSA is vulnerable to attacks from the polynomial closure of GLS†. It
also probably follows that there is some generalization of our circuit iteration
principle corresponding to these search classes for which S 3

2 can prove lower
bounds. Therefore, showing RSA is vulnerable to a polynomial local search
based attack or showing lower bounds for our iteration principle in S 2

2 might
not be much beyond current technology.

As was mentioned earlier, it is known that S 3
2 proves mWPHP(PV ). One could

ask the converse question: if one adds a weak pigeonhole principle to the base
theory, how much induction can one prove? Although we do not exactly answer
this question, we obtain a related result. We consider the injective pigeonhole
principle from |x| + 1 into |x| which we denote by iWPHP∗. We view this
pigeonhole principle as weaker than the usual one since it applies to lengths.
Further, if one has a map from 2x into x, one can easily construct a map
from |x| + 1 into |x|. We show in this paper that S 1

2 + iWPHP∗(Σb
0(Σ

b
i+1)) is
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equivalent to S i
2. From this it can be shown that over S 1

2 if iWPHP∗(Σb
i ) is

equivalent to iWPHP∗(Σb
i+1), then the polynomial hierarchy collapses to the

(i+2)-nd level. In addition to establishing this result, we also extend the hard
string principles described earlier up the bounded arithmetic hierarchy.

The format of the rest of this paper is as follows. In the next section we
summarize the notations and theories to be discussed in the remainder of the
paper. In the third section, we review results concerning the weak pigeon-
hole principle and prove the relation between iWPHP∗ and length-induction.
In the next two sections we state our circuit principles precisely and prove
them equivalent to the surjective and multifunction pigeonhole principles. We
conclude with the RSA-related results.

2 Preliminaries

This paper assumes familiarity with the texts of either Buss [3], Kraj́ıček [17],
or Hájek and Pudlák [10]. For completeness, we review the basic notations
of bounded arithmetic. The specific bootstrapping we are following is that
of Pollett [24], but yields equivalent theories to the ones in the books just
mentioned. The language L2 contains the non-logical symbols 0, S, +, ·, =,
≤, .−, b1

2
xc, |x|, MSP(x, i) and #. The symbols 0, S(x) = x + 1, +, ·, and ≤

have the usual meaning. The intended meaning of x .− y is x minus y if this is
greater than zero and zero otherwise, b1

2
xc is x divided by 2 rounded down,

and |x| is dlog2(x + 1)e, that is, the length of x in binary notation. MSP(x, i)
stands for ‘most significant part’ and is intended to mean bx/2ic. Finally, x#y
reads ‘x smash y’ and is intended to mean 2|x||y|. The original formulations
of bounded arithmetic do not usually include MSP(x, i) and .−, but instead
define them with formulas. One slight advantage to our approach is that one
can define terms in the language to do a limited amount of sequence coding,
which allows us to more directly formulate our principles in the language L2.

The bounded formulas of L2 are classified into hierarchies Σb
i and Πb

i by count-
ing alternations of quantifiers, ignoring sharply-bounded quantifiers, analogous
to the hierarchies Σ0

i and Π0
i of the arithmetic hierarchy. Here sharply bounded

means bounded by a term of the form |t|. Formally, a Σb
0 (Πb

0) formula is one
in which all quantifiers are sharply-bounded. The Σb

i+1 (Πb
i+1) formulas con-

tain the Σb
i ∪ Πb

i formulas and are closed under ¬A, A ⊃ B, B ∧ C, B ∨ C,
sharply-bounded quantification, and bounded existential (universal) quantifi-
cation, where A is Πb

i+1 (Σb
i+1) and B and C are Σb

i+1 (Πb
i+1). The Σb

0(Σ
b
i )

formulas consist of the closure of the Σb
i formulas under Boolean connectives

and sharply-bounded quantification (Hájek and Pudlák [10, Def. V.4.2]). Buss
and Hay [6] show that Σb

0(Σ
b
1) corresponds to the complexity class PNP(log).

For any class of formulas C, define B(C) to be the closure of C under Boolean
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connectives.

The theory BASIC is axiomatized by a finite set of quantifier-free axioms
for the non-logical symbols of L2. The theories considered in this paper are
obtained from BASIC by adding various forms of the induction scheme

A(0) ∧ (∀x)(A(x) ⊃ A(Sx)) ⊃ (∀x)A(t(x)).

C-IND , -LIND (length induction), and -LLIND (length-length induction) are
obtained by taking A ∈ C and t(x) to be x, |x|, and ‖x‖, respectively.

The term Bit(i, w) := MSP(w, i) .− 2 · bMSP(w, i)/2c is the i-th bit of w. The
axiom scheme of Comprehension for A ∈ C (C-COMP) is

(∃w < 2|a|)(∀i < |a|)(A(i, a) ⇔ Bit(i, w) = 1).

Sequences can be defined as ordered pairs in which the first component speci-
fies a block size and the second a concatenation of blocks. The predicate Seq(s)
that is true when s is the code of a sequence can be given a Σb

0-definition. The
function SqBd(a, b) := 2(2a#2b) is a bound on the value of any sequence of
length |b| + 1, each of whose components is < a, and β(b, w) is defined to be
the b-th element of the sequence w. β(b, w) can be defined as a term in our
language, and the basic properties of SqBd and β(b, w) can be proved using
open length induction. We will sometimes use the notation (w)b for β(b, w).
With these terms in hand, we can state the axiom scheme of Replacement for
A ∈ C (C-REPL):

∀x ≤ |a| ∃y ≤ bA(x, y) ⊃
∃w ≤ SqBd(b + 1, a)∀i ≤ |a|

(
β(i, w) ≤ b ∧ A(x, β(i, w))

)
.

The theories Ri
2, S i

2 and T i
2 are obtained from BASIC by adding respectively

the Σb
i -LLIND , Σb

i -LIND , or Σb
i -IND axiom schema. It is known that S i+1

2 ⊇
T i

2 ⊇ S i
2 ⊇ Ri

2 ⊇ S i−1
2 ; Ri

2 (hence S i
2) proves Σb

i -COMP and that S 1
2 + Σb

i+1-
COMP is equivalent to S i

2 [4]; S i
2 proves Σb

0(Σ
b
i )-LIND [4]; and if Ri+1

2 ⊇ T i
2

then the polynomial hierarchy collapses [20, 24].

Buss [3, §3] shows that if one adds new function symbols to S 1
2 for each

polynomial-time function, together with axioms saying how the functions are
recursively defined, one obtains a theory called S 1

2 (PV ) which is conservative
over S 1

2 . For convenience, in this paper it will be assumed that these functions
symbols are available in the language. We let PV denote the set of equa-
tions over terms in the expanded language. We will without further comment
identify Σb

0(PV ) with PV . Among such functions, we will use the following
“bit-manipulation” functions frequently:

(1) LSP(w, i) = x− 2i MSP(x, i) is the i least significant bits of w;
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(2) w[a..b] = LSP(MSP(w, a), b) consists of bits a through b inclusive of w;
(3) β̂(b, n, w) = w[bn..(b + 1)n− 1] is the b-th length n block of bits of w.
(4) vw = 2|w|v + w is the concatenation of the bits of v and w.

We now summarize the notations and types of formulas that will occur fre-
quently in this paper.

Definition 1 n ∈ Log abbreviates ∃z(n = |z|). “Log-bounded” quantifiers are
defined as expected; e.g., ∀n ∈ Log · · · abbreviates ∀n(n ∈ Log ⊃ · · · ).

