
Autonomous Lending Organization on Ethereum
with Credit Scoring

1st Thomas H. Austin∗, 2nd Katerina Potika∗, and 3rd Chris Pollett∗
∗Department of Computer Science

San José State University, San Jose, CA, United States
Email: thomas.austin@sjsu.edu, katerina.potika@sjsu.edu, chris@pollett.org

Abstract—We propose the Autonomous Lending Organization
on Ethereum (ALOE) system, which enables unsecured borrow-
ing of funds on Ethereum. We incorporate a credit scoring
approach that extends in the DeFi world the one that is used
by traditional banks in order to quantify the risk of a borrower
defaulting on a loan. As part of the loan process, first, we have a
registration phase, where a notary verifies the real identity of a
borrower and delegates to a set of auditors the task of storing a
share of the real identity of a borrower to an Ethereum account
while preserving anonymity. In the next phase, the Credit Bureau
Smart Contract connects lenders to borrowers and updates credit
scores. We automatically compute and update credit scores on-
chain using the k-nearest neighbors algorithm.

Index Terms—Credit scores, Decentralized Finance, Decen-
tralized Autonomous Organization, Loan, k-nearest neighbors
algorithm, cold start problem, smart contracts

I. INTRODUCTION

Cryptocurrencies are an important, relatively new medium
of exchange. These currencies offer some advantages over
traditional currencies. They usually operate without relying
on a central authority such as a government. They often
have built-in to their infrastructure the ability to create smart
contracts that can be algorithmically carried out and verified.

One important class of real-world contracts is the loaning of
money from one individual or group of individuals to another.
In traditional systems, a bank serves as a middle man. It
decides the risks it will take when it loans money, and it profits
on the difference between the interest it pays its depositors
versus the interest it charges to its borrowers. Typically, the
bank uses a credit score provided by a trusted credit bureau
to measure the credit worthiness of borrowers.

While loan systems also currently exist in the cryptocur-
rency space, the anonymous nature of most blockchain-based
cryptocurrencies limits the types of loans to either micro-loans,
where money is borrowed and returned in the same block, or to
collateralized loans where a user secures their loan by staking
another type of cryptocurrency asset. Since tracking a user’s
identity is difficult, lenders do not take into consideration the
credit history of that user.

In this paper, we seek to track a user’s credit score and to tie
their cryptocurrency account to their real-world identity, but
without sacrificing the anonymity of well-behaved borrowers.
With this design, lenders can offer more generous terms to
borrowers, knowing that they can legally pursue the real-world
borrower if they default on their loan.

We design our system to work on the Ethereum
blockchain [1]. We include an off-chain notary that ties social-
security numbers to Ethereum addresses, and which assigns
an initial credit score derived from the user’s real-world FICO
score (discussed in Section II-A). The real-world identity is
divided into secret shares and stored with third-party, off-chain
auditors, and the notary then forgets the association between
the user’s Ethereum address and their identity. Thus, as long as
the user does not violate the terms of any loans they receive,
their anonymity is preserved.

Once the identity is established, a CreditBureau smart
contract matches borrowers and lenders, tracks the repayments,
and maintains credit scores for registered users.

In particular, we propose a system called the Autonomous
Lending Organization in Ethereum (ALOE)1, that allows a
borrower to create a loan application on the blockchain to
which investors can contribute capital until the loan funds,
obviating the need of a bank. If the loan funding quantity is
not reached within a window of time, the funds are returned
to the investors. Otherwise, if the loan is funded, the borrower
receives the funds and is expected to make regular payments
with interest.

To make our cryptocurrency based loan process successful,
we need to propose mechanisms that solve many of the
challenges that a traditional bank faces in deciding whether
to loan to a borrower and with what risk. One of these is that
the lenders need to know the borrowers likelihood of repaying
their debt. This likelihood is influenced by the borrowers’
total outstanding debts, and to know this, the lender needs to
establish some facts about the identity of the borrower in such
a way that makes it hard for the borrower to fool the system
by creating false identities. In the cryptocurrency setting these
are ideally established in an anonymizing way, such as via
a zero knowledge proof and homomorphic encryption so
as to maintain privacy. As the digital and real-world and
their finances are inextricably intertwined, any mechanism for
estimating the likelihood of repaying debts must allow for a
way to incorporate measurements of real world debt. From the
perspective of investors the process of investing should be as
easy as possible. In the case of a traditional bank, one merely
deposits money in the bank; a depositor has some choice in
the kind of bank account and the interest rate that they receive.

