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The purpose of this paper is to explore the relationship between I∆0+exp
and its weaker subtheories. We give a method of translating certain
classes of I∆0+exp proofs into weaker systems of arithmetic such as
Buss’ systems S2. We show if IEi(exp) ` A with a proof P of expind-
rank(P ) ≤ n + 1 where all (∀ ≤: right) or (∃ ≤: left) have bounding
terms not containing function symbols then Si

2 ⊇ IEi,2 ` An. Here A
is not necessarily a bounded formula. For IOpen(exp) we prove a simi-
lar result. Using our translations we show IOpen(exp) ( I∆0(exp). Here
I∆0(exp) is a conservative extension of I∆0+exp obtained by adding to
I∆0 a symbol for 2x to the language as well as defining axioms for it.
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1 Introduction

Of the commonly studied bounded arithmetic theories I∆0+exp, the theory
with induction for bounded formulas in the language of 0, S,+,· together
with the axiom saying the exponential function is total, is one of the more
interesting. It is one of the weakest fragments of arithmetic known to prove
the Matiyasevic Robinson Davis Putnam Theorem (MRDP) Theorem that
every Σ1-formula is equivalent to an ∃1-formula [6]. It is also known to be
both finitely axiomatized [15] and equivalent to its IE1+exp fragment [8].
In contrast the bounded arithmetic theories I∆0 and I∆0+Ω1 (equivalent to
Buss’ S2), which have induction on formulas involving only sub-exponential
growth rate functions are not known to prove the MRDP or known to be
finitely axiomatized. In fact, if either of these is provable in I∆0+Ω1 then
it would imply collapse of the polynomial hierarchy. Thus, it is important
to study I∆0+exp to see how well proof techniques for this theory can be
transferred to weaker theories.
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Wilkie-Paris [15] have shown several interesting connections between I∆0+exp
and weaker theories. They have shown I∆0+exp cannot prove Con(Q) and
I∆0+exp proves (∀x)A where A is bounded iff Q+(∀x)A is interpretable in Q.
These results would seem to indicate that I∆0+exp is not too far in strength
from I∆0. On the other hand, they show I∆0+exp is not interpretable in Q;
whereas, I∆0 and S2 are known to be. Further I∆0+exp can give a truth
definition for bounded formulas in the language L2 as well as prove a partial
cut-elimination result. It is, thus, able to prove the bounded consistency, and
hence also free-cut-free consistency, of S2 and so is in some sense quite a bit
stronger than S2.

Despite the fact that I∆0+exp is not interpretable in I∆0, it is known if
I∆0+exp proves (∀x)A(x) where A is a bounded formula then I∆0 proves
(∀x)((∃y)(y = 2x

k) ⊃ A(x)). Here 2x
k is a stack of 2’s k high with an x at the

top. This result has both a simple compactness argument proof [7] as well as
a proof using Herbrand’s theorem [4] which could in principle be used to give
a bound on k in terms of the maximum nesting depths of exp in the I∆0+exp
proof. Intuitively, this result says: given x, if I∆0 knows a big enough y exists
then it can show A(x) holds. Or said another way, if x is very small then I∆0

should be able to prove A(x). This result is interesting in that it gives us some
information about how results in I∆0+exp translate into weaker theories.

Motivated by this result, in this paper we reformulate the theory I∆0+exp
by expanding the base language of I∆0 with a new symbol 2x and adding
to I∆0 two open axioms for 2x. This conservative extension of I∆0+exp is
called I∆0(exp). We consider translations of formulas in this language into
formulas in weaker theories based on the map x → |x|n where |x|n is the
length function (dlog2(x + 1)e) applied n times to x. The precise definition
of our translations is closely related to the RSUV-translation of second-order
bounded arithmetic theories [14]. We show that if IEi(exp) proves A with a
proof P in which no function symbols appear in bounding terms of (∀ ≤: right)
or (∃ ≤: left) inferences then there is an n ≤ exp-rank(P ) + 1 such that IEm

i

proves the translation An+m. Here IEm
i is the theory with Ei-induction up to

terms of the form |s|m in the language L2. When m = 0 we get the theory with
usual Ei-induction in L2. We are saying IEi(exp) proof rather than I∆0(exp)
proof since it is unclear if IEi(exp) can prove the MRDP theorem without
using (∀ ≤: right) or (∃ ≤: left) inferences with bounding terms containing
function symbols. The reason why we are interested in such weak theories is
that recently it has been shown that when m − i ≥ 4 these theories cannot
prove the collapse of the polynomial hierarchy [10].

