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Summary. The theory Äb1-CR of Bounded Arithmetic axiomatized by the Ä
b
1-bit-compre-

hension rule is defined and shown to be strongly related to the complexity class TC 0. The
Ób1 -definable functions ofÄ

b
1-CR are those in uniformTC

0, and theÓb2 -definable functions
are computable by counterexample computations using TC 0-functions. The latter is used
to show that a collapse of stronger theories to Äb1-CR implies that NP is contained in
non-uniform TC 0.

1 Introduction

TheÄb1-bit-comprehension rule roughly states the following: Given a length n and
a predicate A(x) that has been proven to be Äb1 , i.e., equivalent to both an NP-
(Ób1 -) and a co-NP- (Ð

b
1 -) predicate, there is a number w of length n such that

for every i < n, the ith bit of w is set if and only if A(i) holds. One can think of
w as coding the set of small i such that A(i) holds.
We consider the theory of Bounded Arithmetic Äb1-CR that has this rule as

its main axiom. This theory is related to the computational complexity class TC 0

of functions computable by constant-depth threshold circuits. We show that the
theoryC 02 of [9], whoseÓ

b
1 -definable functions areTC

0, is ∀Ób1 -conservative over
Äb1-CR.
Theories of BoundedArithmetic that correspond to the complexity class TC 0

have been described earlier by the authors [9, 8] as well as by Clote and Takeuti
[7]. So why do we come up with yet another one? We think there are two reasons
that make Äb1-CR more interesting than the previous theories for TC

0.
First, one can argue that it is the weakest natural theory whose Ób1 -definable

functions are TC 0, as the closure of the Ób1 -definable functions under concatena-
tion recursion on notation (CRN) is essentially the same as Äb1-comprehension.
Second, we will show that Äb1-CR has a tighter connection to TC

0 than the
previously considered theories: The Ób2 -theorems of Ä

b
1-CR can be witnessed by

counterexample computations (a concept introducedby [13,11] thatwewill define
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below) where the Student has the computational capabilities of TC 0. Similar to
the results of [12], this will allow us to show that a collapse of stronger theories,S12
orR12, to Ä

b
1-CR implies that everyNP-predicate can be decided by non-uniform

TC 0-circuits.

2 Uniform and Non-Uniform TC 0

A threshold circuit is a circuit built up from boolean variables and their negations
by threshold gates of the form Tk(x1, . . . , xm), where the boolean function Tk is
defined by

Tk(x1, . . . , xm) :=

{

1 if # { i ; xi = 1 } ≥ k
0 otherwise

.

If the variables in the circuit are x1, . . . , xn, then it computes a boolean function
{0, 1}n → {0, 1}. More generally, we can let it compute a function {0, 1}n →
{0, 1}m by allowing several outputs.
A boolean function f : {0, 1}∗ → {0, 1}∗ is computed by a circuit family

〈Cn; n ∈ N〉 if for each n, Cn computes f|{0,1}n . The non-uniform class TC
0 is

defined as the class of functions computable by a family of threshold circuits
of polynomial size and constant depth, i.e., there are a polynomial p(n) and a
constant d such that for all n, size(Cn) ≤ p(n) and depth(Cn) ≤ d .
Non-uniform circuit families can compute functions that are not computable.

For example, let K be an undecidable set of natural numbers, then the character-
istic function of

{

1k ; k ∈ K
}

is computable by a trivial circuit family of linear
size and depth 1. To overcome this sometimes unwanted feature, circuit families
are required to satisfy certain uniformity conditions. For TC 0-circuits, the most
suitable uniformity notion is DLogTime-uniformity, see [3] for the somewhat
involved definition.
DLogTime-uniform TC 0 is a fairly natural complexity class: it is character-

ized by first-order logic with majority quantifiers on ordered finite models [3] in
Descriptive Complexity Theory, or by acceptance in timeO(log(n)) on so-called
Threshold Turing Machines [2], or by the machine-independent characterization
below, which is most convenient for our purposes. Whenever we speak of TC 0 in
the following without further qualification, we mean DLogTime-uniform TC 0.
For a complexity class C , the class C/poly is defined as follows: A predicate

A(x) is inC/poly if there is a predicateB(x, y) ∈ C and a polynomially bounded
advice function, i.e., a function f such that |f(n)| ≤ p(n) for some polynomial
p(n), and for which it holds that

∀x A(x) ↔ B(x,f(|x|)) .