1https://github.com/taustin/cryptoCreditBureau/

We propose two main mechanisms to solve these problems
for cryptocurrencies. The first is an identity and credit bureau
system for the blockchain that solves the problem of mea-
suring the likelihood of loans to be repaid. The second is a
mechanism for categorizing loan smart contracts with similar
properties and aggregating these into a larger contract that an
investor can choose to invest in and receive payments from.

We now discuss the organization of the rest of the paper.
In Section II, we provide some background on a traditional
way to obtain credit scores and an overview of the decen-
tralized finance (DeFi) market. In Section III we present our
mechanism by establishing a pseudo-anonymous identity with
a crypto credit bureau. In Section IV we describe the credit
score computations. Finally, we conclude in Section V.

II. PRELIMINARIES AND RELATED WORK

Bitcoin [2] first introduced the world to the power of the
blockchain for maintaining a ledger without a central authority.
It included the Bitcoin Script language for its transactions,
giving it a limited degree of flexibility in the type of trans-
actions it could conduct. Ethereum [1] builds on Bitcoin’s
ideas to include a quasi-Turing-complete virtual machine to the
blockchain. Solidity [3] is currently the most popular language
for writing Ethereum smart contracts [4].

A few features of both Ethereum and Solidity need to
be emphasized in order to better understand our design. In
Ethereum, there are two types of accounts: an externally
owned account (EOA) is associated with a public key, and
hence owned by an external user, while a contract account is
associated with some code. Critically, all transactions must be
initiated by an EOA. Within Solidity, the EOA that initiated
a transaction is identified by the variable tx.origin. The
caller of a smart contract (which may be either an EOA or a
contract account) is identified by msg.sender. Transactions
may send data and/or ether; if ether is sent, the amount of
ether transferred is specified by msg.value.

A. Traditional Credit Scores

We describe a common way of calculating a credit score
for a traditional loan. After our description, we briefly point
out the arithmetical operations that it contains and how they
are amenable to homomorphic encryption.

The Fair Isaac corporation (now called FICO) is a data
analytics firm responsible for some of the more popular credit
scores. The FICO Score 8, often used for home loans, consists
of the following five components (for now we ignore how these
are calculated): Payment History (PH), Debt Burden (DB),
Length of Credit History (LoCH), Types of Credit used (ToC),
and Recent Credit Searches (RCS). Using these components
the following weighted score, WS, is calculated:

0.35 ·PH+0.3 ·DB+0.15 ·LoCH+0.1 ·ToC+0.1 ·RCS.

FICO 8 then applies a proprietary function f : [0, 1] →
[350, 850] to WS to obtain the final FICO 8 score. This score
is supposed to be positively correlated with the probability of
non-default. The computation of WS only involves addition

and multiplication so could be anonymized using a homo-
morphic encryption scheme such as the Paillier cryptosystem.
The overall structure of this score can be thought of as
a single perceptron computation of its inputs, so it is not
surprising that neural net based attempts at computing scores
anonymously such as Aldolfo, et al. [5] have been considered.
We single out the Paillier cryptosystem because it is relatively
simple compared to more general homomorphic cryptosystems
such as those derived from Gentry [6], hence, the operations
computed on the encrypted data will tend to be cheaper in
terms of gas. Operations on the blockchain are generally
visible to everyone, but if a credit score is initially encrypted,
and the operations used to update it can be on the encrypted
data, then we can ensure the borrower, or potential borrower,
has some modicum of privacy if they use our system.