Definition 2

(1) By ∃≤1x ≤ tA(x) we mean the formula

∀x ≤ t∀x′ ≤ t
(
(A(x) ∧ A(x′)) ⊃ x = x′

)
.

(2) By ∃!x ≤ tA(x) we mean the abbreviation

∃x ≤ tA(x) ∧ ∃≤1x ≤ tA(x).

We assume that the reader is familiar with the usual definition of a circuit.
The predicate Circuit(C, n) is true if C codes a circuit on n variables and
Output(C, i) is the PV -function computing the output of C on input i, where
i represents a number in binary (assume some default value if ∀n¬Circuit(C, n)
or Circuit(C, n) but i ≥ 2n). By abuse of notation, we will frequently write C(i)
for the predicate Output(C, i) = 1. These are straightforward to formulate in
S 1

2 using the sequence coding available there and have appeared before in the
literature, such as in Buss [5].

3 Pigeonhole principles

We begin by defining variants of the pigeonhole principle with the domain and
range parametrized:

iPHP(R)m
n :

∀~z
[
n < m ∧ ∀x < m∃!y < nR(x, y, ~z) ⊃

∃x1, x2 < m∃y < n
(
x1 6= x2 ∧ R(x1, y, ~z) ∧ R(x2, y, ~z)

)]
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mPHP(R)m
n :

∀~z
[
n < m ∧ ∀x < m∃y < nR(x, y, ~z) ⊃

∃x1, x2 < m∃y < n
(
x1 6= x2 ∧ R(x1, y, ~z) ∧ R(x2, y, ~z)

)]
sPHP(R)m

n :

∀~z
[
n < m ∧ ∀x < n∃!y < mR(x, y, ~z) ⊃ ∃y < m∀x < n¬R(x, y, ~z)

]
psPHP(R)m

n :

∀~z
[
n < m ∧ ∀x < n∃≤1y < mR(x, y, ~z) ⊃ ∃y < m∀x < n¬R(x, y, ~z)

]
where R is some predicate. The first three principles are frequently referred to
as the functional, basic, and onto (or dual) principles, respectively. However,
we will refer to these principles as the injective, multifunction, surjective,
and partial surjective principles, as we feel that these names more directly
convey the intended meanings. The scheme psPHP is essentially Thapen’s
alternative definition of the surjective principle that states that there is no
surjection from a subset of n onto m [28, Definition 3.1(4)] and is equivalent
to mPHP as we will note below. When we wish to refer to one of the schemes
without concern for which one, we shall refer to vPHP(R)m

n , where v = i, m,
s, or ps. For a set of predicates C the notation vPHP(C)m

n will be used for
the class of formulas vPHP(R)m

n where R ∈ C. The notation vWPHP(R) will
be used for ∀n vPHP(R)n2

n and similarly for vWPHP(C). When C = FP , we
understand the relations to range over the equations f(x, ~z) = y for f is a PV -
function symbol. In this situation, the injective and multifunction principles
are equivalent, as are the surjective and partial surjective principles. We now
make a few observations about the relations between the various principles.

Proposition 3 The following inclusions and equivalence of theories hold over
BASIC for any class of formulas C:

(1) sPHP(B(C))m
n ⊇ psPHP(C)m

n ⊇ sPHP(C)m
n .

(2) iPHP(B(C))m
n ⊇ mPHP(C)m

n ⊇ iPHP(C)m
n .

(3) psPHP(C)m
n ≡ mPHP(C)m

n .

In particular, if C is closed under Boolean connectives then the schemes vPHP(C)m
n

are all equivalent for v = i, m, s, or ps.

PROOF. Most of the inclusions are immediate; for example, if R(x, y,~b) is
a graph of a surjection from n onto m > n, then it is the graph of a partial
surjection, and if R(x, y,~b) is the graph of an injective multifunction x 7→ y
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from m into n < m, then R(y, x,~b) is the graph of a partial surjective function

y 7→ x from n onto m. For the first inclusion of (1), suppose that R(x, y,~b) ∈ C
is a graph of a partial surjection from n onto m > n. Define R∗(x, y, ~z) to hold
if R(x, y, ~z) ∨ (¬R(x, y, ~z) ∧ y = 0). Then R∗ is a Boolean combination of

C-predicates and R∗(x, y,~b) is the graph of a surjection from n onto m. For the
first inclusion of (2), if R(x, y, ~z) ∈ C is a graph of an injective multifunction,

then R(x, y,~b) ∧ ∀y′ < y¬R(x, y′,~b) is a graph of an injective function that is
in B(C).

Proposition 4 BASIC + sWPHP(Πb
i ) ⊇ BASIC + sWPHP(Σb

i ).

PROOF. Suppose R(x, y) is a Σb
i graph of a surjection f from 2n onto 22n

for some n ∈ Log with R0 ∈ PV . Let R′(x, y) be the Πb
i predicate ∀y′ <

22n(R(x, y′) ⊃ y′ = y). Suppose x < 2n, y < 22n, and R(x, y); we will show
R′(x, y) as well. Take any y′ < 22n such that R(x, y′). Then since R is the
graph of a function when restricted to domain 2n and range 22n, it must be
that y′ = y. Now suppose that in addition R′(x, y1) for some y1 < 22n. Since
y < 22n and R(x, y), we have that y = y1. In other words, if x < 2n and y < 22n,
then R(x, y) holds iff R′(x, y) does. So R′ is a Πb

i graph of a surjection from 2n

onto 22n.

Proposition 5 S 1
2 proves

∀n∀m ∈ Log
(

vPHP(∀i < mR(β̂(i, n, x), β̂(i, 2n, y), ~z))(mn)2

mn ⊃ vPHP(R)n2

n

)
.

PROOF. We’ll prove the proposition just for the case v = ps. Let n,m ∈
Log and suppose R(x, y,~b) is the graph of a partial surjection f from 2n

onto 22n, where ~b is a list of fixed parameters. Let R′(x, y,~b) be the predicate

∀i < m R(β̂(i, n, x), β̂(i, 2n, y),~b). We want to show that R′(x, y,~b) is the

graph of a partial surjection from 2mn onto 22mn. If R′(x, y1,~b) and R′(x, y2,~b),
then by induction on i < m show that β̂(i, 2n, y1) = β̂(i, 2n, y2) using the

fact that R(x, y,~b) is the graph of a partial function; conclude y1 = y2. To
show surjectivity, given y we use PV -REPL and surjectivity of f to obtain a
sequence w of length-n strings such that for all i < m R(β(i, w), β̂(i, 2n, y));
we then define x to be the concatenation of the strings in w by PV -COMP .

Proposition 6 For each pigeonhole variant v = m, s, i, the theory S 1
2 (R)

proves that vPHP(Σb
1(R))n2

n ⊃ vPHP(R)2n
n ,
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PROOF. (Sketch) The basic idea of the proof for S 1
2 (R) is to show ¬vPHP(R)2n

n ⊃
¬vPHP(Σb

1(R))n2

n . To do this in each case one iterates |n| times the 2n into n
function or multifunction (or n onto 2n function) violating vPHP(R)n2

n .

It is unknown whether mPHP(Σb
1)

m
n is equivalent to vPHP(Σb

1)
m
n over S 1

2

for v = s or i. Paris et al. [23] showed that S2 ` iWPHP(∆0), where ∆0

is the class of bounded formulas, and a variation on that proof shows that
T i+2

2 ` iWPHP(Σb
i ) for i ≥ 1. Maciel et al. [21] have sharpened this to show

that T 2
2 (R) ` mWPHP(R) and hence T 2

2 ` mWPHP(PV ) and in particular
T 2

2 ` sWPHP(PV ).

