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Abstract

Conservative subtheories of R1
2 and S 1

2 are presented. For S 1
2 , a

slight tightening of Jeřábek’s result [18] that T 0
2 �∀Σb

1
S 1

2 is presented:
It is shown that T 0

2 can be axiomatised as BASIC together with in-
duction on sharply bounded formulas of one alternation. Within this
∀Σb

1-theory, we define a ∀Σb
0-theory, T−1

2 , for the ∀Σb
0-consequences of

S 1
2 . We show T−1

2 is weak by showing it cannot Σb
0-define division by

3. We then consider what would be the analogous ∀Σ̂b
1-conservative

subtheory of R1
2 based on Pollett [24]. It is shown that this theory,

T 0,{2 ˙(||id||)}
2 , also cannot Σb

0-define division by 3. On the other hand,
we show that S 0

2 +open{||id||}-COMP is a ∀Σ̂b
1-conservative subtheory

of R1
2 . Finally, we give a refinement of Johannsen and Pollett [21]

and show that Ĉ 0
2 is ∀Σ̂b

1-conservative over a theory based on opencl-
comprehension.
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1 Introduction

One of the fundamental problems in bounded arithmetic is to separate the
theories S j

2 , j ≥ 0 defined in Buss [6]. It is known that if S j
2 = S j+1

2

then the polynomial hierarchy collapses to Σp
j+2 [16]. From this it follows

that if S2 = ∪kSk
2 6= S j

2 for all j then S2 does not prove the collapse of
the polynomial hierarchy. It is hoped that separating these theories might



be easier than separating the polynomial hierarchy but nevertheless shed
insight into the complexity problem. In this paper, we explore an approach
to separating bounded arithmetic theories by looking at their Σ̂b

1 and sharply
bounded fragments.

In order to appreciate the difficulty in separating bounded arithmetic
theories it is useful to consider what would be involved in separating theo-
ries via some notion of definability. Here an arithmetic theory T can Ψ-define
a function f if there is a formula Af in Ψ such that T ` ∀x∃!yA(~x, y) and
N |= ∀xAf (x, f(x)). For example, a classic result of Buss [6] is that the
Σb

1-definable functions of S 1
2 are precisely the polynomial time computable

functions, FP, and the Σb
2-definable functions of S 2

2 are the polynomial time
functions with access to an NP oracle, FPNP . It is unlikely that looking
at Σb

2-definable or larger will help in separating these theories as even the
base theory, BASIC , for any of these systems can Σb

2-define any polyno-
mial time function which makes O(1) queries to an NP-oracle [24]. So to
separate theories using Σb

i -definability for i ≥ 2 would be at least as hard
as solving open complexity theory problems. For Σb

1-definability the situ-
ation also seems difficult. It is known the Σb

1-definable multifunctions of
S 2

2 are projections of multifunctions in PLS, the class of polynomial local
search problems. This class contains FP. Proofs of Σb

i -definability generally
also give one characterizations of the ∆̂b

i -relations, those formulas which are
provably equivalent to both a Σb

i and Π̂b
i formula. In the S 1

2 versus S 2
2 case

one gets P versus PLS and we know P ⊆ PLS ⊆ NP. So it seems this ap-
proach is at least as hard as separating P from NP. For j ≥ 2, separating S j

2

from S j+1
2 only becomes harder. So for all of these theories the best results

known are relativized separations of theories S j
2 (α) where α is a predicate

symbol.
There are two main kinds of outright separations results known for arith-

metic theories contained in S2: (1) Separations based on a Σb
1-formula. (2)

Separations based on a open or sharply bounded formula. As an example
of the first kind, one can show Σ̂b

1-definability in S 0
2 is different from S 1

2

basically because the function class one gets for S 0
2 is strictly contained in

FP and can be shown not to contain bx
3 c. Shepherdson’s very early weak

arithmetic paper [28], gives an example of the second kind of separation.
Shepherdson studied the relationship between the open axiom of induction
versus the open rule of induction for various languages of arithmetic. For
each language up to the language =, 0, S(x) := x+1, P (x) := max(x−1, 0),
+, ·, bx

nc, for some fixed n ∈ N he showed the open rule of induction is equiv-
alent to a finite number of additional axioms. He was unable to do this when
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.− was added to the language; however, he was able to give a recursive model
for the theory based on the axiom of induction in this language. This model
consisted of elements of the form:

apt
p/q + ap−1t

p−1/q + · · ·+ a1t
1/q + b

where t is indeterminate, p ≥ 0, q > 0, and b ≥ 0 are integers and each
ai is a real algebraic number. Using this model, Shepherdson showed open
statements like y2 6= 2x2 ∨ x = 0 are not provable using the open axiom
of induction. The reason we say either open or sharply bounded formulas
for this kind of separation, is that by adding a sharply bounded µ-operator
symbol to the language one can often make a conservative extension of one’s
theory. The sharply bounded formulas in the resulting theory will then each
be equivalent to an open formula. In terms of separations this makes the
problem only marginally more difficult as it is known that in several common
languages of bounded arithmetic that the sharply bounded formulas express
predicates strictly contained in P [22].

If only because known outright separations of theories within S2 have
been obtained via Σb

1- and sharply bounded formulas, it is important to
get a good characterization of these formulas for the theories S j

2 , j ≥ 1.
And in the last several years a good deal of progress has been made on
this problem [13], [17], [27], [2], [3]. Shepherdson’s paper though shows that
building simple pathological models of open or sharply bounded fragments of
arithmetic might be simpler than for more powerful theories. Some evidence
of this is given by the more recent results can be found in Boughattas and
Ressayre [5] and Boughattas and Ko lodziejczyk [4].

In this paper, we look at ∀Σb
1 and sharply bounded fragments of theories

with the goal of making progress on the question of whether the theory R1
2 is

equal to S 1
2 . As was mentioned above, the ∆̂b

1-predicates of S 1
2 are precisely

the P relations. It is also known that the ∆̂b
1-predicates of R1

2 are precisely
the uniform NC relations [1],[29]. I.e., those relation computable by logspace
uniform polylog depth, polynomial sized circuit families. The P versus NC
question has been open for more than twenty years. So the R1

2 versus S 1
2

is likely to be non-trivial to solve. Nevertheless, if one formulates S 1
2 and

R1
2 over the base theory using prenex formulas, then S 1

2 can be formulated
as having Σ̂b

1 length induction, and R1
2 can be formulated as having Σ̂b

1-
length-length induction together with collection for Σ̂b

1-formulas. If one
drops collection, the Σ̂b

1-definable multifunctions of the resulting theory were
given in Pollett [24]. These multifunctions seem to be significantly weaker
than NC as evidenced by [24], [5] so there is some hope the resulting theory
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could be directly separated from both R1
2 and S 1

2 . Another reason why the
R1

2 versus S 1
2 problem is a potentially viable candidate for separation, is that

Jeřábek [18] has given a good characterization of the Σb
1-consequences of S 1

2

as the theory T 0
2 which has induction for sharply bounded formulas. So

separations based on using the more restricted structure of T 0
2 or its analog

for R1
2 might be possible.

This paper examines a good candidate for a ∀Σ̂b
1-conservative sub-theory

of R1
2 and then in turn tries to find a ∀Σ̂b

0-subtheory of this. As Pollett [24]

has shown that T i,{2 ˙(||id||)}
2 , which over the base theory has induction on

Σ̂b
i -formulas up to terms of the form 2p(||x||) for some polynomial p, is ∀Σ̂b

i+1-

conservative under Ri+1
2 for i ≥ 1, T 0,{2 ˙(||id||)}

2 seems like such a candidate.
We denote by T 0,τ

2 the theory which has sharply bounded induction up to
terms from a set τ of nondecreasing 0- or 1-ary terms. It is straightforward
to come up with a theory of T 0,τ

2 ’s Σ̂b
0-consequences: One restricts the cut-

rule in the sequent calculus formulation of T 0,τ
2 to only allow Σ̂b

0-formulas to
occur as either the principal or side formulas. Using cut-elimination, one can
show this theory, which we will call T−1,τ

2 , is Σ̂b
0-conservative under T 0,τ

2 .