B. Decentralized finance (DeFi) overview

Decentralized finance (DeFi) products can be built on the
Ethereum platform. Examples of products include decentral-
ized lending, borrowing, trading, insurance, payment, ex-
changes, tokenized physical assets, etc. These are implemented
on Ethereum as decentralized applications and smart contracts.
A decentralized autonomous organization (DAO) is a crypto
credit organization that has a flat hierarchy rather than tree
like hierarchy; every participant has a stake and no single
participant controls the organization in the conventional way.
DAOs use smart contracts, with participants using governance
tokens to vote on topics such as fund allocation.

MakerDAO2 is a DAO that provides loans at predetermined
interest rates. The basic steps of the loaning process are that
the user deposits ether as collateral into a Maker smart con-
tract, and the protocol lets one borrow/mint from MakerDAO
a coin called DAI. Borrowing creates a Collateralized Debt
Position (CDP) as DAI itself is a stablecoin pegged to the
US dollar. Compound3 is another leader in DeFi. Compound
introduced their own blockchain – Compound Chain. Aave
(formerly ETHLend)4 is the DAO with the largest asset
diversity. It also has lower collateral requirements as compared
to MakerDAO. Aave offers products such as “DeFi blue chips”
and “flash loans”, which are trustless, and uncollateralized
loans where both the borrowing and the repayment must
happen in the same Ethereum block. Cred Protocol 5 is a start
up working on providing decentralized credit score to the Aave
protocol.

Some application require from users identity-related in-
formation. Verifying identity-related information typically re-
quires a trusted third party that vouches for the correctness
of the information and is done off-chain. One solution that
is proposed is creating anonymous credentials. These are im-
plemented with the use of zero-knowledge proofs that makes
it possible to create credential verification without revealing
sensitive identity attributes of the user to the verifier [7], [8].

2https://makerdao.com/
3https://compound.finance/
4https://aave.com/
5https://www.credprotocol.com/

Similar to our approach for the borrower registration mech-
anism are digital identities and verifiable credentials discussed
in [9]. A digital identity is a digital way to identify a person.
This person can prove that this digital identity belongs to them
with the use of verifiable credentials.

Microsoft Azure provides a decentralized approach6 for
trust between banks. They propose the deployment of an ef-
ficient private Ethereum PoA (Proof of authority) blockchain,
where member banks can establish their own nodes on a dis-
tributed ledger technology, where the credit score information
of users are kept.

Another system that is related to our borrower registration
mechanism is Hyperledger Indy [10], which is a decentralized
credential management system where these credentials are re-
alized based on Camenisch Lysyanskaya (CL) signatures [11].
Hyperledger Indy contains various tools that help with creating
digital identities on blockchains or other distributed ledgers
and they are interoperable across different administrative do-
mains, applications, and any other silos.

III. AUTONOMOUS LENDING ORGANIZATION ON
ETHEREUM (ALOE)

In the ALOE system, a client’s anonymity is maintained, but
their credit score is publicly associated with their Ethereum
address. The process begins with a registration step, which
assigns an initial credit score to an Ethereum address based
on the client’s real-world credit score. Once a new loan has
been created, borrowers and lenders connect to it to either
request or invest funds. When the amount of the loan is met
with sufficient demand from borrowers and with sufficient
investment from lenders, the terms of the loan begin. The
borrowers can then get their requested ether from the loan
smart contract and later repay it. Should the borrower default
on the loan, their real-world identity may be publicly revealed,
hence allowing the lenders to pursue them for debt collec-
tion. The code for our implementation is being developed at
https://github.com/taustin/cryptoCreditBureau/.

A. Borrower Registration

In the registration phase, the client shares their real-world
identity in the form of their social security number (SSN) with
the credit bureau. Registration involves the following entities:

• A borrower is a real person that has a unique SSN and
an Ethereum address.

• A notary is a trusted real-world entity that validates the
user’s identity, credit score, and Ethereum address. It then
divides the user’s identity among various auditors, and
invokes the credit bureau smart contract to initialize a
credit score for the borrower. This initial score consists
of the saved real world score together with a point in a
credit space that we will describe in the next section. We
trust that the notary does not store the association between
the borrower and their Ethereum address, except for the
secret shares sent to the auditors.