Turning to the relation between bounded arithmetic and the polynomial hi-
erarchy, Kraj́ıček et al. [20] have shown if S i+1

2 = S i+2
2 , then the polynomial

hierarchy collapses to the (i + 3)-rd level. We next show that a similar re-
sult can be had for theories based on weak pigeonhole principles. For theories
such as S i

2 that are based on length-induction, it is reasonable to consider pi-
geonhole principles where the numbers involved are lengths. Let iWPHP∗(R)

be ∀n iPHP(R)
|n|+1
|n| , and define mWPHP∗(R) similarly; let iWPHP∗(C) and

mWPHP∗(C) be the obvious extensions to classes of formulas.

Proposition 7 For i ≥ 1, S 1
2 + mWPHP∗(Σb

0(Σ
b
i )) ⊆ S i

2.

PROOF. Suppose A is Σb
0(Σ

b
i ) and ¬mWPHP(A)

|n|+1
|n| . By Σb

0(Σ
b
i )-COMP

define w < 2(|n|+1)|n| so that ∀x < |n|+1∀y < |n| (A(x, y) ⇔ Bit(x |n|+y, w) =
1). Let R(x, y, z, m) be the predicate that is true when |z| = (m + 1)m and
Bit(xm + y, z) = 1. Then R(x, y, w, |n|) is a PV -relation with parameters
that is the graph of an injective multifunction from |n| + 1 into |n|. But

S 1
2 ` mWPHP(PV )

|n|+1
|n| (for example, Cook and Reckhow’s proof [8] is easily

formalized), so this is a contradiction.

Proposition 8 For i ≥ 1, S i
2 ⊆ S 1

2 + iWPHP∗(B(Σb
i )).

PROOF. Suppose that A is Σb
i , A(0) and ∀x(A(x) ⊃ A(x + 1)) hold, but

¬A(|b|) for some b. Define R(x, y) to hold if

(∀x′ ≤ |b| (x′ ≤ x ⊃ A(x′)) ∧ y = x) ∨
(∃x′ ≤ |b| (x′ ≤ x ∧ ¬A(x′)) ∧ y = x− 1).

Then R(x, y) is the graph of a function from |b|+1 into |b|. By iWPHP∗(B(Σb
i ))

there must be x1 < x2 and y such that R(x1, y) and R(x2, y). Chasing the
definition of R, it must be that for all x′ ≤ x1 A(x′) holds and there is x′′ ≤ x2

such that A(x′′) fails. From the former we have that y = x1 and from the
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latter y = x2 − 1, so x2 = x1 + 1. Since A(x′) holds for all x′ ≤ x1 and there is
x′′ ≤ x2 = x1 + 1 such that A(x′′) fails, it must be that A(x2) fails. But then
A(x1) holds but A(x1 + 1) does not, contradicting our assumption.

Combining Propositions 7 and 8 with Proposition 3 yields the following result:

Theorem 9 For i ≥ 1, S 1
2 + vWPHP∗(Σb

0(Σ
b
i )) ≡ S i

2 for v = s, ps, i, or
m. In particular, if S i

2 ` vWPHP∗(Σb
0(Σ

b
i+1)) for some v, then the polynomial

hierarchy collapses to the (i + 2)-nd level.

4 The partial surjective pigeonhole principle and block-recognition

Jeřábek [12] shows that over S 1
2 , the surjective weak pigeonhole principle is

equivalent to the claim that there is a string of length n that is hard for circuits
with codes of length n − 1. The following can be shown to be equivalent to
Jeřábek’s result; the main difference is the notation, which here corresponds
to the notation we will use for our later results:

Theorem 10 (Jeřábek [12, Lemma 3.2, Proposition 3.5]) Over S 1
2 , the scheme

sWPHP(FP) is equivalent to

∀n ∈ Log∃S < 2n∀C < 2n−1∃i < n
(

Circuit(C, |n|) ⊃ Output(C, i) 6= Bit(i, S)
)

We begin by giving modified versions of Jeřábek’s results for relational versions
of the partial surjective weak pigeonhole principle. Before getting to the precise
formulation of the result, let us consider what kind of circuit principle we
should expect. In one direction, the weak pigeonhole principle fails, and we
wish to take advantage of having the graph of a partial surjection from 2n

onto 22n in hand. Jeřábek has a function f represented by some circuit, which
he iterates to amplify into a surjection from 2n onto 22rn for appropriate r
which he then uses to show that every large string can be computed by some
small circuit. In the relational case, since we have the graph of f , we are
given x and y as input and can recognize when f(x) = y, but not necessarily
compute f itself. Thus instead of expecting to compute the bits of a very
large string S, we expect to be able to recognize length-n blocks of S. This
will be our circuit principle: one that formulates that the circuit recognizes
each length-n block of S (as opposed to each bit, which would essentially be
computing S). For the other direction (that we can prove our circuit principle
from a weak pigeonhole principle), we want to apply the pigeonhole principle
to a statement that associates to every circuit C the unique string S that C
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block-recognizes. Unfortunately, there is not necessarily such a unique string.
But what is the case is that any circuit block-recognizes at most one string,
and hence our “no partial surjection” formulation of the pigeonhole principle
will be adequate.

Definition 11 Let C be a circuit on |dm/ne|+n input variables. We say that
C n-block-recognizes S < 2m if for all i < dm/ne and s < 2n, C(i, s) is true
iff s = β̂(i, n, S).

The predicate Fits(C, S,m, n) says that C(·, ·) has the right shape for n-block-
recognizing S < 2m: Circuit(C, |dm/ne|+ n) ∧ S < 2m.

Let BlockRec(C, S,m, n) be the formula that says C n-block-recognizes S <
2m:

Fits(C, S,m, n) ∧ ∀i < dm/ne
(
∃≤1s < 2nC(i, s) ∧ C(i, β̂(i, n, S))

)
.

Note that BlockRec(C, S,m, n) is Πb
1.

Proposition 12 S 1
2 + psWPHP(Πb

1) proves the following principle for k =
0, 1, . . . :

∀n ∈ Log∃S < 22nk∀C < 2nk¬BlockRec(C, S, 2nk, n).

PROOF. ∀C < 2nk∃≤1S < 22nk
BlockRec(C, S, 2nk, n) is provable in S 1

2 by
length induction on the bits in each block of the string, then on the blocks.
The proposition now follows from psWPHP(Πb

1).

The use of k here is not a triviality just because nk is a length when n is.
Specifically, one might be tempted to restate the result for only k = 1, in
which case one obtains

S 1
2 + psWPHP(Πb

1) `
∀n ∈ Log∃S < 22n∀C < 2n¬BlockRec(C, S, 2n, n). (∗)

However, because n is used to specify the sizes of the blocks, this statement
does not imply the one in Proposition 12. Consider trying to prove it implies
the statement in the proposition. Assume that for some n ∈ Log every S < 22nk

is n-block-recognized by some circuit (code) < 2nk
. Since n is a lengths, so is

nk. However, to conclude that (∗) fails for nk ∈ Log we would need a circuit
code C ′ < 2nk

that nk-block recognizes S; it is not obvious how to construct
such a circuit from the one that we are given that n-block recognizes S.

As a corollary to the proof of Proposition 12, we have the following result:

12



Proposition 13 S 1
2 + psWPHP(FP) proves the following principle for k =

0, 1, . . .:

∀n ∈ Log∃S < 22nk∀C < 2nk¬BlockRec(C, S, 2nk, |n|).

PROOF. The same argument applies, but now we note that the condition
on C is PV because the quantifiers in the uniqueness criterion are sharply
bounded, so psWPHP(PV ) applies. But then this condition defines a PV -
function, so only the functional version of psWPHP is needed.