This result applies to both T i,{2 ˙(||id||)}
2 and T 0

2 and makes progress towards
understanding the Σ̂b

0-consequences of R1
2 . We would like to argue that

T−1,τ
2 is weak enough that it could be potentially useful in separations. As

a first step to seeing this we use a witnessing argument and Johannsen’s [19]
block-counting technique to show this theory cannot Σ̂b

1-define divisibility by
3, so this theory is strictly weaker than T 0,τ

2 . Unfortunately, this same block

counting technique shows that T 0,{2 ˙(||id||)}
2 is not ∀Σb

1-conservative under R1
2 .

Although T 0,{2 ˙(||id||)}
2 does not turn out to be ∀Σb

1-conservative under R1
2 ,

by examining Jeřábek’s proof of the T 0
2 result, we are able to come up with

theories which correspond to the ∀Σ̂b
1-consequences of R1

2 . The key step in
Jeřábek’s proof is showing that if a Σb

0 formula φ is safe for bit recursion
then T 0

2 can prove the following comprehension scheme:

∃!w(|w| ≤ |a| ∧ (∀i < |a|)(i ∈ w ⇔ φ(i, w))).

This safety condition is that all occurrences of w in φ occur inside a sub-
formula of the form t > i ∧ t ∈ w for some term t not containing w. This
allows φ to have access to the string w that is being defined provided that
access is to bits to the left of the ones that have yet to be fixed. We come
up with a similar notion for open formulas and we define a class openτ of
open-formulas which are w-restricted-by-intervals of recursion depth τ . Un-
like Jeřábek’s notion our condition on open-formulas is specifically tailored
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to the kinds of recursions that need to be handled in the witnessing argu-
ment. This would presumably allow further tweaks of our class to handle
other theories we do not consider such as theories for logspace or other com-
plexity classes. We show the theory R[1, τ ] := LIOpen+BBΠ̂b

0+Σ̂b
1-INDτ is

∀Σ̂b
1-conservative over TCompτ := LIOpen+Π̂b

0-INDτ+openτ -COMP . We
give a normal form for proofs of this conservativity involving only one use
of comprehension. Here LIOpen is BASIC together with length-induction
for open-formulas. From this result we are able to show, T 0

2 can be alter-
nately defined by restricting the induction axioms to sharply bounded for-
mula of only one alternation. We are also able to give a theory TComp{||id||}

for the ∀Σ̂b
1-consequences of R1

2 . Finally, we can tighten the characteriza-
tion of the ∀Σ̂b

1-consequences of Ĉ 0
2 , a theory for constant depth threshold

circuits given in Johannsen and Pollett [20][21], to the theory consisting
of LIOpen together with opencl-comprehension axioms. Very recently, L.
A. Ko lodziejczyk, Phuong Nguyen and Neil Thapen [14] have come up with
a local improvement principle characterization of the ∀Σb

0-consequences of
S 1

2 . Their development is in a second-order theory and they use the RSUV
isomorphism to obtain their results.

This paper is organized as follows: In the next section we present the
bounded arithmetic theories used in this paper. Then we present our re-
sults about ∀Σ̂b

0-theories and separations via block-counting. We next define
our comprehension theories and do bootstrapping on these theories to show
simple facts they can prove. The paper concludes with our comprehension
conservativety results.

2 Preliminaries

This paper assumes some knowledge of bounded arithmetic such as may
be found in Buss [6], Hájek and Pudlák [12], Kraj́ıček [15], or Cook and
Nguyen [8]. This section will briefly fix some of the notations and definitions
we will need for the remainder of the paper. To start we will be interested
in the language L2 which consists of 0, S, +, x .− y := max(0, x − y), ‘·’,
MSP(x, y) := b x

2y c, |x|, x#y := 2|x||y| and ≤. We will use as our base theory
the 12 open axioms for BASIC given in Jeřábek [18] together with the two
axioms from Allen [1] for x .− y:

x .− y = 0 ⇔ x ≤ y. (1)
x ≤ y ⊃ (x .− y) + y = x (2)
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It will turn out to be convenient to have limited subtraction in the language
so that we can do sequence coding directly using terms.

In the language L2 we will consider various hierarchies of formulas. For
an L2-formula, a quantifier of the form (∀x ≤ t) or (∃x ≤ t) where t is a
term not containing x is called a bounded quantifier. A quantifier of the form
(∀x ≤ |t|) or of the form (∃x ≤ |t|) is called sharply bounded and a formula
is sharply bounded if all its quantifiers are. The bounded formulas of L2 are
classified into hierarchies Σb

i and Πb
i by counting alternations of quantifiers,

ignoring sharply-bounded quantifiers. Formally, a Σb
0 (Πb

0) formula is one
in which all quantifiers are sharply-bounded. The Σb

i+1 (Πb
i+1) formulas

contain the Σb
i ∪ Πb

i formulas and are closed under ¬A, A ⊃ B, B ∧ C,
B ∨ C, sharply-bounded quantification, and bounded existential (universal)
quantification, where A is Πb

i+1 (Σb
i+1) and B and C are Σb

i+1 (Πb
i+1). In

Pollett [24] prenex hierarchies of formulas Σ̂b
i and Π̂b

i were developed. Let
Σ̂b
−1 = Π̂b

−1 be the open-formulas. A formula is Σ̂b
i (resp. Π̂b

i if it is in
Σb

i \ Πb
i−1 (resp. Π̂b

i \ Σ̂b
i−1) and consists exactly i+ 1 bounded quantifiers,

the innermost being sharply bounded, followed by an open matrix. If a
theory is strong enough to prove the BBΣ̂b

i axioms (defined below), then it
can be proven in this theory [24] that any Σb

i -formula is equivalent to a Σ̂b
i -

formula. A similar result holds for Πb
i and Π̂b

i -formulas. For this paper we
will be interested in the theories R1

2 and S 1
2 which can prove Σ̂b

1-collection.
Sometimes the structure of Σ̂b

i and Π̂b
i will be a little too fixed for our

purposes. Given a class of formulas Ψ, we write LΨ for those formulas which
can be made into Ψ formulas by adding “dummy” quantifers. For example,
we are interested in classes like LΣ̂b

i . We will also write expressions like EΨ
(resp. AΨ) to indicate a formula consisting of a bounded existential (resp.
universal) quantifier followed by a Ψ-formula. We write Eτ or Aτ if we want
to indicate that the quantifier has a bound coming from terms in τ .

We formulate our theories in the sequent calculus deduction system LKB
of Buss [6] which extends the usual sequence calculus LK to directly handle
bounded quantifiers. We consider theories where we extend the different
BASIC axioms above by various inductions schemas:

Definition 1 Let τ be a collection of 0 or 1-ary terms. A Ψ-INDτ inference
is an inference:

A(b),Γ → A(Sb),∆
A(0),Γ → A(`(t(A))),∆

where b is an eigenvariable and must not appear in the lower sequent, A is
a Ψ-formula, ` is in τ , and t is a term in the language.

6



The formulas A in the above we call the principal formulas of the infer-
ence; all other other formulas are considered side formulas. Define |x|0 = x,
and |x|m+1 = ||x|m|. Let id(x) := x be the identity function. The nota-
tions IND , LIND , LLIND will be used instead of IND{id}, IND{|id|}, and
IND{||id||}. BASIC formulated in LKB extended by Ψ-INDτ inferences,
without any restrictions on cut, proves the same theorems as BASIC to-
gether with the following Ψ-INDτ axioms [6],[24]:

A(0) ∧ (∀x)(A(x) ⊃ A(Sx)) ⊃ ∀xA(`(x)).

where A is from Ψ and ` is from τ .

Definition 2 (i ≥ 0) The theories T i
2, S i

2, Ri
2 are BASIC+Σb

i -IND and
BASIC+Σb

i -LIND, BASIC+Σb
i -LLIND respectively.

We define S2 := ∪iS i
2.

That S i
2 and T i

2 can be equivalently defined using Σ̂b
i -induction schemas

rather than Σb
i -schemas was shown in Pollett [24]. From Buss [6], it is it

known for i ≥ 0 that
S i

2 ⊆ T i
2 ⊆ S i+1

2 .

In the remainder of this section we recall the pairing function from Clote
and Takeuti [10], and the coding scheme from Pollett [24]. Pairing and
coding will be need to present our collection axioms. Our approach is not
quite the same as these earlier papers in that we will define a function
BLK(a, b, w) used to project out b bits starting at bit position a from w,
which does not occur in those papers, but which will be useful in later
sections.