6https://docs.microsoft.com/en-us/azure/architecture/example-
scenario/apps/decentralized-trust

• The auditors are responsible for storing shares of the real-
world identity associated with a borrower. We trust that
they do not release their share of the secret, except as
specified by the protocol. For simplicity, we assume that
the set of auditors is small, fixed, and publicly known.
With additional infrastructure, these assumptions could
be relaxed.

• The Credit Bureau Smart Contract (CBSC) stores a map-
ping between Ethereum addresses and associated credit
scoring information. This additional information consists
of the credit score associated with the hash identity, a
timestamp of when this association was made, as well
as a point in our credit scoring space. The CBSC is
responsible for connecting lenders and borrowers, for
tracking loans and repayments, and for updating the
borrower’s credit score. The notary is the only one able
to invoke certain methods of this smart contract.

For the registration phase, significant trust is put on the
notary. If they fail to report accurate scores, a borrower’s
address may have a better credit score than it deserves.
Likewise, if the notary records the mapping between the
borrower’s SSN and their Ethereum address, the borrower’s
anonymity is not protected. Since the notary’s service is
likely to be performed manually, it is not possible to enforce
this forgetting. However, we note that if a notary performs
their duties properly, they cannot be compelled to reveal the
borrower’s Ethereum address after the fact.

In our system, there can be multiple notaries operating
independently. We further assume that the notaries are selected
and paid by the borrowers. As a result, market conditions
help to ensure that notaries perform their role honestly, since
a notary with a bad reputation is unlikely to receive new
business.

With this design, the auditors can collectively tie a user’s
Ethereum address to their real-world identity (as represented
by the user’s SSN). However, no individual auditor can do so.

We have implemented the CBSC as an Ethereum smart
contract, called CreditBureau. CreditBureau supports the
following functions relevant to registration:

• construct() creates an Ethereum account for a credit
bureau. The creator of the CreditBureau (identified
by msg.sender) also acts as the notary for verifying
borrowers. The notary is the only person allowed to
invoke the method initScoreLedger.

• verifyUnusedAddress(borrower_account)
verifies that an address has not previously been used.
This method prevents a borrower from resetting their
credit score by revisiting the notary.

• initScoreLedger(borrower_account,
ficoScore, timestamp) sets up the scoring
for a given borrower_account. The score
ledger can be thought of as a ledger recording real
world FICO scores, borrowed amounts in the crypto
setting, loan repayments, etc. This method calls
verifyUnusedAddress(borrower_account)
to ensure that the address has not been used previously.

Figure 1 shows the registration process, detailed below: The
borrower (1) sends their SSN and their Ethereum address to
the notary who (2) verifies all real-world information. The
notary then (3) sends the Ethereum address of the borrower to
the CBSC. The CBSC verifies that it does not already have a
credit score associated with the specified address. The notary
then (4) divides up the SSN using a secret sharing scheme
and sends it to the auditors. These messages should include
the client’s Ethereum address, the share of their SSN, the hash
of the SSN (for verifying results), and the signature of the
hash signed by the notary. This message is (5) repeated for all
additional auditors. The notary (6) calls initScoreLedger
with the borrower’s address, their credit score, and a timestamp
to register the borrower with an initial score. The notary should
now discard all real-world information about the borrower.

B. Creating a loan

Creating a new loan must be initiated by an EOA, who is
responsible for specifying the terms of the loan. We refer to
this EOA as the loan creator. Since this operation requires
ether from the loan creator, they may claim a fee from the
interest of ether paid by the borrowers. Should there be any
additional ether due to a lender claiming their fund early, the
additional interest also goes to the loan creator.

C. Borrowing and Lending

The CBSC is responsible for connecting lenders and bor-
rowers together by creating a new Loan smart contract. A
lender is assumed to have an Ethereum account with some
amount of ether. We add the following functions to our
CreditBureau smart contract:

• createLoan(uint totalAmount, uint
intRatePerMil, uint numPayments,
uint secondsBetweenPayments, uint
minCreditScore, uint fund_date) public
returns (Loan) creates a new loan that borrowers
and lenders can associate with. If the number of lenders
and borrowers is not met by the fund_date of the
loan, this money can be reclaimed by the lender. In our
system, lenders are able to make withdrawals from loans
after investing based on the reserve value.