We hope our translations might be useful for separation results. To see that
this may be possible, in this paper we show IOpen(exp) ( I∆0(exp). This is
done by showing if IOpen(exp) proves an open formula A with free-cut free
proof P , then there is an n ≤ exp-rank(P )+1 such that IOpen proves An. We
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use this to show I∆0(exp) ` FCFCon(IOpen(exp)). Since I∆0(exp) does not
prove its own free-cut-free consistency this gives the result. Shepherdson [13]
has noted that IOpen(exp) can prove the irrationality of

√
2, which is not

provable in IOpen. This indicates IOpen(exp) may be substantially stronger
than IOpen which has recursive models. As far as the author knows it is still
open if IOpen(exp) has recursive models. It is known by Wilmers [16] that
IE1 does not. We show IOpen(exp) is not equal to I∆0+exp also holds if one
adds new function symbols and axioms that respect our translation and if the
theory that is translated to is in interpretable in Q.

We now discuss the organization of this paper. In the next section we give the
background needed to understand the rest of the paper. In the third section,
we give our translation.

2 Preliminaries

We will work in the language L2 which contains the non-logical symbols: 0, S,
+, ·, ≤, .−, b1

2
xc, |x|, MSP (x, i) and #. The symbols 0, S(x) = x + 1, +, ·,

and ≤ have the usual meaning. The intended meaning of x .− y is x minus y
if this is greater than zero and zero otherwise, b1

2
xc is x divided by 2 rounded

down, and |x| is dlog2(x + 1)e, that is, the length of x in binary notation.
MSP (x, i) stands for ‘most significant part’ and is intended to mean bx/2ic.
Finally, x#y reads ‘x smash y’ and is intended to mean 2|x||y|. The language L1

is the language L2\{#}. We call a quantifier of the form (∀x ≤ t) or (∃x ≤ t)
where t is an term in the language not containing x a bounded quantifier. A
formula is bounded or ∆0 if all its quantifiers are. A quantifier of the form
(∀x ≤ |t|) or of the form (∃x ≤ |t|) is called sharply bounded and similarly a
formula is sharply bounded if all its quantifiers are.

Given a language L, we define a hierarchy of formulas Ei,L and Ui,L as follows:
E1,L are those formulas of the form (∃x ≤ t)φ and U1,L are those formulas of
the form (∀x ≤ t)φ where φ is an open formula. Ei,L are those formulas of
the form (∃x ≤ t)φ where φ ∈ Ui−1,L-formula. Ui,L are those formulas of the
form (∀x ≤ t)φ where φ ∈ Ei−1,L. We will write Ei and Ui when the language
is understood. By a bounded or ∆0-formula we mean an L-formula in which
all the quantifiers are bounded. We write open for the class of quantifier-free
formulas. For i > 0, we define a Σ̂b

i -formula (resp. Π̂b
i -formula) to be a Ei+1-

formula (resp. Ui+1-formula) whose innermost quantifier is sharply bounded.

Next we define BASIC to be axiomatized by all subtitution instances of a
finite set of quantifier free axioms for the non-logical symbols of L2. These
axioms are listed in Buss [2] with the exception of the axioms for MSP and
.− which are listed in Takeuti [14]. We will take BASIC1 to be the L1-theory
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axiomatized by BASIC less the axioms not in L1.

To present the rest of the theories we will be working with we first give some
abbreviations of L2-terms we will frequently use:

2|y| = 2|y|
1

:= 1#y max(x, y) := cond(K≤(x, y), y, x)

2|y|
n

= 21·|y|n := 2|y|
n−1

#y min(x, y) := cond(K≤(x, y), x, y)

2k·|y|n := 2|y|
n · 2(k−1)·|y|n 2min(|y|,x) := MSP (2|y|, |y| .− x)

K¬(x) := 1 .− x LSP (x, i) := x .−MSP (x, i) · 2min(|x|,i)

K≤(x, y) := K¬(y .− x) cond(x, y, z) := K¬(x) · y + K¬(K¬(x)) · z

The k and n in 2k·|y|n are fixed integers. Taking products of terms 2k·|s|n we
can construct terms representing 2p(|s|) where p is any polynomial. For clarity,
we write 2`(x) for 2min(|t(x)|,`(x)), if `(x) is a term which is obviously less than
|t(x)| for some t ∈ L2.