Definition 3 Given a term t ∈ L2 we define a monotonic term t+ as fol-
lows: If t is constant or a variable, then t = t+. If t is f(s), where f is
a unary function symbol, then t+ is f(s+). If t is s1 ◦ s2 for ◦ a binary
operation other than .− or MSP , then t+ is s+1 ◦ s+2 . Lastly, if t is s1 .− s2
or MSP(s1, s2), then t+ is s+1 .

It is easily proved in BASIC+open-LIND that t+ is monotonic, and t ≤ t+.
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The following terms will be used frequently below. Let

2|x| := 1#x

mod2(x) := x .− 2 · b1
2
xc

BIT(i, x) := mod2(MSP(x, i))
2min(x,|y|) := MSP(2|y|, |y| .− x)

cond(x, y, z) := 1 .− x · y + (1 .− (1 .− x)) · z
LSP(x, i) := x .− 2min(i,|x|) ·MSP(x, i)

BLK(a, b, w) := MSP(LSP(w, a+ b), a)
βa(i, w) := BLK(i · a, a, w)

so that LSP (x, |y|) returns the number consisting of the last |y| bits of x, and
if w codes a sequence 〈b1, . . . , b`〉 with |bi| ≤ |a| for all i, then βa(w, i) = bi.
The code for this sequence is simply the number w whose binary repre-
sentation consists of a 1 followed by the binary representations of the bi
concatenated, each padded with zeroes to be of exact length |a|. If we
set bd(a, s) := 2(2a#2s), then bd(a, s) is thus a bound on the code for a
sequence of length |s| with each item bounded by a.

We also define a pairing operation that does not rely on an explicitly
mentioned bound. Let B = 2|max(x,y)|. Pairs are coded as 〈x, y〉 := (B +
y) · 2B + (B + x). The terms (w)1 := βb 1

2
|w|c .−1(0, βb 1

2
|w|c(0, w)) and (w)2 :=

βb 1
2
|w|c .−1(0, βb 1

2
|w|c(1, w)), project out the left and right coordinates from an

ordered pair. To check if w is a pair we use the formula

ispair(w) := BIT(b1
2
|w|c .− 1, w) = 1 ∧ 2 · |max((w)1, (w)2)|+ 2 = |w| .

Definition 4 For a class of formulas Ψ, the collection inference BBΨ (some-
times called Ψ-replacement) is

Γ → (∃y ≤ t(x))A(x, y),∆
Γ → (∃w ≤ bd(t+(|s|), s))(∀x ≤ |s|)βt+(|s|)(x,w) ≤ t(x) ∧ A(x, βt+(|s|)(x,w)),∆

for each A(x, y) ∈ Ψ.

Pollett [24] gives an alternative formulation of Ri
2 as BASIC+Σ̂b

i -LLIND+BBΣ̂b
i

which we will make use of in a latter section.
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3 Σb
0-theories and Στ

∞-witnessing

In this section, we examine deduction systems which are sharply bounded
in nature. We give one system which characterizes the ∀Σb

0-consequences of
T 0

2 . We also give an upper bound on definability in such theories.

Definition 5 The theory T−1,τ
2 is the theory whose consequences can be

derived in the LKB deduction system with BASIC axioms and allowing Σ̂b
0-

INDτ rules of inference with only Σ̂b
0-side formulas. We write T−1

2 as a
shorthand for T−1,{id}

2 .

We next show that T 0,τ
2 is ∀Σb

0-conservative over T−1,τ
2 in the sense of

the following two theorems.

Theorem 1 Suppose T 0,τ
2 proves A(a) where A is a Σb

0 formula, then T−1,τ
2

proves A(a).

Proof. If T 0,τ
2 proves a Σb

0-formula A, then A has free-cut free sequent
calculus proof [6]. But such a proof will only involve Σb

0-formulas, so would
constitute a T−1,τ

2 proof. �
We have only formulated T−1,τ

2 as a deduction system, and have not
given an axiomatization of this theory. To show we are accurately capturing
the ∀Σ̂b

0-consequences of T 0,τ
2 we need to show that whenever something is

provable in T−1,τ
2 then it also follows from the ∀Σb

0-consequences of T 0,τ
2 .

Theorem 2 Suppose T−1,τ
2 proves a formula A(a), then there is a finite set

of Σb
0-formulas Γ provable in T 0,τ

2 such that Γ ` A(a).

Proof. Let G be the set of open sequents in a free-cut free T−1,τ
2 proof P of

A(a), a Σb
0-formula. Each sequent Ω → Λ in G has a T−1,τ

2 proof, and this
same proof is also a T 0,τ

2 proof. It is also immediate that the open formula
∧∧ Ω ⊃ ∨∨ Λ is provable in T 0,τ

2 and implies the sequent Ω → Λ. Let Γ be
the set of open formulas constructed in this manner from the sequents in
G. Given the definition of T−1,τ

2 , the sequents of P not in G are all derived
by structural, logical, or quantifier inferences. If we took as a set of axioms
the set of first open sequents on any path back through the proof P from
→ A to the leaves, then → A follows from these axioms and these axioms
are implied by Γ. �

Since S 1
2 is Σb

1-conservative over T 0
2 it is immediately follows that:
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Corollary 1 The ∀Σb
0 theorems of S 1

2 are precisely the theorems of T−1
2 .

For the rest of this section we work towards an upper bound with regard
to definability in T−1,τ

2 . We work in a general set-up which will allow us to
derive the results of the next section as well. By (µi ≤ t(a))(f(i,a) = 0)
(bounded µ-operator), we mean the function which returns the least i ≤ t
such that f(i,a) = 0 if such an i exists and returns i+ 1 otherwise.

Definition 6 Let τ be a collection of nondecreasing 0 to 1-ary terms, with
at least one term ` such that BASIC proves ∀x ≥ Sn(0)`(x) ≥ |x| for some
n. A Στ

∞ formula is a bounded formula, all of whose bounded quantifiers
have bounding terms of the form `(t) where ` ∈ τ and t is a term. The
class AΣτ

∞ is defined to be the smallest function algebra which contains the
L2-terms, and is closed under composition and (µi ≤ `(t))(f = 0) for ` ∈ τ ,
t is a term, and f ∈ AΣτ

∞.

The condition on containing at least one ` which grows faster than |x|,
is to ensure the Στ

∞ formulas contain the Σb
0-sets. We also have

Lemma 1 Given A in Στ
∞ there is an function fA ∈ AΣτ

∞ such that fA = 0
iff A holds.

Proof. This is proven by induction on the complexity of A. Given any
atomic formula s ≤ t, we can define fs≤t as 1 .− ((t + 1) .− s). To handle A
which is a boolean combination of subformulas for which we already have
defining functions, we can build fA, using the functions K∧(b, c) := b + c
and K¬(b) := 1 .− b. For A of the form ∀x ≤ `(t)B, we define

fA := (µx ≤ `(t))(fB = 0) .− `(t).

Finally, for A of the form ∃x ≤ `(t)B we rewrite this as ¬∀x ≤ `(t)¬B. �
A bounding term and witness predicate for Στ

∞-formulas are now defined.

• If A(a) ∈ Στ
∞ then tA = 0 and WIT τ

A(w,a) := A(a) ∧ w = 0.

• If A(a) ∈ EΣτ
∞ \ Στ

∞ is of the form ∃x ≤ tB(x,a) where B(x,a) is
from Στ

∞, then tA := t+A and

WIT τ
A(w,a) := w ≤ t ∧ WIT τ

B(w,a) .

The following lemma is immediate from Στ
∞ being witness suitable and

from the definition of witness predicates:
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Lemma 2 If A(a) ∈ LEΣτ
∞, then:

(1) WIT τ
A is a Στ

∞-predicates.

(2) BASIC ` ∃w ≤ tA(a)WIT τ
A(w,a) ⊃ A(a).

The witness predicate is extended to a witness predicate on cedents using
iterated pairing as was done in [6][25].

Definition 7 A deduction system T is Στ
∞-suitable if it is an extension

of LKB, all of its axioms are Στ
∞-formulas, free-cut free elimination can

be carried out for T , and the new rules of inference in T only allow Στ
∞-

formulas in the lower sequent.

Since T−1,τ
2 only allows induction inferences in which all the side-formulas

are Σb
0 = Σ{|id|}

∞ , it follows that T−1,τ
2 is Σ{|id|}

∞ -suitable. As another exam-
ple, if one formulates T 0,τ

2 with axioms for its induction principles rather
than induction inferences, then the resulting theory will be Στ

∞-suitable.