• findLoan(uint amountNeeded) finds all loans
registered to the credit bureau that could lend the amount
needed given the user’s requirements.

Our Loan smart contract supports the following contracts:
• invest() withdraws the amount msg.value from the

lender (msg.sender), adding the balance to the loan
smart contract. If sufficient funds have been received, then
the time of this transaction is used as the starting time
of the loan. This timestamp is used to calculate interest
accrued.

• borrow(uint amount) is used by the borrower
(msg.sender) to request a loan; The borrower’s credit
score and the amount requested must meet the loan
requirements. This method involves a call to getScore
which we will describe below and which might cost

gas. Similarly, the findLoan operation above cost gas
to compute and may have already computed the same
getScore. To avoid expensive recomputations, these
calls may be cached.

• isReady() returns whether or not the loan has funded.
• get$$$() transfers the amount of ether previously

requested by the borrower once the loan has funded.
• makePayment(uint amount) is used by the bor-

rower to make a payment towards a loan. This method
succeeds if msg.sender has the necessary funds. As
part of its implementation, this methods also changes the
borrower’s credit score.

• withdraw(uint amount) allows the investor to
withdraw money from the account up to the invested
amount plus interest. However, the lender cannot with-
draw until after the loan funds; they may also use
withdraw to reclaim their funds if the loan fails to
either get enough lenders or borrowers.

In this section, we review the process of a borrower taking
out a loan and later repaying it. We assume that the loan has
been created already, but that it has neither been fully funded
or gathered the full amount of borrowers needed.

To track the credit scores, we update the CreditBureau
smart contract with the following functions:

• updateScoreBorrow(uint amount) tells the
credit bureau that a loan has been made of the given
amount. When a borrower receives a loan, the loan will
in turn invoke this method on the CBSC. The transaction
originator can then be used by this method to determine
whose scores should be updated.

• updateScoreRepayment(uint amount) tells the
CBSC that a loan has received a payback payment of
amount. When a borrower makes a payment to a loan,
the loan will in turn invoke this method on the CBSC. The
transaction originator (tx.origin) can then be used by
this method to determine whose scores should be updated.
We currently do not support an EOA paying off the loan
of another EOA, though that support could be added with
additional complexity.

• getScore(address client, uint amtRequested, uint in-
tRatePerMil, uint numPayments, uint secondsBe-
tweenPayments) returns client’s credit score given
the parameters on the amount requested. Details on the
calculations for scores are discussed in Section IV.

Figure 2 shows a sequence diagram illustrating this process.
The borrower (1) writes a transaction invoking the Loan smart
contract (LoanSC) and requesting a loan. LoanSC (2) calls
the CBSC, which (3) responds with the credit score of the
borrower. LoanSC then (4) verifies that the borrower meets
the loan requirements; if so, it adds the borrower to the list of
borrowers for this loan and (5) updates the borrower’s score
with the CBSC. We note that the borrower’s score is updated
at this point as if they had already taken the loan.

After the above transaction is complete, the borrower must
wait until the loan is ready, meaning that there must be

Fig. 1. Client Registration

sufficient lenders and borrowers. Borrowers will repeat steps
1-5. Lenders will instead (step 8) call the invest function.
To determine whether the funds are available yet, the borrower
may call the isReady function.

In steps 6-7 show the process the loan is not yet ready.
However, after the final lender has invested (step 8), the client
may call the get$$$ function and receive their tokens (steps
11-12). When the borrower is ready to repay their loan, either
in part or in whole, they call the makePayment function.
LoanSC then contacts CBSC, updating the borrower’s credit
score accordingly.

D. Loan Default

If a client fails to repay a loan the lender may contact
the auditors to reveal the client’s identity. We assume that
an external automated process periodically checks for loan
defaults, and then writes a transaction whenever a loan default
is detected. (By Ethereum’s design, a smart contract can only
be triggered by a transaction.)