Definition 1 XBASIC is the theory obtained from BASIC by adding the
following axiom:

a ≤ |b| ∧ a ≤ |c| ⊃ 2min(|b|,a) = 2min(|c|,a).

The new axiom of XBASIC will be useful for our translations of I∆0(exp)
proofs. We will formalize BASIC and XBASIC proofs in the system LKB
of Buss [2] where we have equality axioms and where we take the axioms
of BASIC (XBASIC) as initial sequents. The main point of LKB is it
treats bounded quantifiers syntactically. We define stronger theories by adding
various types of induction rules to BASIC and XBASIC.

Definition 2 A Ψ-LmIND inference is an inference

A(b), Γ → A(Sb), ∆

A(0), Γ → A(|t(x)|m), ∆

where b is an eigenvariable and must not appear in the lower sequent, t is a
term in the language, and A ∈ Ψ. Here |a|0 = a and |a|m = ||a|m−1|. We call
|t(x)|m the principal term of the induction inference.

We often write IND, LIND and LLIND instead of L0IND, L1IND, and
L2IND.

Definition 3 We define the theory I∆0 to be BASIC1+∆0-IND.
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We would like to point out that I∆0 is usually defined in the language without
.−, b1

2
xc, |x|, and MSP ; however, since these functions are all ∆0-definable

in the usual I∆0 [3], our theory will be a conservative extension of that
theory. The graph of exp(x, y) := xy is ∆0-definable in I∆0 [1,6]. Using
this ∆0-definition, we can define the define exp axiom (∀x)(∀y)(∃z)(z =
exp(x, y)). The theory I∆0+exp is axiomatized by I∆0 together with the exp
axiom. The theory I∆0+Ω1 is axiomatized by I∆0 together with the axiom
(∀x)(∀y)(∃z)(z = exp(x, log y)).

Definition 4 (i ≥ 0) The theory IOpen is the theory BASIC+open-IND.
We define IEm

i to be

XBASIC+Ei-L
mIND

and we define Si
2 to be BASIC+Σ̂b

i-LIND and T i
2 to be BASICk+Σ̂b

i-IND.

We write S2 for ∪iS
i
2.

We mention here that it is straightforward using open-IND to prove the new
XBASIC axiom, so XBASIC ⊆ IOpen. The theory S2 is a conservative
extension of the Wilkie Paris theory I∆0+Ω1 [15,9]. The sequent calculus
system for the former theory is often more convenient than for the latter,
although the latter theory does have the virtue of being defined over the same
language as I∆0+exp. The above axiomatization of Si

2 was given in Pollett [11]
and shown to be equivalent to the original one given in Buss [2]. It is known
from the latter reference that Si

2 ⊆ T i
2 ⊆ Si+1

2 and it follows from the above
definitions that Si−1

2 ⊆ IE0
i ⊆ T i

2. Thus, S2 = ∪iIE0
i . We write IE0

i as IEi.

Theorem 5 If A(x) is a Ψ-formula, and XBASIC ` t ≤ |s|m for some term
s then the inference

A(b), Γ → A(Sb), ∆

A(0), Γ → A(t), ∆

is admissable in XBASIC+Ψ-LmIND.

PROOF. Given that XBASIC+Ψ-LmIND proves A(b), Γ → A(Sb), ∆, it
follows that it proves

A(min(b, |s|m)), Γ → A(min(Sb, |s|m)), ∆.

So by an LmIND, XBASIC+Ψ-LmIND proves

A(min(0, |s|m)), Γ → A(min(t, |s|m)), ∆.

By induction on the complexity of A bit also proves t ≤ |s|m, A(min(t, |s|m)) →
A(t) and A(0) → A(min(0, |s|m)). Thus, performing the appropriate cuts the
lower sequent can be derived. 2
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We conclude this section by defining a conservative extension of I∆0+exp.
Let Lexp be the language L1 ∪ {exp}. Define BASIC(exp) to be BASIC1

together with the two axioms: (1) exp(0) = S0 and (2) exp(Sx) = exp(x)·SS0.
We write IOpen(exp), IEi(exp), and I∆0(exp) for BASIC(exp)+open-IND,
BASIC(exp)+Ei-IND, and BASIC(exp)+∆0-IND respectively. We state
without proof the next theorem which is a result of Kaye [8].