Theorem 3 Let T be Στ
∞-suitable. Suppose

T ` Γ → ∆

where Γ and ∆ are cedents of LEΣτ
∞-formulas. Let a be the free variables

in this sequent. Then there is a AΣτ
∞ function f such that

N |= WIT τ
∧Γ(w,a) → WIT τ

∨∆(f(w,a),a).

Proof. This is proven by induction on the number of sequents in an T -
proof of Γ → ∆. By cut-elimination, we can assume all the sequents in the
proof are in LEΣτ

∞. In the base case, the proof consists of sequent → A
where A is a logical axiom, an equality axiom, a BASIC axiom, or an axiom
of T . Since T is Στ

∞-suitable, in each of these cases the witness predicate
is A ∧ w = 0. So we can choose f to be the zero function. The weak
inferences, structural inferences, and cut can be handled in essentially the
same way as in the Si

2 case of the witnessing argument in Buss [6]. We show
the (∃ ≤:left), (∃ ≤:right) cases, and T -rule cases — (∀ ≤:left), (∀ ≤:right)
cases are handled similarly.
(∃:left case)

b ≤ t, A(b),Γ → ∆
∃x ≤ tA(x),Γ → ∆

11



By hypothesis there is a g ∈ AΣτ
∞ such that

N |= WIT τ
b≤t∧A∧(∧∧Γ)(w,a, b) ⊃ WIT τ

∨∨∆(g(w,a, b),a, b).

There are two subcases. In each case, we need to determine a value for
the free variable b and then run g using that value. First, suppose (∃x ≤
t)A(x) ∈ EΣτ

∞. If w is a witness for (∃x ≤ t)A(x) ∧ Γ, then (w)1 is a value
for b such that A(b) holds. Let our new witness function be

f(w,a) = g(〈〈0, 0, (w)2〉〉,a, (w)1).

This is in AΣτ
∞ and fulfills the requirement that:

N |= WIT τ
(∃x≤t)A∧(∧∧Γ)(w,a) ⊃ WIT τ

∨∨∆(f(w,a),a).

The second case is when (∃x ≤ t)A(x) ∈ Στ
∞. In this case, let fA be the

function in AΣτ
∞ which by Lemma 1 has the property that fA(x) = 0 iff

A(x). We define f to be the same as in the above case except rather than use
(w)1 to give a value b we instead use the AΣτ

∞ function (µx ≤ t)[fA(x) = 0]
to give a value for b.
(∃:right case)

Γ → A(t),∆
t ≤ s,Γ → (∃x ≤ s)A(x),∆

By hypothesis there is a g ∈ AΣτ
∞ such that

N |= WIT τ
∧∧Γ(w,a) ⊃ WIT τ

A(t)∨(∨∨∆)(g(w,a),a).

The definition of WIT τ implies

N |= WIT τ
t≤s∧(∧∧Γ)(w,a) ⊃ t ≤ s ∧ WIT τ

∧∧Γ((w)2,a).

If (∃x ≤ s)A(x) ∈ EΣτ
∞ define f := 〈t(a), (g((w)2,a))2〉. Otherwise, define

f := g((w)2,a)).
These functions are all AΣτ

∞ and satisfy:

N |= WIT τ
t≤s∧(∧∧Γ)(w,a) ⊃ WIT τ

(∃x≤s)A(x)∨(∨∨∆)(f(w,a),a).

(T -rule case) Suppose the lower sequent of a T -rule is Γ → ∆. Since the
lower sequent of a T -rule involves only Στ

∞-formulas, witnesses for both Γ
and ∆ can be directly built-up using pairing and 0. So the witness function
can ignore its input and just output the appropriate witness pairing for ∆.

This completes all possible cases and the proof. �
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Corollary 2 The Σ{|id|}
∞ -definable functions of T−1

2 and S 0
2 are contained

in AΣ{|id|}
∞ . As Σb

0 = Σ{|id|}
∞ , it follows both the Σb

0-definable functions of
these theories are contained in AΣ{|id|}

∞ .

Proof. Let T be either T−1
2 or S 0

2 . If T can Σ{|id|}
∞ -define a function f , then

there is some Σ{|id|}
∞ -formula Af (a, b) defining its graph such that T proves

∀x∃yAf (x, y). So Parikh’s Theorem implies T `→ ∃y ≤ tAf (a, y) for some
term t. So the result then follows from Theorem 3 taking Γ to be empty
and ∆ to be Af . �

Essentially the same proof, but choosing T = T 0,{2 ˙(||id||)}
2 , gives:

Corollary 3 The Σ{2 ˙(||id||)}
∞ -definable functions of T 0,{2 ˙(||id||)}

2 are contained

in AΣ{2 ˙(||id||)}
∞ .

4 Separations

We next use our witnessing result to prove a sequence of separations of
bounded arithmetic theories. We first show that T−1

2 is a strictly weaker the-

ory than T 0
2 , then we show that R1

2 is not ∀Σ̂b
1-conservative over T 0,{2 ˙(||id||)}

2 .

Definition 8 The function #B(x) returns the number of alternations be-
tween 1 and 0 in reading the binary number x from left to right. We start
the counting of this number at 1 so #B(1) = 1.

As an example, let x be the binary number 1010011 then #B(x) = 5.
The following lemma is a consequence of Lemma 35 in Pollett [25] once one
notices that #B((µi ≤ `(t(x))(f = 0)) ≤ |`(t+(x))|.

In what follows, let `′, ` be either the pair |x| and 2||x||
2

or the pair 22|||x|||2

and 2|x|.

Lemma 3 Suppose for every `′′ ∈ τ , `′′(x) ∈ O(`′(x)). If f(x) ∈ AΣτ
∞ and

#B(xi) ≤ |`(xi)| then #B(f(x)) ≤ c ·(|`′(x1)|+ · · ·+ |`′(xn)|)d for some fixed
integers c and d.

Theorem 4 Let τ , `′, and ` be as above. Then AΣτ
∞ does not contain

b `(x) .−1
3 c.
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Proof. Notice #B(`(x) .−1) = 1, yet b `(x) .−1
3 c is a number of length |`(x)|−1

of the form 1010 · · · . Hence, #B(byc) = |`(x)| − 1 > |`′(x)|d for any fixed d

provided x is large enough. So by Lemma 3, b `(x) .−1
3 c is not in AΣτ

∞. �
The choices of `′ and ` in the above are for expediency to the particular

results we obtain below and could have been relaxed considerably while still
having Theorem 4 hold.

Theorem 5 Let ` be as above. The theory T 0,{`}
2 can prove:

∃z ≤ `(x)(3 · z = `(x) ∨ 3 · z + 1 = `(x) ∨ 3 · z + 2 = `(x)). (3)

Proof. Consider the Σb
0-formula A(y, x) defined as B(`(x) .− y, x) where

B(y, x) is:

|y| ≤ |`(x)| ∧ ∀i ≤ |`(x)|∀j ≤ |`(x)|[j > i ⊃
3 ·MSP(y, j) ≥MSP (`(x), j) ∨
3 ·MSP(y, j) + 1 = MSP (`(x), j) ∨
3 ·MSP(y, j) + 2 = MSP (`(x), j)]

Then A(0, x) holds, but A(`(x), x) does not. So T 0,{`}
2 proves by Σb

0-IND`

that ∃y ≤ `(x)(A(y, x) ∧ ¬A(Sy, x)). It is not hard to see that Sy satisfies
the existential in the formula (3). �

Corollary 4 T 0
2 is not Eopen-conservative over T−1

2 .

Proof. Consider the Eopen statement of Theorem 5 where ` := 2|x|. The
theory T 0

2 ⊇ T 0,{`}
2 proves this statement. On the other hand, by Theorem 4

and Corollary 2, the theory T−1
2 does not. �

The same proof also gives:

Corollary 5 Let ` and τ be as above. Then T 0,{`}
2 is not E`open-conservative

over T 0,τ
2 . So S 0

2 = T 0,{|id|}
2 ( T 0,{2||x||2}

2 ⊆ T 0,{2 ˙(||id||)}
2 .

We now turn our attention to the R1
2 versus T 0,{2 ˙(||id||)}

2 result.

Corollary 6

T 0,{2 ˙(||id||)}
2 cannot Σ{2 ˙(||id||)}

∞ -define b2|x| .−1
3 c.
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R1
2 is not ∀Σ̂b

1-conservative over T 0,{2 ˙(||id||)}
2 or any T 0,τ

2 where τ is as above.