The steps are as follows: A transaction (1) is written to the
CBSC notifying it of the loan default. The CBSC (2) verifies
the default and contacts the auditors with proof of the loan
defaults. Each auditor (3) verifies the proof and responds with
their share of the user’s social security number (or other real-
world identification). Any lender involved in the defaulted loan
may then (4) call the CBSC to get the shares of the user’s
social security number. Off chain, the lender (5) combines the
identity slices to reveal the identity of the client.

We note that anyone who could view the blockchain could
also see the identity of the defaulted user, regardless of the
permissions of the function to get the shares. If a user defaults

on a loan, their real-world identity is essentially revealed to
all users.

Once the borrower’s real-world identity is revealed, lenders
may pursue the borrower in more traditional manners to recoup
their losses.

IV. CREDIT SCORE FORMULAS

We now describe our credit scoring mechanism and how the
function getScore is computed. Our mechanism is based on
the k-nearest neighbors algorithm and is carried out on-chain.
We deliberately chose that our system was to be computed on
chain. This design allows the operations involved in the credit
scoring to be publicly carried out and verified by the chain
mechanism. If we perform the operations off-chain, we would
need to verify on-chain that the score was updated honestly.
While this might allow us to use a more sophisticated model,
it introduces significant extra complexity.

Certain global properties of our model are computed period-
ically every fixed number of times createLoan is called. We
imagine that createLoan is called less frequently than the
borrowing, lending, withdrawing, or make payment operations.
An individual calling the createLoan operation needs to
pay the transaction fee so that there is sufficient gas to carry
out these updates; on the other hand, as we detail elsewhere,
the caller of createLoan is entitled to any leftover interest
payments made by borrowers after all lenders have withdrawn
their share along with an interest premium.

Our nearest neighbor model tracks five main ratios moti-
vated by the component of FICO 8 as well as a set of window
ratios. We store ratios in the smart contract using pairs of
integers to avoid Ethereum dust. For each ratio, we also keep

Fig. 2. Borrowing Process

track of the last time it was updated and other bookkeeping
information needed to incrementally update it without having
to store histories of all operations. Our nearest neighbor model
consists of the following quantities:

• Underpay Ratio (UPR). The ratio of time that the
amount an individual owes is more than the amount that
they should owe versus the total time span of all loans that
that individual has ever carried. This component captures
an individual’s payment history as a single number. To
compute this, the credit bureau needs to known the
timestamp of the first loan of a borrower (FLT). Whenever
a payment is made, it can also update based on the
payment the total time the amount owed was greater than
what should have been owed (TOT). This ratio is then

TOT
NOW−FLT .

• Current Debt Burden Ratio (CDBR). The ratio of cur-
rent outstanding debt (COB) to the average outstanding
debt (AOB) plus three “pseudo” standard deviations. The
average outstanding debt can be computed as the total
ever loaned (TEL) divided by TOT. Both COB, TEL,
and AOB can be update on payments and new loans.
To compute the standard deviation in AOB, we would

need to compute a square root of sum of squares of the
differences outstanding debts and the AOB. Each term
in this sum would change any time that AOB changes.
We would also like to avoid computing floating point
operations like square root. So instead we compute a
quantity we call Total Approximate Error (TAE). This
starts out as 0 and when we update COB and AOB,
we add to it the current value of ∆T · |COB − AOB|
where ∆T is the change in time since the last update. We
then define a “pseudo”-standard deviation in AOB to be
TAE/FLT . If CDBR is bigger than 1, we set its value
to 1 when using it. This number captures the average debt
burden of an individual.

• Current Payment Burden Ratio (CPBR). The ratio of
the current payment per day not to be behind on the
loan versus the user’s average payment per day not to be
behind on the loans (since first loan was taken) plus three
“pseudo” standard deviations. This quantity is computed
using techniques similar to what we just described for
CDBR. If this ratio is bigger than 1, we set its value to
1 when using it. This number captures on how big the
current payment is compared to the payment the user has

traditionally had and captures to some degree the effect
of different interest amounts.