Lemma 14 ([17, Lemma 9.2.2]) Let R(x0, . . . , xk−1) be a PV -relation. Then
there is a polynomial p such that

S 1
2 ` ∀~m ∈ Log∃C < 2p(~m)[Circuit(C, m0 + · · ·+ mk−1) ∧

∀x0 < 2m0 . . . xk−1 < 2mk−1(C(~x) ⇔ R(~x))].

Theorem 15 Let T be the theory obtained from S1
2 by adding the axioms

∀n ∈ Log∃S < 22nk∀C < 2nk¬BlockRec(C, S, 2nk, n)

for k = 0, 1, . . . . Then T proves psWPHP(Σb
1).

PROOF. It suffices to argue in S 1
2 that if there is a Σb

1-relation R(x, y, ~x′)

and parameters ~b such that R(x, y,~b) is the graph of a partial surjection f(x)
from 2n onto 22n for some n ∈ Log , then ∀S < 22nk∃C < 2nk

BlockRec(C, S, 2nk, n).
By taking m = max{1, dmaxi{|bi|}e /n} in Proposition 5 we can assume
|bi| ≤ n for each i. Note that even if we were to assume that f were to-
tal, we would not be able to assume there is a function symbol for f , since we
do not have that S 1

2 proves that R(x, y,~b) is the graph of a function.

Say that R has the form ∃z < 2p(|x|,|y|,|~x′|)R0(x, y, ~x′, z) where R0 is PV and
set p′(n) = p(n, 2n, n, . . . , n). Using Lemma 14, let C0 be a code of a circuit on
variables x0, . . . , xn−1, y0, . . . , y2n−1, z0, . . . , zp′(n) that outputs 1 exactly when
R0(x, y, z) holds (here, Bit(i, x) = xi, etc.). In more detail, C0 is obtained from
the circuit that computes R0 with n bits for input x, 2n bits for input y, the
bits for the parameters ~x′ fixed to the bits of ~b (all of which have length ≤ n),
and the corresponding number of bits for z. Let q(n) be a polynomial bound
on the length of C0. We will use C0 to construct circuits Gi(u, x, y, w) where
u < 2i, x, y < 2n, and w is a sequence of length i, each of whose elements has
size bounded by 2n + p′(n). Gi is intended to represent a surjection from 2n

onto 22in by repeatedly applying f to x and taking the left- or right-half of
the result according to the bits of u. Our final circuit C will be obtained by
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fixing i and “hard-coding” w. Specifically, the predicate computed by Gi is
defined as follows:

G0(u, x, y, w) :=(u = 0) ∧ (x = y)

Gi+1(u, x, y, w) :=u < 2i+1 ∧
Gi

(
LSP(u, i),

cond(Bit(i, u), w[n..2n− 1], w[0..n− 1]),

y, MSP(w, 2n + p′(n))
)
∧

C0(x, w[0..2n− 1], w[2n..2n + p′(n)− 1]).

where cond(a, c, d) is either c or d as per whether a = 0 or a = 1. Formally, we
are defining a function Ḡ(i), where Ḡ(i) is the code of the circuit computing the
predicate Gi; Ḡ(i + 1) is defined recursively from the code returned by Ḡ(i).
Thus, when we write Gi(u, x, y, w), we really mean Output(Ḡ(i), u, x, y, w).
Following Jeřábek, if r = ‖z‖ for some z and i < r, then Gi(u, x, y, z) is
Σb

1-definable and we can prove

(1) For any S < 22rn,

∃e < SqBd(n, 22r−i

)∃w < SqBd(i(2n + p′(n)), 22r−i

)

∀u < 2i∀v < 2r−iGi(u, (e)v, β̂(2iv + u, n, S), (w)v).

Since r = ||z|| and i ≤ r, this predicate is Σb
1. This is a surjectivity claim

about how we are iterating our partial function and is best explained by
an example. Take i = 3. The n-bit blocks of S are identified by numbers
of the form 23v + u for some v < 2r−3 and u < 23. The claim says that
there is a sequence e of 2r−3 n-bit blocks such that for each v and u, if we
start with (e)v, apply f , take the left- or right-hand side as per Bit(2, u),
apply f again and take a side as per Bit(1, u), apply f again and take
a side as per Bit(0, u), we obtain the (23v + u)-th n-bit block of S. The
sequence w captures all of the intermediate witnesses needed for the graph
of f . In particular, taking i = r we have that

∃e < 2n∃w < 2r(2n+p′(n))∀u < 2rGr(u, e, β̂(u, n, S), w).

(2)

∀i∀u < 2i+1∀e < 2n∀y, y′ < 22n∀w, w′ < 2i(2n+p′(n))[

(Gi(u, e, y, w) ∧ Gi(u, e, y′, w′)) ⊃ y = y′].

In words, our iteration of f results in a partial function.
(3) The size of Gi is O(iq(n)).

The difficult claim is (1), which we prove here by length-induction on i ≤ r.
For i = 0, take (e)v = β̂(v, n, S). Suppose the claim is true for i. Let e′
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and w′ be the sequences given by the induction hypothesis. Since we have
a (partial) surjection, for each v < 2r−i there are (e)v and (w∗)v such that
C0((e)v, (e

′)2v(e
′)2v+1, (w

∗)v). Set (w)v = (w′)v(w
∗)v(e

′)2v(e
′)2v+1. e and w are

definable by Σb
1-replacement. Fix u < 2i+1 and v < 2r−i−1. Set u′ = LSP(u, i) <

2i and v′ = 2v + Bit(i, u) < 2r−i. By the induction hypothesis we have that
Gi(u

′, (e′)v′ , β̂(2iv′ + u′, n, S), (w′)v). Since 2iv′ + u′ = 2iv + u, we really have
that Gi(u

′, (e′)v′ , β̂(2iv + u, n, S), (w′)v). Suppose that Bit(i, u) = 0. To show
the claim, we must show that C0((e)v, (e

′)2v(e
′)2v+1, (w

∗)v), which we have
by assumption, and Gi(u

′, (w)v[n..2n − 1], β̂(2iv + u, n, S), MSP((w)v, 2n +
p′(n))). Chasing the definition of w, this is the same as Gi(u

′, (e′)2v, β̂(2iv +
u, n, S), (w′)v). Since v′ = 2v + Bit(i, u) = 2v in this case, this is the same
as showing Gi(u

′, (e′)v′ , β̂(2iv + u, n, S), (w′)v), which is just the induction hy-
pothesis. The case when Bit(i, u) = 1 is similar.

The base case for (2) is trivial. For the induction step, if Gi+1(u, e, y, w)
and Gi+1(u, e, y′, w′), then by definition C0(e, w[0..2n− 1], w[2n..2n + p′(n)−
1]) and C0(e, w

′[0..2n − 1], w′[2n..2n + p′(n) − 1]). Thus there are z and z′

such that R0(e, w[0..2n− 1], z) and R0(e, w
′[0..2n− 1], z′), which implies that

R(e, w[0..2n− 1]) and R(e, w′[0..2n− 1]). But since R is the graph of a partial
function it must be the case that w[0..2n− 1] = w′[0..2n− 1]. The induction
hypothesis now applies to conclude that y = y′ and MSP(w, 2n + p′(n)) =
MSP(w′, 2n + p′(n)) and hence that w = w′.

Now fix a constant k and let r =
∣∣∣2knk−1

∣∣∣ = (k−1) |n|+1, so that 2rn ≥ 2nk.