Proof. The first result follows from Theorem 4 and Corollary 2. For the
second result, R1

2 can Σ̂b
1 define any function in uniform NC [29] and so can

define bx
3 c. Then observe LEΣ{2 ˙(||id||)}

∞ contains Σ̂b
1-formulas. �

5 Comprehension Theories and Bootstrapping

In this section, we examine how much needs to be added to T 0,{2 ˙(||id||)}
2

in order to make it Σ̂b
1-conservative under R1

2 . We will develop theories
based on variants of open-comprehension axioms and prove these theories’
definable functions are closed under various operations.

Definition 9 Ψ-COMP axioms are substitution instances of the axioms
COMPA:

(∃w ≤ 2|a|)(∀i ≤ |a|)
(
BIT(i, w) = 1 ⇔ A(i, a,b)

)
.

where A is a Ψ-formula.

Definition 10 Let LIOpen be the theory BASIC+open-LIND.

Pollett [24] shows the next result which in turn implies the w given by
the open-COMP rule is unique.

Lemma 4 LIOpen proves the bit-extensionality axiom:

|a| = |b| ∧ (∀i ≤ |a|)
(
BIT(i, a) = BIT(i, b)

)
⊃ a = b .

Notice the formula A in open-COMP does not involve w. This rules
out situations which would contradict the existence of w such as A(i, w) :=
BIT(i, w) = 0. We next consider one way to extend the open-COMP axioms
to allow for the use of a w in A. To extend the comprehension axiom, we
split up the string w we are defining into bit intervals. That a variable i
defining a bit position of w belongs to such an interval can be expressed as
an open-formula:

i ∈ [a,b) := a ≤ i ∧ i < b

We are interested in intervals of the form: i ∈ [a, a + c · 2min(b,|d|)), which
start at a bit position a and go for c blocks of b-bits. We will tend to
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suppress d when it is clear that b ≤ |d| for some d. Since we can only
easily express divisibility by 2 as a term in our language, we will tend to use
i ∈ [a, a + c · 2min(b,|d|)) where a is of the form 2||a

′|| and b is of the form ||b′||.
Suppose we use an open formula A(i, w, z) to define w. In our definition
below, we will restrict A’s access to w in one of three ways: (1) it makes
no mention of w. (2) If we already had a way to mention w in B(i, w, j, z)
for i ∈ [0, 2||t||) that allows for comprehension, and we consider those cases
where j ≤ |s|, then we allow A to be B(i .− b i

2||t|| c · 2||t||, w, b i
2||t|| c, z) on

i ∈ [0, |s| · 2||t||). (3) We allow A access to w on a range [0, 2||r
+|| + ` · 2||s+||)

if A meets the following criteria: (a) For A in the bit range [0, 2||r
+||), A

is given by some formula B0(j, w′,b) where B0 is a formula such that if w′

has length less than 2||r
+||, we can do comprehension for B0 with respect

to this variable. (b) For A in the bit range [2||r
+||, 2||r

+|| + ` · 2||s
+||), A

is defined using a formula B1(i, w′, v′, n,b) such that if w′ has length less
than 2||s

+|| we can do comprehension for B1 with respect to w′. (c) For A
in the bit range [2||r

+||, 2||r
+|| + 2||s

+||), we project out the 2||s
+|| bits from

[2||r
+||, 2||r

+|| + 2||s
+||) and use these for w′ and we use bits [0, 2||r

+||) of w for
v′. (d) For A in a bit range of the form [2||r

+||+j ·2||s+||, 2||r
+||+(j+1)·2||s+||),

we project out these bits from w and use them for w′ and we project out
the previous 2||s

+|| bits and use them for v′.
These conditions on A’s access to w were tailored so that we could prove

functions defined using comprehension had certain closure properties. Con-
dition (2) will be used to show the comprehension-defined functions are
closed under a kind of concatenation recursion and Condition (3) will be
used to show the comprehension-defined functions are closed under a kind
of bounded primitive recursion as well as composition. We now give a more
precise definition of our conditions which will show that we can express the
above using open formulas.

Definition 11 Let τ be a set of nondecreasing 0 or 1-ary terms. An open-
formula A(i, w,b) is w-restricted-by-intervals to recursion depth τ if:

(1) A does not involve w,

(2) A is of the form i ∈ [0, |s| · 2||t||) ∧ B(i .−b i
2||t|| c·2||t||, β2||t||(b i

2||t|| c, w), b i
2||t|| c,b),

where B(i, w, a,b) is w-restricted-by-intervals to recursion depth τ , and s, t
are terms not involving w or i.

(3) A is a disjunction of a formula

i ∈ [0, 2||r
+||) ∧ B0(i,BLK(0, 2||r

+|| .− 1, w),b)
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with a formula C1(r, s, `, B1):

i ∈ [2||r
+||, 2||r

+|| + ` · 2||s+||) ∧[(
b i

.− 2||r
+||

2||s+|| c = 0 ∧ B1(i .− 2||r
+||,BLK(2||r

+||, 2||s
+|| .− 1, w),BLK(0, 2||r

+|| .− 1, w), 0,b)
)
∨

(
b i

.− 2||r
+||

2||s+|| c > 0 ∧ B1(i .− (2||r
+|| + b i

.− 2||r
+||

2||s+|| c · 2||s+||),

BLK(2||r
+|| + b i

.− 2||r
+||

2||s+|| c · 2||s+||, 2||s
+|| .− 1, w),

BLK(2||r
+|| + (b i

.− 2||r
+||

2||s+|| c .− 1) · 2||s+||, 2||s
+|| .− 1, w), b i

.− 2||r
+||

2||s+|| c,b)
)]

where B0(j, w′,b), B1(j, w′, v′, n,b) are w′-restricted-by-intervals to recur-
sion depth τ , and where r and s are terms not involving w or i, and `(b) is
from τ .

Let openτ be the class of open-formulas which are w-restricted-by-intervals
to recursion depth τ . For the remainder of this section, we assume that τ
contains at least one term of growth rate provably in BASIC greater than
or equal to ||x||.

Definition 12 Let TCompτ be the theory LIOpen+Π̂b
0-INDτ+openτ -COMP.

We will show TComp{||id||} is ∀Σ̂b
1-conservative under R1

2 .

Lemma 5 Let R[1, τ ] := LIOpen+BBΠ̂b
0+Σ̂b

1-INDτ . (1) R[1, τ ] proves the
openτ -COMP axioms so contains TCompτ . (2) BASIC+E{|id|}A{|id|}-IND
proves the open{|id|}-COMP axioms. (3) LIOpen proves the w asserted by
an openτ -COMP axiom is unique.

Proof. (1) This is proven by induction on the complexity of a given openτ -
formula A(i, w,b). To handle the base case we note that by unwinding
definitions we have β1(i, w) = BIT(i, w), and note that R[1, τ ] proves

∀i ≤ |a|∃!y ≤ 1(A(i, w,b) ⇔ y = 1 ∧ ¬A(i, w,b) ⇔ y = 0)

Since A is open we can apply BBΠ̂b
0, to thus prove the desired COMPA

axiom. Suppose A is defined by Definition 11 case (2). So A is of the form:

i ∈ [0, |s| · 2||t||) ∧ B(i .− b i

2||t||
c · 2||t||, β2||t||(b

i

2||t||
c, w), b i

2||t||
c,b) ,
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where by the induction hypothesis we can already prove COMPB(i,w,n,b).
So R[1, τ ] can prove

∀n ≤ |a|∃w ≤ 2|c|∀i ≤ |c|
(
Bit(i, w) = 1 ⇔ B(i, w, n,b)

)
The formula inside the existential is Π̂b

0 since B is open, so by BBΠ̂b
0 we get:

∃w′ ≤ bd(c, a)∀n ≤ |a|∀i ≤ |c|
(
Bit(i, β|c|(n,w

′)) = 1 ⇔ B(i, β|c|(n,w
′), n,b)

)
so R[1, τ ] proves comprehension for case (2) after substituting terms for a
and c, and then merging the two universal quantifiers into one, everywhere
replacing the two variables i and n by appropriate terms of the single merged
variable. Finally, suppose A(i, w,b) is defined by Definition 11 case (3). Let

t := 22||r+||+`·2||s+||
. Consider the Σ̂b

1-formula C(u):

∃w ≤ 2min(2||r+||+(u+1)·2||s+||,|t|)∀i ≤ |t|
[
b i

.− 2||r
+||

2||s+|| c ≤ u ⊃
(
BIT(i, w) ⇔ A(i, w,b)

)]
The w asserted to exist by C(0) consists of the 2||r

+|| given by B0 concate-
nated with the 2||s

+||-bits of the first disjunct in C1. Given the induction
hypothesis we have comprehension for B0 and B1, so R[1, τ ] can prove the
existence of w in the C(0) case. A similar argument shows C(u) ⊃ C(Su).
Thus by Σ̂b

1-INDτ , R[1, τ ] proves C(`) and the w in this case is what is as-
serted by COMPA axiom (as A is always false outside the specified interval).