• Repayment Age Ratio (RAR). The loan size weighted
age of all loans a user has had versus time since their first
loan received. Let Li and Ti denote the amount of the
ith loan received by the user and the time at which this
loan was made. Then this quantity is 1/(NOW − T0) ·∑

i Li·(NOW−Ti). It can be incrementally updated each
time a loan is made, by updating TEL, and WTEL :=∑

i Li · Ti. From these quantities, we compute RAR as
1/(NOW−T0)·(NOW ·TEL−WTEL). This quantity
is intended to correlate with length of credit history and
recentness of debt.

• Average Number of Credit Lines (ANCL). The quantity
tracks the average number of loans the user has had
since the user’s first loan. Let Si denote the number of
simultaneous loans held when the ith loan was made.
In the sequence of Ti of times of loans imagine we
append one additional time TNOW . We compute this as
1/(NOW − T0) ·

∑NOW
i Si · (Ti+1 − Ti). This roughly

tracks with a user maintaining a variety of kinds of credit.
• Odds Stay Current w-day window (OSC-w) The

fraction of time that for the next window period, the
user never owed more than they should have if regular
payments were made. We compute OSC-w for 1 day, 2
days, 4 days, 8 days, 16 days, 32 days, 64 days, 128 days,
256 days, 512 days, 1024 days, 2048 days, 4096 days,
8192 days, and 16384 days (about 45 years).

Although we track these quantities, getScore’s value
is not the weighted sum of these scores. We com-
pute a user’s score with the amount requested parameters
from createLoan: amtRequested, intRatePerMil,
numPayments, secondsBetweenPayments, and calcu-
late what would be the user’s values for UPR, CDBR, CPBR,
RAR, NCLR if the loan were approved. We then make a vector
(UPR, CDBR, CPBR, RAR, ANCL) and look up for the k
nearest neighbors by Euclidean distance, their OSC-w’s that
bracket the loan period and take the inverse distance weighted
average of these OSC-w’s over the neighbors as the score.
To allow a user who has no credit history, and hence no score
vector, to obtain a loan, if the loan amount is below a threshold
(for example, less than $1000 worth of ether), and the loan
payment for the loan is less than a different threshold (for
example, less than the equivalent of $100 per month), then
the score returned by getScore is just the FICO score over
1000. So a FICO score of 850 in this case, would be returned
by getScore as 0.850.

To solve the cold start problem, the quantities above can be
calculated for loan data in other currencies than Ethereum.
In particular, public domain data sets such as the national
database model program, Kaggle, etc. can be used to populate
an initial model for use in the CBSC. From this initial model,
the value of k for the number of neighbors to consider can
be computed by root mean square error estimation. These
computations to create an initial model can be done off-chain.

The ranges of each of our five quantities are between 0 and
1; during the training phase one can tune the accuracy of the
starting and subsequent models by choosing to scale the size
of individual components.

k-d trees are an obvious choice to store (UPR, CDBR,
CPBR, RAR, ANCL) vectors as they allow for logarithmic
lookup times of nearest neighbors. However, the use of such
a structure would also entail a logarithmic overhead any time
such a vector needs to be updated. This latter operation we
would expect to occur with each loan payment, and hence,
more frequently than getScore calls. For this reason, and
because it is simpler to implement, especially on-chain, we
chose the brute force implementation of k-nearest neighbors
in which vectors are stored in an array indexed by hash of
the user’s address. So updating a vector for a user on a loan
payment is an O(1) operation. On the other hand, finding the
k-nearest neighbors requires a linear scan of all our vectors.

The use of the brute force algorithm for nearest neighbors
means that the cost to compute getScore increases in time
and in gas as more loans are made. Currently, gas costs around
20-30 gwei [12] and the gas needed to compute the distance
between two vectors and then compare to either insert or not
insert into the priority queue of the current best k neighbors
in typically in the low to medium hundreds, say 300. The cost
to run a credit score in the real-world is usually less than say
$50. Together these give a bound on the number of points to
keep in our model for a comparable cost in the low tens of
thousands. Using sampling, we size our initial model to meet
these criteria. Thereafter, to maintain a limit on memory size
we use two models for each loan duration window: an old
and a new model. As new loan data arrive they are used to
adjust the new model. A linearly weighted sum of the two
models is used as the score based on the ratio of sizes of the
two models. When the size of the new model reaches that of
the old model, the old model is discarded and the new model
becomes the old model. Finally a new, new model is started.