Theorem 6 I∆0(exp) = IE1(exp) is a conservative extension of I∆0+exp.

We mention here that the relationship between IOpen+exp and IOpen(exp) is
unclear. This is because the exp-axiom is not an open-formula so IOpen+exp
does not have induction for it. On the other hand, the exp(x, y, z) holds iff
there is a sequence w of length y such that the first item of w is x and
i + 1st item of w is x time the ith item of w and the last item is z. This is
an E2-formula and it does not seem easy to prove such a sequence exists in
IOpen(exp). Since IOpen(exp) allows induction on formulas with exp in it
we feel it is the more natural theory and will use it for the remainder of this
paper.

3 Main Results

Suppose a theory T in the language Lexp proves A with LKB-proof P . The
exp-rank(t) for t ∈ Lexp is the maximum number of occurrences of exp in
any branch of t viewed as a tree. The exp-rank(P ) is the maximum of the
exp-rank(t) for t appearing in P . The expind-rank of P is the maximum exp-
rank(t) of t a principal term of an induction inference in P . We now define
translations of Lexp-formulas into L2-formulas for each integer n.

For t ∈ Lexp we first define a term tM . If t is 0 then tM is 0, if t is a then
tM is a, if t is Sh or exp(h) then tM is 4#hM#hM , if t := h ◦ s where ◦
is + or · then tM is 4hM#sM , and if t := h .− s or t := MSP (h, s), tM is
hM . Now our translation tn of t is constructed by replacing every variable a
in t by |a|n and by replacing every occurrence of exp(s) by 2min(|sM |,sn). Next
(s = t)n is sn = tn and (s ≤ t)n is sn ≤ tn. The translation commutes with
the propositional connectives. For the quantifiers, we have two cases:

– If A is (∀x)B or (∃x)B, then An is (∀x)Bn resp. (∃x)Bn.
– If A is (∀x ≤ t)B or (∃x ≤ t)B, and Bn is B̃n(|x|n), then An is (∀x ≤

tn)B̃n(x) resp. (∃x ≤ t)B̃n(x).

The following lemma can be proved by induction on the complexity of t:

Lemma 7 Suppose 0 ≤ m ≤ n − exp-rank(t). Then XBASIC proves tn ≤
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|tM |m.

Theorem 8 Suppose IEi(exp) ` A with an LKB-proof P . Further suppose
all bounding terms t in (∀ ≤: right) or (∃ ≤: left) inferences in P do not
involve function symbols. Let n := max(exp-rank(P ), expind-rank(P ) + m).
Then IEm

i ` An.

PROOF. Let P n denote the result of applying the translation B → Bn

for every formula in P . We will convert P n into a IEm
i -proof. First, note

substitution instances of axioms of Q or equality axioms in P will remain
substitution instances axioms of Q or equality axioms in P n. Next, consider
the translation of an exp-axiom in P n. exp-axiom (1) becomes 2min(|0|,0) =
S0 which is easy to prove in XBASIC. For exp-axiom (2), a translation
would look like 2min(|(St)M |,Stn) = 2min(|tM |,tn) · SS0. Since exp-rank(t) < exp-
rank(P ) ≤ n, by Lemma 7, XBASIC proves tn ≤ |tM |. By the new axiom
for XBASIC we have

2min(|tM |,tn) = 2min(|(St)M |,tn)

since XBASIC proves tn ≤ |tM | ≤ |(StM)|. Now the axiom for MSP gives

MSP (2|(St)M |, (|(St)M | .− tn)) = b1
2
MSP (2|(St)M |, |(St)M | .− Stn)c.

i.e., 2min(|(St)M |,tn) = b1
2
2min(|(St)M |,Stn)c. So using the axioms for a half one can

derive the translation of an exp axiom. We can thus add to P n the appropriate
XBASIC proof to make a valid IEm

i proof in this case.

