This paper demonstrates that the following Σ^b_0-replacement axioms:

$$\forall i < |x| \exists x < a \phi(i, x) \rightarrow \exists w \forall i < |a| \phi(i, [w]_i)$$

for sharply bounded formulas ϕ are unlikely to be provable in three weak arithmetic theories. The first theory considered is a second order theory called V^0 which has the usual number axioms for 0, 1, +, \cdot, \leq, together with induction axioms and comprehension axioms for formulas which use only first order quantifiers. This theory is used to model reasoning about uniform \mathbf{AC}^0 circuits, (constant depth, unbounded fan-in AND, OR, NOT circuits). The theory V^0 is $\forall \exists \Sigma^b_0$-conservative under V^0 together with second order analogs of the replacement axiom. This paper uses the provability of a parity principle to show the two theories are not equal. The next theory considered is Δ^b_1-CR which consists of BASIC axioms for the symbols $\{0, 1, +, \cdot, <, |x|, (x)i, [x]i, x \# y\}$ together with a comprehension rule which allows one to derive

$$\exists w \forall i < |a|(w)_i = 1 \Leftrightarrow \phi(i),$$

provided ϕ is a Σ^b_1-formula which has been proven equivalent to a Π^b_1-formula. Here $(x)_i$ projects out the ith bit of x and $[x]_i$ projects out the ith sequence element of x. This language is slightly different from what was used in the original formulation of Δ^b_1-CR given by Johannsen and Pollett [1]. The theory Δ^b_1-CR is RSUV isomorphic to a theory VTC^0 which strictly contains V^0. The theory VTC^0 is typically used to model reasoning about uniform, constant-depth, threshold circuits – the class \mathbf{TC}^0. This paper shows that Δ^b_1-CR cannot prove the Δ^b_1-comprehension axioms (as opposed to rules) unless the RSA cryptographic scheme is insecure. As the Σ^b_1-replacement axioms over Δ^b_1-CR imply the Δ^b_1-comprehension axioms, this implies that Σ^b_1-replacement is unlikely to be provable in Δ^b_1-CR. The proof of this result actually shows that the theory \mathbf{PV}, which is stronger than Δ^b_1-CR, cannot prove the Δ^b_1-comprehension nor the Σ^b_0-unique replacement axioms unless RSA is insecure. The theory \mathbf{PV} is an equational theory with axioms designed to capture reasoning about polynomial time. It is not equal to Δ^b_1-CR unless polynomial time is equal to uniform \mathbf{TC}^0. The theory \mathbf{PV} is the last theory considered by the paper. It is shown that \mathbf{PV} cannot prove the Σ^b_0-replacements axioms unless factoring is easy. The main proof technique used in the results of this paper is to take the replacement axioms for some hard to invert function f. Applying the KPT Witnessing Theorem (a variant of Herbrand’s Theorem) to this axiom for the graph of f, gives a finite disjunction of statements from
which an algorithm to invert f can be extracted. This technique seems likely
to be useful in future results.

References