Then as we just showed, for each S < 22rn there are (provably in S 1
2 ) eS and wS

such that Gr(·, eS, ·, wS) n-block-recognizes S. For each S and r such that S <
22rn let CS

r (i, s) = Gr(i, eS, s, wS). For convenience, take ` such that q(n) ≤ n`

(we can assume n > 1). The size of CS
r is then ≤ c((k−1) |n|+1)n` ≤ c′kn`+1

for some c and c′. Furthermore, any circuit of size m can be given a code of
length ≤ 2m(|m|+ 1). Thus, if we take k large enough so that

nk ≥ 4(c′)2k2n2`+2 ≥ 2c′kn`+1(
∣∣∣c′kn`+1

∣∣∣ + 1),

then for any S < 22nk
we have that CS

(k−1)|n|+1 < 2nk
is the code of a circuit

that n-block recognizes S.

Let HardString(n, k) abbreviate

∃S < 22nk∀C < 2nk¬BlockRec(C, S, 2nk, n).

To summarize, Proposition 12 and Theorem 15 yield the following:
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Theorem 16 The following inclusions of theories holds:

S 1
2 + psWPHP(Πb

1) ⊇
S 1

2 + {∀n ∈ Log HardString(n, k)}k≥0 ⊇
S 1

2 + psWPHP(Σb
1).

The surjective pigeonhole principle

Obtaining a similar result for the surjective pigeonhole principle is more prob-
lematic than the partial surjective one. On the one hand, the proof of The-
orem 15 carries through if one assumes that one has a surjection from 2n

onto 22n that has a Σb
1 graph. However, if we wish to have a total function

that maps circuits C to the string that C recognizes if there is one and, say,
0 otherwise, we end up applying sWPHP to the (provable in S 1

2 ) claim

∀C < 2nk∃!S < 22nk
[
BlockRec(C, S, 2nk, n) ∨(

(¬Fits(C, S, 2nk, n) ∨ ∃i < 2nk−1¬∃!s < 2nC(i, n, s)) ∧ S = 0
)]

.

Since BlockRec(C, S, 2nk, n) is Πb
1 and ∃i < 2nk−1¬∃!s < 2nC(i, n, S) can be

rewritten as a disjunction of a Πb
1 and Σb

1 formula, the predicate in brackets
belongs to B(Σb

1). Summarizing this discussion, we have:

Theorem 17 The following inclusions of theories holds:

S 1
2 + sWPHP(B(Σb

1)) ⊇
S 1

2 + {∀n ∈ Log HardString(n, k)}k≥0 ⊇
S 1

2 + sWPHP(Σb
1).

Relativization

These results can be relativized in the following way. Expand the language L2

with a new second-order predicate symbol α(~x). For each class of formulas C
define C(α) to be the analogous class but where we allow atomic formulas
of the form α(~t) to occur. By allowing the appropriate form of induction
now for Σb

i (α)-formulas, one can define the theories Ri
2(α), S i

2(α), and T i
2(α)

(see Kraj́ıček [17] for more details). For a function class FC defined from an
initial set of functions and closure under composition as well as some kind
of recursion, we denote by FC(α) the class obtained by adding α(x) as a 0-1
valued function to the initial set of functions. One can also define circuits with
new gates of type Aj1,...,jn , in addition to AND, OR, and NOT that were used
before. A gate of type Aj1,...,jn takes

∑n
i=1 ji inputs. To evaluate this gate with
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respect to a given setting of these input values and with respect to the second
order variable α, one feeds into the k-th input slot of α the value xk output
from the jk inputs starting from input

∑k−1
i=1 ji. In S 1

2 (α) one can define and
reason about the predicates CircuitA(C, |n|) and OutputA(C, α, i) which now
allow circuits with the new gate types, Aj1,...,jn . Given the above definitions
we can state a relativized versions of Jeřábek’s result as:

Theorem 18 Over S 1
2 , the scheme sWPHP(FP(α)) is equivalent to

∀n ∈ Log∃S < 2n∀C < 2n−1∃i < n
(

CircuitA(C, |n|) ⊃ OutputA(C, α, i) 6= Bit(i, S)
)

The proof is essentially the same as in the unrelativized case. By defining
relativized versions of our other formulas such as BlockRec and Compute, we
can obtain by essentially the same proofs the following variants of our earlier
results:

Theorem 19 The following inclusions of the theories holds:

S 1
2 (α) + psWPHP(Πb

1(α)) ⊇
S 1

2 (α) + {∀n ∈ Log HardStringA(n, k, α)}k≥0 ⊇
S 1

2 (α) + psWPHP(Σb
1(α))

and

S 1
2 (α) + sWPHP(B(Σb

1(α))) ⊇
S 1

2 (α) + {∀n ∈ Log HardStringA(n, k, α)}k≥0 ⊇
S 1

2 (α) + sWPHP(Σb
1(α)).

Kraj́ıček [16] shows that S 2
2 (α) does not prove iWPHP(α) and Riis [27] gives a

general condition on formulas with undefined predicates symbols which implies
S 2

2 (α) does not prove sWPHP(α). Either result yields the following corollary:

Corollary 20 The theory S 2
2 (α) does not prove ∀n ∈ Log HardStringA(n, k, α)

for all k = 0, 1, . . .:

Another use for developing relativized variants of the results of this paper is
to extend some of these results up into higher levels of the bounded arithmetic
hierarchy. Hájek and Pudlák [10, Thm. 4.18] show that for i ≥ 1, there is a
“universal” Σb

i formula Ui with the property that for any Σb
i -formula A(x)

there is a numeral eA such that S 1
2 ` A(x) ≡ Ui(eA, x, 2|x|

eA ). It follows that
S i+1

2 is equivalent to S 1
2 (Ui). Thus as corollaries of Theorems 18 and 19 we

get:
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Corollary 21 Over S i+1
2 , the scheme sWPHP(FP(Σb

i )) is equivalent to the
scheme

∀n ∈ Log∃S < 2n∀C < 2n−1∃i < n
(

CircuitA(C, |n|) ⊃ OutputA(C, Ui, i) 6= Bit(i, S)
)

Corollary 22

S i+1
2 + psWPHP(Πb

i+1) ⊇
S i+1

2 + {∀n ∈ Log HardStringA(n, k, Ui)}k≥0 ⊇
S i+1

2 + psWPHP(Σb
i+1)

and

S i+1
2 + sWPHP(B(Σb

i+1)) ⊇
S i+1

2 + {∀n ∈ Log HardStringA(n, k, Ui)}k≥0 ⊇
S i+1

2 + sWPHP(Σb
i+1).

5 The multifunction pigeonhole principle and iteration

In this section, we explore connections between the multifunction weak pi-
geonhole principle and hardness of circuit iteration principles. To begin our
discussion we consider a way to define a class of formulas from an existing
class of formula via iteration.

Definition 23 Given a class C of formulas and a set τ of terms, ITER(C, τ)
consists of formulas of the form

Iter(R,B,E, z1, . . . , zn, s, t) :=

∃w ≤ SqBd(s, 2min(t+1,|r|))Comp(R,B,E,w, ~z, s, t)

where R(i, u, v, ~z) ∈ C, r, B(~z) and E(~z) are terms, t ∈ τ , and Comp(R,B,E,w, ~z, s, t)
is

Seq(w) ∧ Len(w) = t + 2 ∧

∀i ≤ t
(
β(i, w) ≤ s ∧ R(i, β(i, w), β(i + 1, w), ~z) ∧

∀v ≤ s(R(i, β(i, w), v, ~z) ⊃ v = β(i + 1, w))
)
∧

β(0, w) = B(~z) ∧ β(t + 1, w) = E(~z).
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It is permissible that R not depend on all of the variables ~z; when this is a case
for a specific R (such as Out, in Definition 26), we will omit mention of the
unused variables. Formally we should declare the parameters upon which R
depends and rewrite Comp to list only those parameters, but we will instead
informally refer to R “depending” on zi or not (and similarly for B and E).