One can verify that the only inferences in P n that may not be valid IEm
i

inferences are translations of Ei-IND inferences, (∀ ≤: right) inferences, or
(∃ ≤: left) inferences. Now consider the translation of a Ei-IND inference:

B̃n(|b|n), Γn → B̃n(S|b|n), ∆n

B̃n(0), Γn → B̃n(tn), ∆n

Bn is an Ei-formula and so IEm
i can prove LmIND for it. XBASIC can prove

|Sb|n = |b|n ∨ |Sb|n = S|b|n. So from the upper sequent above IEm
i can derive

B̃n(|b|n), Γn → B̃n(|Sb|n), ∆n.

Since exp-rank(t) + m ≤ expind-rank(P ) + m < n, by Lemma 7, XBASIC
can prove tn ≤ |tM |m, so by Theorem 5 and since |0|n = 0, IEm

i,2 proves

B̃n(0), Γn → B̃n(tn), ∆n.

So to make P n a valid proof in this case we incorporate the above sketched
derivation. Now we must consider (∀ ≤: right) and (∃ ≤: left) inferences.
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These are essentially treated in the same way so we only show the (∃ ≤: left)
inference, a translation of which would look like:

|b|n ≤ t̄n, B̃n(|b|n), Γ̄n → ∆̄n

∃x ≤ t̄nB̃n(x), Γ̄n → ∆̄n

We are assuming the bounding term t involved no function symbols. So tn

is really of the form 0 or |c|n for some variable n. We show the second case
as the first one is relatively easy. Let d be a new variable not appearing in
P n. First, derive using equality axioms d = |b|n, B̃n(d) → B̃n(|b|n) and d =
|b|n, d ≤ tn → |b|n ≤ tn. Cutting these two sequents against the upper sequent,
together with some structural rules, and an (∃:left) inference gives (∃x)d =
|x|n, d ≤ t̄n, B̃n(d), Γ̄n → ∆̄n. Now derive d ≤ |c|n → (∃x)d = |x|n. We can
prove this by making a L2-term h such that |h|n = d. h can be defined as a
stack of 2min’s n-high with |d|n at the top and where the second component
in the min at the i level is |c|i. Since tn = |c|n, using this sequent, a cut, and
a contraction we get d ≤ tn, B̃n(d), Γ̄n → ∆̄n from which the lower sequent
above follows by an (∃ ≤: left) inference. 2

We would like to specifically mention at this point what this result means for
the well studied theories T i

2 and Si
2 of Buss [2].

Corollary 9 Suppose IEi(exp) ` A with LKB-proof P . Further suppose all
bounding terms t in (∀ ≤: right) or (∃ ≤: left) inferences in P do not involve
function symbols. Let n := max(exp-rank(P ), expind-rank(P )). Then T i

2 `
An and Si

2 ` An+1. Also, T2 = S2 ` An.

PROOF. This follows from Theorem 8 since IEi ⊆ T i
2 and IE1

i ⊆ Si
2 ⊆

S2. 2

For the next result we need a couple of definitions. A free cut is a cut on
a formula B which is not directly descended from an axiom or a principal
formula in an induction inference. A proof is free-cut free if it does not have
a free-cut. It is a result of Buss [2] that since all of IOpen(exp)’s axioms are
open and since the open-IND rule involves only open principal formulas, any
IOpen(exp) proof of an open-formula will contain only open formulas.

Theorem 10 Suppose IOpen(exp) ` A an open-formula with free-cut free
proof P . Let n := exp-rank(P ). Then IOpen ` An.

PROOF. The proof is essentially the same as Theorem 8. We do not have to
worry about quantifier rules since a free-cut free proof of an open-formula in
IOpen(exp) will consist of only open-formulas. 2
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4 Some separation results

In this section we will assume we have carried out a formalization of the syntax
of bounded arithmetic proofs within I∆0+exp. The reader is invited to consult
Buss [2], Hajek and Pudlak [7], or Buss [3] for details on how this may be
carried out. We write ThmFCFT (dφe) for the formula which says “φ codes a
formula which is a free-cut free theorem of theory T”. We write FCFCon(T )
for the formula ¬ThmFCFT (d0 = 1e). It follows from Theorem 10 on page 144
of Buss [2] that I∆0+exp does not prove FCFCon(I∆0+exp). On the other
hand, we will show below I∆0+exp does prove FCFCon(IOpen(exp)).

Lemma 11 I∆0+exp proves FCFCon(IOpen).