(2) Let T := BASIC+E{|id|}A{|id|}-IND and letA(i, w,b) be an open{|id|}-
formula. Consider the formula Ψ(w):

|w| ≤ |a| ∧ ∀i < |a|(∀j < |a|(j > i ⊃
(BIT(j, w) = 1 ⇔ A(j, w,b))) ⊃ (BIT(i, w) = 1 ⊃ A(i, w,b))).

This is an A{|id|}E{|id|}-formula and T proves Ψ(0) and ¬Ψ(2|a|). Since
by reverse induction one can show the E{|id|}A{|id|}-IND axioms imply the
A{|id|}E{|id|}-IND , T proves the existence of a w such that Ψ(w) ∧ ¬Ψ(Sw).
That this w then satisfies the COMP axiom then follows by essentially the
same argument as in Jeřábek [18] Lemma 4.2.

(3) Follows from Lemma 4. �
To establish our conservation result we next show certain definable func-

tions of TCompτ are closed under the operations needed to carry out a
witnessing argument.
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Definition 13 We say a function f is τ -comprehension-defined if there is
an openτ -formula, Af (i, w,x) and terms OUTf (w,x), and tf such that

f(x) = y ⇔
(∃w ≤ 2|tf (x)|)(∀i ≤ |tf (x)|)

(
BIT(i, w) = 1 ⇔ Af (i, w,x) ∧ OUTf (w,x) = y

)
Ignoring the complexity associated with the definition of openτ , the no-

tion of τ -comprehension-defined is a marginally simpler variant of Jeřábek [18]’s
notion of bit-recursively defined. It is possible in our setting because we have
.− in the language, and so the language supports projections of bits using

terms.

Lemma 6 TCompτ can Σ̂b
1-define the τ -comprehension defined functions.

Proof. Let f(~x) be τ -comprehension defined via Af (i, w,x) ∈ openτ and
terms OUTf (w,x), tf . Let Bf (i, w,x) be the formula(

BIT(i, w) = 1 ⇔ Af (i, w,x)
)
.

By Lemma 5 (3) and using openτ -COMP , TCompτ proves:

(∃!w ≤ 2|tf (x)|)(∀i ≤ |tf (x)|)Bf .

Let
Cf (i, w,x) :=

(
Bf (i, w,x) ∧ OUTf (w,x) = OUTf (w,x)

)
.

Certainly, TCompτ proves Bf (i, w,x) ⇔ Cf (i, w,x). So TCompτ

(∃!w ≤ 2|tf (x)|)(∀i ≤ |tf (x)|)Cf .

Using this and (∃ : right) inference it can therefore prove:

(∃y)(∃w ≤ 2|tf (x)|)(∀i ≤ |tf (x)|)
(
BIT(i, w) = 1 ⇔ Af (i, w,x) ∧ OUTf (w,x) = y

)
.

Uniqueness of y can then be proven from the uniqueness of w which in turn
follows by bit-extensionality. �

Lemma 7 Let φf (x, y) denote the whole formula used to τ -comprehension
define the function f . For any term s(x), there is a φs(x, y) such that
BASIC proves φs(x, s(x)).

Proof. Define As as 0 = 1, so w = 0 will witness the existential. Then take
OUTs(w,x) to be s(x) and ts = s+. The statement trivially follows. �
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Lemma 8 The τ -comprehension-defined functions are closed under compo-
sition.

Proof. We show the single parameter case, and leave the general case to
the reader. Suppose f(x) and g(y) are τ -comprehension-defined where f is
defined by

(∃w ≤ 2|tf (x)|)(∀i ≤ |tf (x)|)
(
BIT(i, w) = 1 ⇔ Af (i, w, x) ∧ OUTf (w, x) = y

)
and g is defined by

∃w′ ≤ 2|tg(y)|)(∀i ≤ |tg(y)|)
(
BIT(i, w′) = 1 ⇔ Ag(i, w′, y) ∧ OUTg(w′, y) = z

)
To define h = g◦f , notice if Ag(i, w′, y) is w′-restricted-by-intervals to recur-

sion depth τ , so is B1(i, w,w′, x) := Ag(i, w′,OUTf (BLK(0, 2||t
+
f ||, w), x)),

simply because the argument inserted into the third parameter does not
involve w′. Notice we do not make use of the parameter n of B1 from
Definition 11. Then define the openτ -formula Ag◦f as the disjunction:

i ∈ [0, 2||t
+
f ||) ∧ Af (i,BLK(0, 2||t

+
f ||, w), x) ∨ C1(tf , tg, 1, B1)

Here Af plays the role of B0 in Definition 11 case (3). Since ` = 1, only the

b i .−2
||t+

f
||

2||t+g ||
c = 0 disjunct of C1 ever applies. Finally, define OUTh(w, x) as

OUTg(BLK(2||t
+
f ||, |t+g | .− 1, w),OUTf (BLK(0, |t+f |, w))

and th(|x, y|) as 2|t
+
f |+|t+g |. �

We next argue openτ -COMP implies the τ - comprehension-defined func-
tions are closed under the following recursion scheme:

Definition 14 Suppose h0(n,b), h1(n,b) ≤ 1. A function f is defined by
concatenation recursion on notation (CRN) from g, h0, and h1 if

f(0,b) = g(b)
f(2n,b) = 2 · f(n,b) + h0(n,b), provided n 6= 0

f(2n+ 1,b) = 2 · f(n,b) + h1(n,b)

Lemma 9 The τ -comprehension-defined functions are closed under CRN.
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Proof. Suppose that f is defined by CRN from g(b) and h0(n,b), h1(n,b),
where g, h0, h1 are τ -comprehension defined in TCompτ . Define u(a,b) to
be

|a|∑
n=0

cond(BIT(|a| .− n, a), h0(n,b), h1(n,b)) · 2n ,

then f(a,b) = g(b) · 2|u(a,b)| + u(a,b). It suffices to show the sum u(a, v) is
τ -comprehension-defined, since then f(a,b) will be by composition.

Notice

k(n, a,b) := cond(BIT(|a| .− n, a), h0(n,b), h1(n,b))

is τ -comprehension-defined by composition. LetAk(i, w, n, a,b), OUTk(w, n, a,b),
tk be used in its definition. So u(a,b) is equal to the sum

∑|a|−1
n=0 k(n, a,b) ·

2n. A witness string w for this sum can be defined from the concatenation
of the witnesses wn for Ak(i, wn, n, a,b) for each value of 0 ≤ n < |a|, fol-
lowed by a string y which concatenates the values of OUTk(wn, n, a,b). The
formula

Ak′ := i ∈ [0, |a| · 2||tk||) ∧ Ak(i .− b i

2||tk||
c, β2||tk||(b

i

2||tk||
c, w), b i

2||tk||
c, a,b)

is w-restricted-by-intervals to recursion depth τ by case (2) of Definition 11.
So the function k′ which returns the concatenation of the wn’s, can be

defined using this formula, setting tk′(a,b) = 22
||t+

k
(|a|,a,b)|||a|, and setting

OUTk′ := w. If v were the output of k′(a,b) then

At(n, v, a,b) := OUTk(BLK(n · 2||tk||, |tk|, v), n, a,b) = 1

holds if k(n, a,b) is 1. Using open-comprehension (i.e., case (1) of Defini-
tion 11) we can openτ -comprehension define a function t(v, a,b) which given
v computes a string w′ such that

∀n ≤ |a|(BIT(n,w′) ⇔ At(n, v, a,b)).