The predicate Iter is related to a predicate studied by Kraj́ıček [15] in the
context of propositional proof complexity. Where it is clear that a suitable
r can be found so that t + 1 < |r| then, we will sometimes just write 2t+1

for 2min(t+1,|r|). The latter form is introduced only because the exponential
function is not necessarily total in bounded arithmetic theories. The intuition
behind Iter(R,B,E, ~z, s, t) is that it verifies that there is a (t + 1)-stepped
computation from initial value B(~z) to final value E(~z) each step of which
follows uniquely from the previous according to R. The values at each step
are bounded by s. It should be observed that if s is of polynomial length then
the ability to verify in p-time that a string for the (i + 1)-st step follows from
a string for i-th step does not entail that there is a p-time function computing
the (i + 1)-st step from the i-th step. The second universal clause in Comp
above is used to check at each step of the computation there is a unique next
value for R.

Write {‖id‖O(1)} for the set of terms of the form ‖t‖m for some term t and
some fixed number m in the language. The following lemmas establish the
basic properties of ITER(C, τ).

Lemma 24

(1) The theory S 1
2 proves that ITER(PV , {‖id‖O(1)}) contains the PV predi-

cates.
(2) For R(i, u, v, j, ~z) ∈ PV , any terms B(j, ~z) and E(j, ~z), and any term

h(~z), there is R∗(i, u, v, ~z) ∈ PV and terms B∗(~z) and E∗(~z) such that
S 1

2 proves

∀j ≤ |h(~z)| Iter(R,B,E, j, ~z, s, ‖t‖m) ⇔
Iter(R∗, B∗, E∗, ~z, s(|h|+ 1), ‖t‖m).

In other words, ITER(PV , {‖id‖O(1)}) is closed under sharply bounded
universal quantification.

PROOF. (1) Suppose R(~z) is a PV predicate. Consider the predicate R∗(i, a, b, ~z)
defined as

(i = i ∧ a = 0 ∧ b = 0 ∧ R(~z)).

Then Iter(R∗, 0, 0, ~z, 1, ‖t‖m) will compute the same predicate as R(~z) (re-
gardless of t).
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(2) Let R∗(i, u, v, ~z) be the predicate

u ≤ SqBd(s, 2|h|) ∧ v ≤ SqBd(s, 2|h|) ∧ Seq(u) ∧ Seq(v) ∧
∀j ≤ |h|R(i, β(j, u), β(j, v), j, ~z).

Let B∗(~z) be the term 〈B(0, ~z), . . . , B(|h| , ~z)〉 and E∗(~z) be 〈E(0, ~z), . . . , E(|h| , ~z)〉
(since these are computable in polynomial time from ~z, they are terms in
our language). The reverse direction of the claim is straightforward: for each
j ≤ |h(~z)|, use the j-th “section” of the sequence given by the right-hand side.
For the forward direction, assume the left-hand side holds. Then in particular

∀j ≤ |h(~z)| ∃w ≤ SqBd(s, 2t+1)
[
Seq(w) ∧ Len(w) = t + 2 ∧

∀i ≤ t
(
β(i, w) ≤ s ∧ R(i, β(i, w), β(i + 1, w), ~z)

)
∧

β(0, w) = B(~z) ∧ β(t + 1, w) = E(~z)
]
.

Since t is sharply bounded the predicate in brackets is PV and so by PV -
REPL there is a sequence W such that for every j ≤ |h(~z)| the predicate in
brackets holds with w replaced by β(j, W ). Let W ∗ be the sequence defined by
β(i, W ∗) = 〈β(i, β(0, W )), . . . , β(i, β(|h(~z)| , W ))〉. That W ∗ is a sequence of
computations from B∗(~z) to E∗(~z) along R∗ follows from the definition of W .
The uniqueness criterion is proved by showing that for any j ≤ |h(~z)|, β(j, W )
is identical to the w given by the right-hand side; this is proved by induction
on t using the uniqueness criterion for w.

Lemma 25 S 1
2 proves Uniq(‖t‖m) for fixed m where Uniq(a) is the formula

Comp(R,B,E1, w1, ~z, s, a) ∧ Comp(R,B,E2, w2, ~z′, s, a) ⊃
w1 = w2 ∧ E1 = E2

where z′i = zi if R or B depends on zi.

PROOF. Suppose w1 and w2 are such that Comp(R,B,E1, w1, ~z, s, a) ∧
Comp(R,B,E2, w2, ~z′, s, a). Then by the definition of Comp one has for each
i ≤ a that β(i, w1) = β(i, w2). From this condition, using PV -LIND it is
straightforward to get w1 = w2.

Definition 26

(1) Let Out(i, u, v, b, C) be the predicate that is true when C is a circuit on
|i|+ |u|+ |v|+ |b| variables and C(i, u, v, b) is true.

(2) For k a natural number, let IterBlockRec(C, S, c, n, k, t) be

∀b < nk−1
(
Iter(Out , c, β̂(b, 2n, S), b, C, c, S, 2|c|, t)

)
.
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By Lemma 24, this is an iteration predicate. Note that Out depends only
on the parameters b and C.

(3) Let CompOutput(w, C, S, c, b, n, t) be

Comp(Out , c, β̂(b, 2n, S), w, b, C, c, S, 2|c|, t)

so that IterBlockRec(C, S, c, n, k, t) is

∀b < nk−1∃w ≤ SqBd(2|c|, 2t+1)
(
CompOutput(w, C, S, c, b, n, t)

)
.

Theorem 27 For ‖t‖j in {‖id‖O(1)}, the theory S 1
2 +mWPHP(ITER(PV , {‖id‖O(1)}))

proves the following principle for k = 2, 3, 4, . . .

∀n ∈ Log∃S < 22nk∀C < 2nk−2n∀c < 22n¬IterBlockRec(C, S, c, n, k, ‖t‖j).

The use of two separate variables C and c is a notational convenience: we
could replace them by a single variable C ′ of size 2nk

and use MSP and LSP
to obtain values for these two variables.

PROOF. Reason in S 1
2 and suppose that

∃n ∈ Log∀S < 22nk∃C < 2nk−2n∃c < 22n
[

∀b < nk−1∃w ≤ SqBd(22n, 2‖t‖
j+1)CompOutput(w, C, S, c, b, n, ‖t‖j)

]
.

Using Lemma 24, the expression in square brackets is equivalent in S 1
2 to an

ITER(PV , {‖id‖O(1)}) predicate. Fix n. So by mWPHP(ITER(PV , {‖id‖O(1)}))
there are S1 6= S2 < 22nk

, C < 2nk−2n, c < 22n such that

∀b < nk−1∃w ≤ SqBd(22n, 2‖t‖
j+1)

(
CompOutput(w, Si, C, c, b, n, ‖t‖j)

)
for i = 1, 2. Fix any b < nk−1. By Lemma 25, there is a unique pair (w, v)
such that Comp(Out , c, v, w, b, C, c, Si, 2

|c|, ‖t‖j) for i = 1, 2 (note that Out
does not depend on Si), and so we conclude that for each b < nk−1 we have
β̂(b, 2n, S1) = β̂(b, 2n, S2). In other words, the b-th blocks of S1 and S2 are
equal. Since b was chosen arbitrarily, all blocks of S1 and S2 are the same. By
induction on the number of blocks, one shows that this implies that S1 = S2,
a contradiction.