PROOF. In view of Theorem 6 we can work in I∆0(exp). Theorem V.4.18
in Hajek and Pudlak [7] shows there is a ∆0-formula µ1(e, x, z) such that

for every E1-formula φ, S1
2 ` φ ≡ µ1(

dφe, x, 2|x|
dφe

). Here dφe is an appropri-
ate Gödel number for φ and we are assuming if φ is of arity greater than
one we have done the appropriate pairing. Since I∆0(exp) can define x#y
as 2|x||y| this is provable in I∆0(exp). Also for y a variable, I∆0(exp) can
define 2|x|

y
. We define V ALID(e) := (∀x)µ1(e, x, 2|x|

e
). For any sequent of

open formulas A1, . . . An → B1 . . . Bm we can view it as a single open formula
∧iAi ⊃ ∨jBj. So we can define dA1, . . . An → B1 . . . Bm

e as d∧i Ai ⊃ ∨jBj
e.

Now for any IOpen inference it is not hard to show if I∆0(exp) proves
V ALID(dΓ → ∆e) for each Γ → ∆ an upper sequent of open formulas in
an IOpen-proof, then it can prove V ALID(dΛ → Ωe) for the lower sequent.
Using this I∆0(exp) can show for all e that ThmFCFIOpen(e) ⊃ V ALID(e).
In other words, ¬V ALID(e) ⊃ ¬ThmFCFIOpen(e). Now I∆0(exp) proves
¬(0 = 1), and hence, ¬V ALID(d0 = 1e) and ¬ThmFCFIOpen(d0 = 1e). This
last is FCFCon(IOpen). 2

It seems harder to give a predicate of the form V ALID for IOpen(exp) proofs
in I∆0(exp), since the natural way to define the equivalent to µ1 would involve
stacks of 2’s in the third component that grow with dφe.

Theorem 12 I∆0+exp proves FCFCon(IOpen(exp)). So IOpen(exp) (
I∆0(exp).

PROOF. It is not hard to ∆0-define a function which determines n :=
max(exp-rank(P ), expind-rank(P ) + 1) for an IOpen(exp) proof P . Given
this function I∆0+exp can define a function which translates an IOpen(exp)
proof P of A into an IOpen proof of An for this n. To see this recall the folklore
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result [5] that I∆0+exp can ∆0-define any elementary function. In this case,
the case the proof of Theorem 10 gives a translation which can be computed
in polynomial time. Notice for any n our translation has (0 = 1)n := (0 = 1).
The theorem then follows by Lemma 11 and Theorem 6. 2

The above result relies on two things: (1) I∆0+exp can translate open-proofs
in the theory with exp into open-proofs in the theory without exp and (2)
I∆0+exp can prove the free-cut free consistency of the theory without exp. We
cannot modify the above proof to show I∆0+exp proves FCFCon(I∆0(exp))
since we have no means of translating a free-cut-free I∆0(exp) proof of 0 = 1
where the bounding terms on (∀ ≤: right) or (∃ ≤: left) inferences may involve
exp into an S2 proof. Now suppose we introduce a new m-ary function symbol
f to the language of Lexp and L2 and define IOpen(exp, f) and IOpen(f)
to be the theories obtained by allowing in the deductive system substitution
instances of open defining axioms for f and allowing f to appear in open-
LIND inferences. Assume the open-defining axioms for f involve symbols
other than exp and assume the resulting theory is consistent. We can extend
our translations to f by defining

(f(t1, . . . , tm))n := f(tn1 , . . . t
n
m).

Lemma 13 Suppose IOpen(exp, f) ` A and open-formula with free-cut free
proof P . Let n := max(exp-rank(P ), expind-rank(P ) + 1). Then IOpen(f) `
An.

PROOF. Since any substitution instance of an open-axiom A(a1, . . . , am) for
f as an initial sequent in IOpen proofs, A(|b1|n, . . . |bm|n) will be a valid initial
sequent for any n. As we stipulated A does not contain exp, the latter formula
will be An. The proof is now the same as Theorem 10. 2

Theorem 14 If I∆0+exp ` FCFCon(IOpen(f)), then IOpen(exp, f) 6=
I∆0+exp.

PROOF. This follows from Lemma 10 by the same proof as Theorem 12. 2
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