So by composition u(a,b) = t(k′(a,b), a,b) is τ -comprehension defined. �
Another ingredient we need in order to prove our conservation result is

closure under the following recursion scheme useful for witnessing induction
rules:
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Definition 15 The function f is defined by τ -bounded primitive recursion
(BPRτ ) from functions g, h, t, and r if

F (0,b) = g(b)
F (n+ 1,b) = min(h(n,b, F (n,b)), r(n,b))

f(n,b) = F (`(k(n,b)),b)

for some r, k ∈ L2 and ` ∈ τ .

Lemma 10 The τ -comprehension-defined functions are closed under BPRτ .

Proof. Suppose f is defined by BPRτ from g, h, F , k, and r as in the above
definition. Suppose g, h are τ -comprehension-definable. Let h′(n,b, z) be
min(h(n,b, z), r(n,b)). This is τ -comprehension-definable by Lemma 8. Let
g be defined by

(∃w ≤ 2|tg(b)|)(∀i ≤ |tg(b)|)
(
BIT(i, w) = 1 ⇔ Ag(i, w,b) ∧ OUTg(w,b) = y

)
and let h′ be defined by proving

(∃w ≤ 2|th′ (n,b,z)|)(∀i ≤ |th′(n,b, z)|)
(

BIT(i, w) = 1 ⇔ Ah′(i, w, n,b, z) ∧ OUTh′(w, n,b, z) = y
)

Since z ≤ r(n,~b) we can choose a term th′ that bounds w which only depends
on n and b. We can also find monotonic terms tOUTg(b) and tOUTh′(n,b)
which bound the output sizes of g and h′. In the same way as we argued
in the closure under CRN proof when discussing the functions k′ and t, we
can find a formula Ag′(i, w,b) which is w-restricted-by-intervals to recursion
depth τ , and such that Ag(i,BLK(0, |tg|, w),b) and

OUTg(BLK(0, |tg|, w),b) = BLK(2||tg ||, |tOUTg|, w)

hold whenever Ag′(i, w,b) holds. Let tg′ be an appropriate bounding term.
Similarly, we can find a formula Ah′′(i, w,b, z) which is w-restricted-by-
intervals to recursion depth τ such that Ah′(i,BLK(0, |th′ |, w), n,b, z) and

OUTh′(BLK(0, |th′ |, w), n,b, z) = BLK(2||th′ ||, |tOUTh′ |, w)

hold whenever Ah′′(i, w, n,b, z) holds. We define an openτ -formula Af using
Definition 11 case 3, where we set B0(j, w′,b) := Ag(j, w′,x) and set the r
of Definition 11 to tg. We then set

B1(j, w′, v′, n,b) :=
Ah′′

(
j, v′, n,b, cond(n,BLK(2||tg ||, |tOUTg|, w′),BLK(2||th′ ||, |tOUTh′ |, w′)))
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We set tf := 22
||t+

h′′ |||`|. Finally, to complete the definition of f set OUTf (w, n,b)
to be the term

BLK(2||g
′|| + (`− 1)2||t

+
h′′ || + 2||th′ ||, |tOUTh′ |, w).

�
Given that the comprehension-defined functions contain the L2-terms,

are closed under composition, and are closed under CRN, the next two
lemmas are proven as in Lemma 6 in Clote [9] and Lemma 4 in Johannsen
and Pollett [21].

Lemma 11 Let t be a τ -comprehension defined. (1) TCompτ proves (µi ≤
|a|)(t(x, a) = 0) is τ -comprehension-defined. (2) Given any Σb

0-formula A
its graph χA is τ -comprehension-defined.

Lemma 12 min(ba
b c, |c|) is τ -comprehension-defined.

Closure under CRN allows one to show closure under certain kinds of
sums which will be useful in our witnessing argument to handle R1

2 ’s quanti-
fier inferences. Suppose g(n,x) ≤ t(x) and s, t are terms. Then a length-sum
is a sum of the form

|s|∑
n=0

g(n,x) · 2n·|t+| .

Lemma 13 The τ -comprehension-defined functions are closed under length-
sums.

Proof. Suppose we want to define the length-sum

f(a, x) :=
|a|∑

n=0

h(n, x)2n|s+(x)|

where h(n, x) ≤ s(x) is comprehension defined and s(x) is a term. We use
Lemma 9 and use CRN to compute the bits of f from the most significant
bit to the least significant bit. The function

t(i, a, x) := |a| .− b|i|/|s+(x)|c

(definable using µ) allows us to determine which term in f we are computing
the bits from. The function

p(i, x) := |s+(x)| .− (|i| .− b|i|/|s+(x)|c|s+(x)|) .− 1

23



gives us the position within a term. Define the function f ′ by CRN in the
following way:

f ′(0, a, x) = BIT(p(0, x), h(t(0, a, x), x))
f ′(2i+ 1, a, x) = f ′(2i, a, x) = 2f ′(i, a, x) + BIT(p(i, x), h(t(i, a, x), x)).

Then the desired f(a, x) is f ′(2|a||s
+(x)|+|h(|a|,x)| .−2, a, x). The expression in

the first component of f ′ is easily defined using ·, #, and MSP. �
In closing this section, we remark that if a function f is τ -comprehension

defined by one of the closure conditions mentioned in this section, then
given a witness w for the formula defining f , and given witnesses for the
defining formulas of the functions from which f is defined, then the theory
LIOpen+Π̂b

0-INDτ suffices to prove that OUTf definitionally follows from
the OUT terms used to define f . The kind of arguments needed to show
these facts will be illustrated by the induction case of the witnessing argu-
ment in the next section.

6 A ∀Σ̂b
1-conservation result

We are now in a position to prove a witnessing theorem that will yield the
conservation results between our comprehension theories and S 1

2 , R1
2 , and

Ĉ 0
2 . In order to do this, we extend the definition of the WIT {|id|}

A predicate
to the handle the case where A(a) is of the form (∀x ≤ |s|)B(x,a) where
B(x,a) ∈ EΣ{|id|}

∞ . To keep the notation under control, for the remainder of
this section we will write WITA rather than WIT {|id|}

A . For this new case,
we set tA := bd(t+B(|s|), s) and

WITA(w,a) := w ≤ tA ∧ (∀x ≤ |s|)WITB(βtA(x,w), x,a)) .

Given a comprehension defined function f via Af , tf , and OUTf , let ψf

denote the following formula

(∀i ≤ |tf (x)|)(BIT(i, w) = 1 ⇔ Af (i, w,x)).

Theorem 6 Let R[1, τ ] := LIOpen+BBΠ̂b
0+Σ̂b

1-INDτ and let T [0, τ ] :=
LIOpen+Π̂b

0-INDτ . Suppose R[1, τ ] ` Γ → ∆ where Γ and ∆ are cedents
of LA{|id|}EΠ̂b

0-formulas with free variables among a. Then there is a τ -
comprehension-defined function f such that:

T [0, τ ] ` ψf (v, w,a) ∧ WIT∧∧Γ(w,a) ⊃ WIT∨∨∆(OUTf (v, w,a),a).
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Proof. Here we use v to denote the variable that would be existentially
quantified over if ψf were a subformula of a COMP axiom. Theorem 6
is proven by induction on the number of sequents in a R[1, τ ] proof of
Γ → ∆. By cut-elimination, we can assume all the sequents in the proof
are LA{|id|}EΠ̂b

0. We formulate open-LIND as a Π̂b
0-axiom. As the corre-

sponding witness formula can be witnessed by setting w = 0, we can easily
handle this case. Most of the other cases are similar to previous witnessing
arguments so we only show the (∀ : right) case, Σ̂b

1-INDτ case and the BBΠ̂b
0

case.
(∀:right case) Suppose we have the inference:

b ≤ t,Γ → A(b),∆
Γ → ∀x ≤ tA(x),∆

By the induction hypothesis there is a τ -comprehension defined function g
such that

T [0, τ ] ` ψg(v, w,a) ∧ WIT b≤t∧(∧∧Γ)(w,a, b) ⊃
WITA∨(∨∨∆)(OUTg(v, w,a, b),a, b) .

By cut-elimination, (∀x ≤ t)A(x) is a LA{|id|}EΠ̂b
0-formula, so t must be

of the form t = |s|. There are two case: where A is Π̂b
0 and where A is

A{|id|}EΠ̂b
0. In the first case, let y be (µi ≤ |s|)(¬A(i)) and define f to be

g(〈0, w〉,a, y). The 0 in the ordered pair is since WIT b≤t(w, b) := b ≤ t ∧
w = 0. This is τ -comprehension defined by Lemma 11 and it is not hard to
show that

T [0, τ ] ` ψf (v′, w,a) ∧ WIT∧∧Γ(w,a) ⊃ WIT ∀x≤|s| A∨(∨∨∆)(OUTf (v′, w,a),a) .