Theorem 28 Let T be the theory S 1
2 extended by the axioms

∀n ∈ Log∃S < 22nk∀C < 2nk−2n∀c < 22n¬IterBlockRec(C, S, c, n, k, ‖t‖j).

for each k > 1, ‖t‖j in {‖id‖O(1)}. Then T proves mWPHP(PV ).
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PROOF. Assume that R(x, y, ~x′) is a PV -formula such that for the values
~b′, R(x, y, ~b′) is the graph of an injective multifunction from 22n into 2n. By
Proposition 5 we can assume |bi| ≤ n for each i. Let r be some term we will

describe in a moment and define Amp ′(S, j, ||r||, n, w, ~b′) to be the conjunction
of the following statements:

(1) S < 22‖r‖n;
(2) w is a sequence of length j + 1;
(3) For 0 ≤ i ≤ j, β(i, w) is a sequence of length 2‖r‖−i;
(4) For 0 ≤ i ≤ j and 0 ≤ ` < 2‖r‖−i, |β(`, β(i, w))| ≤ 2n;
(5) For 0 ≤ ` < 2‖r‖, β(`, β(0, w)) = β̂(`, 2n, S);
(6) For 0 ≤ i ≤ j and 0 ≤ ` < 2‖r‖−i−1,

R(β(2`, β(i, w)), MSP(β(`, β(i + 1, w)), n), ~b′);

(7) For 0 ≤ i ≤ j and 0 ≤ ` < 2‖r‖−i−1,

R(β(2` + 1, β(i, w)), LSP(β(`, β(i + 1, w)), n), ~b′).

In other words, w is a “trapezoid” with j +1 rows. The first row is the length-
2n blocks of S and the (i + 1)-st row is obtained by using R to “compress”
each element of the i-th row to a length-n block and then joining each pair of
adjacent blocks.

Let Amp(S, j, ‖r‖ , n, ~b′) be the predicate

∃w ≤ SqBd(SqBd(22n, 22‖r‖−1), 2‖r‖)Amp ′(S, j, ‖r‖ , n, w, ~b′).

So Amp is (equivalent to) a Σb
1 formula over BASIC . By Σb

1-LLIND on j one

can show that ∀j ≤ ‖r‖Amp(S, j, ‖r‖ , n, ~b′); for the induction step one just
adds the next row of the trapezoid, which is obtained by PV -REPL.

Now let r be a term such that ‖r‖ = (k−1) |n|+1 so that 2‖r‖n ≥ 2nk, fix S <

22nk
, and let w be the trapezoid (now a “triangle”) witnessing Amp(S, ‖r‖ , ‖r‖ , n, ~b′).

Let c = β(0, β(‖r‖ , w)). Let C(i, u, v, b) where ~b′ has been hard-coded be the
circuit that computes the predicate

R
(
v, cond

(
Bit((k − 1) |n| − i, b), MSP(u, n), LSP(u, n)

)
, ~b′

)
.

Take any b < nk−1 (the number of length-2n blocks in S) and define a new
sequence v by β(i, v)) = β(MSP(b, i), β(‖r‖− i, w)). In other words, v consists
of the blocks in w starting at c and traversing the triangle to end at the b-th
block of S in the last row. Then v is a sequence of length ‖r‖ starting at c,
ending at β̂(b, 2n, S) and for which C(i, β(i, v), β(i + 1, v)) for each i; this

follows from Amp(S, c, ‖r‖ , ‖r‖ , n, ~b′). Uniqueness of each step follows from
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the fact that R is injective. As in the proof of Theorem 15, take k large enough
so that we can assume C < 2nk−2n; then by chasing definitions, we see that
we have proved

∀S < 22nk∃C < 2nk−2n∃c < 22nIterBlockRec(C, S, c, n, k, ‖t‖j),

completing the proof.

Theorem 29 Let T be the theory S 1
2 extended by the axioms

∀n ∈ Log∃S < 22nk∀C < 2nk−2n∀c < 22n¬IterBlockRec(C, S, c, n, k, ‖t‖j).

for each k > 1, ‖t‖j in {‖id‖O(1)}. Then T proves mWPHP(ITER(PV , {‖id‖O(1)})).

PROOF. We describe how to modify the proof of Theorem 28 to obtain
this result. Let Q := Iter(R,B,E, x, y, ~z, s, ‖t‖m) be a predicate such that
¬mWPHP(Q). We are assuming that the injection from 22n to 2n is on the
variables x and y which are among the parameter variables of R, B, and E
and that this is an injection for some setting ~b′ of the remaining parameters.
By Propositions 5 and 24(2) we may assume |b′i| ≤ n for each i. We use the
relation R to create a modified version of Amp, where we insert the iterations
needed to compute Q between each row of the trapezoid. Set clen = ‖t‖m + 3
(recall that the length of the iteration sequence for Q is ‖t‖m + 2) and let

Amp ′(S, j, ‖r‖ , n, w, ~b′) be the conjunction of the following statements:

(1) S < 22‖r‖n;
(2) w is a sequence of length j · clen + 1;
(3) For 0 ≤ i ≤ j, β(i · clen, w) is a sequence of length 2‖r‖−i and for 0 ≤ ` <

2‖r‖−i, |β(`, β(i · clen, w))| ≤ 2n.
(4) For 0 ≤ ` < 2‖r‖, β(`, β(0, w)) = β̂(`, 2n, S).
(5) For 0 ≤ i ≤ j, i′ = i · clen, and 0 ≤ a < ‖t‖m + 2, β(i′ + a + 1, w) is a

sequence w′ of length 2‖r‖−i and for 0 ≤ ` < 2‖r‖−i, β(`, w′) ≤ s;
(6) For 0 ≤ i ≤ j, i′, a, and ` as in the previous point, let (w)a,` = β(`, β(i′ +

a + 1, w)). Then:
(a) R(a, MSP((w)a,`, n), MSP((w)a+1,`, n));
(b) LSP((w)a,`, n) = LSP((w)a+1,`, n).

(7) For 0 ≤ i ≤ j, i′, a, `, and (w)a,` as in the previous point:

(a) (w)0,2` = B(β(2`, β(i′, w)), L, ~b′) ∗ L, where L = MSP(β(`, β((i + 1) ·
clen, w)), n); and

(b) (w)‖t‖m−1,2` = E(β(2`, β(i′, w)), L, ~b′) ∗ L.
(8) For 0 ≤ i ≤ j, i′, a, `, and (w)a,` as in the previous point:

(a) (w)0,2`+1 = B(β(2`+1, β(i′, w)), R, ~b′)∗R, where R = LSP(β(`, β((i−
1) · clen, w)), n); and

(b) (w)‖t‖m−1,2`+1 = E(β(2` + 1, β(i′, w)), R, ~b′) ∗R.
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So this formula asserts that w is a “trapezoid of grids” with j grids. The i-th
grid has 2‖r‖−i columns and ‖t‖m +3 rows. The first row corresponds to a row
of the trapezoid from the proof of Theorem 28. The next row consists of blocks
of the form B(x, y, ~b′) ∗ y where x < 22n is the value in the same column and
previous row and y < 2n is the value x is mapped to by the multifunction with
graph Q (we need the “extra” copy of y so that the circuit that we eventually
construct can verify that a sequence represents a path through this trapezoid
of grids while only examining adjacent elements of the sequence). Within a
column, one traverses row-by-row by applying R.