V. CONCLUSION AND FUTURE WORK

ALOE allows for lenders and borrowers to connect in
order to conduct loans. Loan credit scores are computed
based on ongoing borrower behavior. Lenders are guaranteed a
minimum score for the loans they invest in so they can choose
the amount of risk they are comfortable with. Furthermore,
we allow the identity of borrowers to be revealed should they
default on a loan, while preserving the anonymity of well-
behaving borrowers.

In future work, we plan to include more advanced forms
of encryption. Proxy re-encryption [13] allows data to be
encrypted on the cloud and re-encrypted for new users, with
obvious applications for storage on a public blockchain. Ho-
momorphic encryption [14] allows some operations to be car-
ried out on data without decrypting it. Zhou and Wornell [15]
provide a simpler homomorphic encryption scheme for integer
vectors that would be implementable on chain.

An additional direction to explore would be to integrate an
off-chain oracle for the k-nearest neighbor work, potentially

reducing the cost of the calculations significantly. However,
providing the same security guarantees with this approach
introduces some additional challenges.

Zero-knowledge proofs [16] could provide further
anonymity so that only the minimum score is proved during
borrowing. Additionally, our design assumes a single address
per borrower. A borrower might want several addresses or to
change an address over time. With additional infrastructure,
we could tie these addresses to a single credit score. With
these features, we hope to bring more traditional financial
structures into the world of decentralized finance.

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2014.

[2] “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[3] “The solidity contract-oriented programming language.” https://github.

com/ethereum/solidity, accessed November 2020.
[4] N. Szabo, “Formalizing and securing relationships on public networks,”

First monday, 1997.
[5] L. Andolfo, L. Coppolino, S. D’Antonio, G. Mazzeo, L. Romano,

M. Ficke, A. Hollum, and D. Vaydia, “Privacy-preserving credit scoring
via functional encryption,” in International Conference on Computa-
tional Science and Its Applications, pp. 31–43, Springer, 2021.

[6] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, STOC ’09, (New York, NY, USA), p. 169–178, Association
for Computing Machinery, 2009.

[7] R. Muth, T. Galal, J. Heiss, and F. Tschorsch, “Towards smart contract-
based verification of anonymous credentials,” Cryptology ePrint Archive,
2022.

[8] C. Lin, M. Luo, X. Huang, K.-K. R. Choo, and D. He, “An efficient
privacy-preserving credit score system based on noninteractive zero-
knowledge proof,” IEEE systems journal, 2021.

[9] J. Sedlmeir, R. Smethurst, A. Rieger, and G. Fridgen, “Digital identities
and verifiable credentials,” Business & Information Systems Engineering,
vol. 63, no. 5, pp. 603–613, 2021.

[10] T. Kuhrt, “Hyperledger indy.” Hyperledger Foundation, 2022 (accessed
August 12, 2022).

[11] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient
protocols,” in International Conference on Security in Communication
Networks, pp. 268–289, Springer, 2002.

[12] R. deBest, “Average daily gas price of ethereum from august 2015 to
may 16, 2022,” 2022.

[13] S. S. D. Selvi, A. Paul, S. Dirisala, S. Basu, and C. P. Rangan, “Shar-
ing of encrypted files in blockchain made simpler,” in Mathematical
Research for Blockchain Economy, pp. 45–60, Springer, 2020.

[14] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys (Csur), vol. 51, no. 4, pp. 1–35, 2018.

[15] H. Zhou and G. Wornell, “Efficient homomorphic encryption on integer
vectors and its applications,” in 2014 Information Theory and Applica-
tions Workshop (ITA), pp. 1–9, 2014.

[16] Y. Han, H. Chen, Z. Qiu, L. Luo, and G. Qian, “A complete privacy-
preserving credit score system using blockchain and zero knowledge
proof,” in 2021 IEEE International Conference on Big Data (Big Data),
pp. 3629–3636, 2021.