In the second case, since WITA is a Π̂b
0-formula, its characteristic function

χWITA
is comprehension defined. Let k be the function

k(w,a) = (µj < |s|)[¬WITA((g(〈0, w〉,a, j))1,a, j)] .

Let t′ := (tA(t))+ where tA(x) is from Lemma 2. Now define f(w,a) from k
using cond as follows:

f(w,a) =

{
〈
∑|s|

j=0(g(〈0, w〉,a, j))1 · 2j·|t′|, 0〉 if k(w,a) = |s|+ 1
〈0, (g(〈0, w〉,a, k(w,a)))2〉 otherwise

,

then

T [0, τ ] ` ψf (v′, w,a) ∧ WITΓ(w,a) ⊃ WIT ∀x≤|s| A∨(∨∨∆)(OUTf (v′, w,a),a) .
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(Σ̂b
1-INDτ case) Suppose we have the inference

A(b),Γ → A(Sb),∆
A(0),Γ → A(|s|),∆

where A is an Σ̂b
1-formula and s is a term. We assume a contains all free vari-

ables except b in the upper and lower sequent. By the induction hypothesis
there is a comprehension defined function g such that

T [0, τ ] ` ψg(v, w,a) ∧ WITA(b)∧(∧∧Γ)(w, b,a) ⊃
WITA(Sb)∨(∨∨∆)(OUTg(v, w, b,a), b,a).

Informally, the idea to witness the lower sequent is the following: run g on
w a witness for A(0),Γ. Either this witnesses A(S0) or it witnesses ∆. In
the latter case, we are done. In the former case, we run g on the witness just
produced for A(S0) together with (w)2 which is supposed to be a witness
for Γ. We keep repeating this process until we get a witness for ∆ or we
finally get a witness for A(`(s)). More formally, using Lemma 10, we τ -
comprehension-define a function f by BPRτ in the following way. First, we
let

k(v, w,a) = cond(WIT∨∆((v)2,a), w, v).

This is τ -comprehension-definable by Lemma 8, Lemma 7, and Lemma 11.
We would like to define f by the following recursion

F (0, w,a) = 〈(w)1, 0〉
F (Sb,w,a) = min(k(F (b, w,a), g((F (b, w,a))1, (w)2,a)), tA(Sb)∨(∨∆)(b,a))
f(u,w,a) = F (min(u, `(s)), w,a).

which is not exactly that of Lemma 10. To solve this problem, let F ′(b, w,a,H)
be an abbreviation for

min(k(β|m|(b,H(b, w,a)), g((β|m|(b,H(b, w,a)))1, (w)2,a)), tA(Sb)∨(∨∆)(b,a)).

in the following definition

H(0, w,a) = 〈(w)1, 0〉
H(Sb,w,a) = F ′(b, w,a,H) · 2(b+1)·|m| +H(b, w,a)

h(w,a) = H(`(s(a)), w,a)

where min’s have been suppressed for readability and wherem = t+A(Sb)(`(s),a)∨
W

∆,
a term bounding the witness size for A(Sb) ∨ (∨ ∆). Then f(u,w,a) =
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β|m|(min(u, `(s)), h(w,a)). So both f and h will be τ -comprehension de-
fined by Lemma 10. We would like to show

T [0, τ ] ` ψf (v, w,a) ∧ WITA(0)∧Γ(w,a) ⊃ WITA(`(s))∨∆(OUTf (v, `(s), w,a),a).

To see this notice as f(u,w,a) = β|m|(min(u, `(s)), h(w,a)) we have both

T [0, τ ] ` ψh(v, w,a) ∧ WITA(0)∧(∧∧Γ)(w,a) ⊃
WITA(0)∨(∨∨∆)(β|m|(0,OUTh(v, w,a)), b,a)

since f(0, w,a) is a witness for A(0), and

T [0, τ ] ` ψh(v, w,a) ∧ WITA(0)∧Γ(w,a) ∧ Sb ≤ `(s) ∧
WITA(b)∨(∨∨∆)(β|m|(b,OUTh(v, w,a)), b,a) ⊃
WITA(Sb)∨(∨∨∆)(β|m|(Sb,OUTh(v, w,a)), Sb,a).

By Π̂b
0-INDτ on WITA(b)∨(∨∨∆)(β|m|(b,OUTh(v, w,a)), b,a), this implies

T [0, τ ] ` ψh(v, w,a) ∧ WITA(0)∧(∧∧Γ)(w,a) ⊃
WITA(`(s))∨(∨∨∆)(β|m|(`(s),OUTh(v, w,a)), `(s),a).

Hence, as
β|m|(`(s),OUTh(v, w,a)) = OUTf (v, `(s), w,a)

and ψf = ψh we have

T [0, τ ] ` ψf (v, w,a) ∧ WITA(0)∧(∧∧Γ)(w,a) ⊃ WITA(`(s))∨(∨∨∆)(OUTf (v, `(s), w,a),a).

(BBΠ̂b
0:case) Suppose we have the inference:

Γ → (∀x ≤ |s|)(∃y ≤ t)A(x, y),∆
Γ → (∃v ≤ bd(t+(|s|), s))(∀x ≤ |s|)(βt+(|s|)(x, v) ≤ t ∧ A(x, βt+(|s|)(x, v))),∆

where s, t are terms and A(x, y) ∈ Π̂b
0. By the induction hypothesis there is

a τ -comprehension defined function g such that

T [0, τ ] ` ψg(v, w,a) ∧ WIT∧∧Γ(w,a, b) ⊃ WIT ∀x≤|s| ∃y≤t A∨(∨∨∆)(OUTg(v, w,a),a) .

For this case, it suffices to notice that the predicates

WIT ∀x≤|s| ∃y≤t A

and
WIT ∃v≤bd(t+(|s|),s) ∀x≤|s| (βt+(s(|x|))(x,v)≤t∧A)
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are the same. Hence, if we let f = g then

T [0, τ ] ` ψf (v, w,a) ∧ WIT∧∧Γ(w,a, b) ⊃ WIT ∃w≤bd(t+,s) ∀x≤|s|A∨(∨∨∆)(OUTf (v, w,a),a).

This completes the cases and the proof. �
Let cl denote the set of closed terms.

Corollary 7 (1) R[1, τ ] is ∀Σ̂b
1-conservative over TCompτ . (2) S 1

2 is ∀Σ̂b
1-

conservative over BASIC+E{|id|}A{|id|}-IND. (3) R1
2 is ∀Σ̂b

1-conservative
over TComp{||id||}. (4) Ĉ 0

2 is ∀Σ̂b
1-conservative over TComp{cl}.

Proof. For (1) we first note that R[1, τ ] contains TCompτ by Lemma 5 (1).
Suppose R[1, τ ] proves ∀xA(x). Then by Theorem 6, T [0, τ ] proves

ψf (v, w,a) ∧ WIT ∅(w,a) → WITA(OUTf (v, w,a),a)

for some τ -comprehension defined function f . Setting w = 0 witnesses the
empty cedent. Further using an (∃ : right) and the fact (∃w)WITA ⊃ A
gives us:

ψf (v, 0,a) → A(a).

Now v only appears in the formula ψf (v, 0,a) in this sequent so we can
existentially quantify over it and cut this against the corresponding openτ -
COMP axiom to give the result.

(2), (3), (4) follow from (1) using Lemma 5 and setting τ to be respec-
tively: {|id|}, {||id||}, and cl, noting for any formula A that BASIC proves
INDcl

A. �
The proof of Corollary 7 (1) gives the following result.

Corollary 8 If TCompτ proves a LΣ̂b
1-formula A, then there is openτ -

formula B, such that T [0, τ ] proves COMPB ⊃ A.

We note TComp{||id||} can τ -comprehension define the graph of an Σb
0

formula. As the τ -comprehension defined functions are closed under sharply
bounded µ-operator, and TComp{||id||} can proves basic facts about this,
TComp{||id||} proves the Σb

0-LIND axioms, so contains S 0
2 . On the other

hand, S 0
2 contains LIOpen and proves the Π̂b

0-LLIND axioms, so we have
have established:

Corollary 9 R1
2 is ∀Σ̂b

1-conservative over TComp{||id||} = S 0
2 +open{||id||}-

COMP.
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