The new formula Amp is defined from this Amp ′ as before with a larger (but
still polynomial bound) for w. Given that the universals above will be sharply
bounded in S 1

2 , this Amp is still equivalent to a Σb
1-formula. So one can prove

∀j ≤ ||r||Amp(S, j, ||r|| , n, ~b′)

by induction on j in S 1
2 . The induction step is handled by using the fact that

since ¬mWPHP(Q), there is some unique sequence that makes Q an injective
map from 22n into 2n. So if w is the trapezoid so far and c is its last row,
one can apply Q to the length-2n blocks of c to obtain length-n blocks to get
a c′ < 22‖r‖−(j+1)n. Adding to w the relevant rows from the sequence used to
witness the existential of Q as well as this c′ one can make a new w′ that
satisfies

Amp ′(S, j + 1, ‖r‖ , n, w′, ~b′)

to complete the induction step.

Now given S < 22nk
and r such that ‖r‖ = (k − 1) |n| + 1 we need a cir-

cuit C(i, u, v, b) where ~b′ has been hard-coded that recognizes a path through
this “triangle of grids” that starts at the last row c and ends at block of the
first row, β̂(b, 2n, S). From now on, we index rows starting at c. So row index
i means the (‖r‖− i)-th row of the sequence. When i = i′ ·clen, we are looking
at a sequence of length-2n blocks at the end of a grid; we verify that LSP(v, n)
is the right- or left- half of u as per the ((k−1) |n|− i′)-th bit of b. This is why
we need the L’s and R’s; without carrying them through the grid, we would
not be able to perform this verification “locally.” When i = i′ · clen + a + 1
for 0 ≤ a < ‖t‖m + 2 we transition according to R, so the circuit verifies
that R(‖t‖m + 1 − a, MSP(v, n), MSP(u, n)). When i = (i′ + 1) · clen − 1
we are transitioning from one grid to the next, so the circuit verifies that
u = B(v, LSP(u, n), ~b′) ∗ LSP(u, n).

The usual argument allows us to choose k large enough so that C < 2nk
and

IterBlockRec(C, S, β(0, β(‖r‖ · clen, w)), n, k, ‖t‖m) where w is the witness to

Amp(S, ‖r‖ , ‖r‖ , n, w, ~b′).
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We do not know if mWPHP(PV ) implies mWPHP(ITER(PV , {‖id‖O(1)}))
over some non-trivial theory. To show this would seem to involve showing
that from an iterated relation PV defining a injective multifunction from n2

to n, one could somehow do away with the iteration and find a PV relation
defining a injective multifunction from n2 to n relation. It is not clear how
this could be done.

Relativization

Referring to the notation for relativizing these results at the end of the previous
section, we have the analogous result for the multifunction principle:

Theorem 30 Let T be the theory S 1
2 (α) extended by the axioms

∀n ∈ Log∃S < 22nk∀C < 2nk−2n∀c < 22n¬IterBlockRec(C, S, α, c, n, k, ‖t‖j).

for each k > 1, ‖t‖j in {‖id‖O(1)}. Then T is equivalent to S 1
2 (α) together with

mWPHP(ITER(PV (α), {‖id‖O(1)})).

The following corollary is again a direct consequence of the results of Kraj́ıček
[16] and Riis [27].

Corollary 31 The theory S 2
2 (α) does not prove the statement ∀n ∈ Log∃S <

22nk∀C < 2nk−2n∀c < 22n¬IterBlockRec(C, S, α, c, n, k, ‖t‖j).

Again using Hájek and Pudlák’s universal formula Ui, we have

Corollary 32 Let T be the theory S i+1
2 extended by the axioms

∀n ∈ Log∃S < 22nk∀C < 2nk−2n∀c < 22n¬IterBlockRec(C, S, Ui, c, n, k, ‖t‖j)

for each k > 1, ‖t‖j in {‖id‖O(1)}. Then T is equivalent to S i+1
2 together with

mWPHP(ITER(PV (Σb
i ), {‖id‖

O(1)})).

6 Iteration and RSA

In this section, the provability of our circuit and iteration principles in S 1
2 and

S 2
2 is connected to the security of RSA. To state our results, we define the

class PLS and recall the definition of RSA.

Definition 33 A PLS problem consists of a polynomial time cost function
c, a polynomial time neighborhood function N , and a polynomially bounded

25



set of polynomial time solutions, defined by a predicate F . For an input x,
the set {s : F (x, s)} is the set of feasible solutions, the mapping s 7→ c(x, s)
assigns a cost to each solution, and the mapping s 7→ N(x, s) maps solutions
to solutions. The multifunction f defined by the PLS problem is given by the
relation f(x) = y iff F (x, y) and c(x, N(x, y)) < c(x, y).

The class PLS for polynomial search was defined by Johnson et al. [13] and was
shown to contain several interesting optimization problems. Buss and Kraj́ıček
[7] showed that the Σb

1 provably total multifunctions of T 1
2 can be characterized

as the composition of a projection function with a PLS multifunction.

Recall what an instance of RSA is:

Definition 34 An instance of RSA consists of a modulus n = pq for two
large primes p and q, exponents e and d which are mutual inverse modulo
(p−1)(q−1), a message m < n, and a ciphertext c < n such that c ≡ me mod n
and m ≡ cd mod n. The RSA instance is solved (hence, vulnerable) if given
n, e, and c, one can compute m.

We are now ready to present the main result of this section.

Theorem 35 Let Bk denote

∀n ∈ Log∃S < 22nk∀C < 2nk¬BlockRec(C, S, 2nk, n)

and let IBk,j denote

∀n ∈ Log∃S < 22nk∀C < 2nk−2n∀c < 22n¬IterBlockRec(C, S, α, c, n, k, ‖t‖j).

(1) If for each k > 1, j ≥ 1, S 1
2 proves IBk,j (similarly, Bk) then RSA is

vulnerable to polynomial time based attacks.
(2) If for any k > 1, j ≥ 1, S 2

2 proves either IBk,j (similarly Bk) then RSA
is vulnerable to polynomial time in PLS based attacks.

PROOF. Both (1) and (2) are proved in essentially the same way. By [4],
S 2

2 is Σb
2-conservative over T 1

2 . Let T be either S 2
2 or S 1

2 . Then if T proves
IBk,j, then by Theorem 28, T proves mWPHP(PV ) so by Proposition 3 it
also proves iWPHP(PV ) and thus iWPHP(FP). Similarly, since the partial
surjective principle is equivalent to the multifunction principle for Σb

1-formulas
and the Σb

1-formulas contain the graphs of FP functions, a similar chain of
implications shows that the principles Bk imply iWPHP(FP). So if T proves
Bk we also get T proves iWPHP(FP). The schema iWPHP(FP) consists of
formulas of the form:

∃x < n2f(x, c) ≥ n ∨ ∃x1, x2 < n2(x1 6= x2 ∧ f(x1, c) = f(x2, c))
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which are Σb
1-formulas. As we have just remarked if T = S 1

2 that T proves
iWPHP(FP). If, though, T = S 2

2 , then this in turn is Σb
2-conservative T 1

2 , so
we will have T 1

2 proves iWPHP(FP). Using the witnessing arguments used
to show the characterizations of Σb

1-definability in S 1
2 and T 1

2 one can say
the following: (1) for S 1

2 , there is a polynomial time function g which when
given inputs c, a such that ∀x < a2f(x, c) < a outputs x1 < x2 < a2 such
that f(x1, c) = f(x2, c); (2) for T 1

2 , and hence S 2
2 , g can be computed as a a

projection of a PLS problem. By Kraj́ıček and Pudlák [19] there is polynomial
time algorithm using g as an oracle which solves RSA.
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[17] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity
Theory, volume 60 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, 1995. ISBN 0-521-45205-8.
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