Advice functions are used to inject non-uniformity into uniform complexity
classes. For example, it iswell-known thatP/poly is equal to the class of predicates
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computable by non-uniform circuits of polynomial size. Analogously we have the
following:

Proposition 1. TC 0/poly is the same as non-uniform TC 0.

Proof (Sketch). For each d , there is an interpreter in TC 0 that takes as inputs
a threshold circuit C of depth d and an input a to C , and outputs the value
computedbyC on inputa. Let a non-uniform threshold circuit family 〈Cn; n ∈ N〉
of depth d and size O(p(n)) computing A(x) be given. Then A(x) ∈ TC 0/poly
is seen as follows: B(x, y) is the interpreter for threshold circuits of depth d ,
and the advice f(n) is an encoding of the circuit Cn. Obviously B(x,f(|x|)) is
equivalent to A(x).
On the other hand, let A(x) ∈ TC 0/poly given by predicate B(x, y) and

advice function f. Then a circuit computing A(x) for inputs x of length n is
constructed from the circuit computing B(x, y) for inputs x of length n and y
of length |f(n)|, by plugging into y constant subcircuits computing the bits of
f(n). ut

Next we give the machine-independent characterization of TC 0 mentioned
above:

Definition 1. Suppose h0(n,x), h1(n,x) ≤ 1. A function f is defined by concatena-
tion recursion on notation (CRN) from g, h0, and h1 if

f(0,x) = g(x)

f(2n,x) = 2 · f(n,x) + h0(n,x), provided n 6= 0

f(2n + 1,x) = 2 · f(n,x) + h1(n,x)

Let ink (x1, . . . xn) := xk , s0(x) := 2x, s1(x) = 2x + 1, |x| := dlog2(x + 1)e,

x#y := 2|x|·|y| and Bit(x, i) := b x2i c mod 2. The following characterization of
the number-theoretic functions in TC 0 was given in [7]:

Proposition 2. The class TC 0 is the smallest class of functions that contains 0, i nk ,
s0, s1, multiplication ·, #, |x|, Bit and which is closed under composition and CRN.

3 Theories of Bounded Arithmetic

We briefly review the necessary background on Bounded Arithmetic, for more
information see [4] or [10]. The language L2 of Bounded Arithmetic comprises
the usual signature of arithmetic 0, S,+, . , ·,≤, together with function symbols

for b 12xc,MSP(x, i) := bx/2ic, |x| and #.
A quantifier of the form ∀x ≤ t , ∃x ≤ t with x not occurring in t is called

a bounded quantifier. Furthermore, the quantifier is called sharply bounded if the
bounding term t is of the form |s | for some term s . A formula is called (sharply)
bounded if all quantifiers in it are (sharply) bounded.
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We denote the class of quantifier-free formulas in L2 by open. The class of
sharply bounded formulas is denoted Ób0 or Ð

b
0 . For i ∈ N, Óbi+1 (resp. Ð

b
i+1) is

the least class containing Ð bi (resp. Ó
b
i ) and closed under conjunction, disjunc-

tion, sharply bounded quantification and bounded existential (resp. universal)
quantification.
We say that a function f(x) is Óbi -definable in a theory T if there is a Ó

b
i -

formula A(x, y) and a term t(x) such that

N |= ∀x A(x, f(x))

T ` ∀x ∃y≤ t(x) A(x, y)

T ` ∀x, y, z A(x, y) ∧ A(x, z)→ y = z .

BASIC denotes a set of quantifier-free axioms specifying the interpretations
of the function symbols ofL2. It canmost conveniently be taken as the setBASIC
from [4] together with the axioms forMSP and . from [14].
For a class of formulas Ö, the axiom schema Ö-LIND is

A(0) ∧ ∀x (A(x)→ A(Sx))→ ∀x A(|x|)

for each A(x) ∈ Ö, and Ö-LLIND is

A(0) ∧ ∀x (A(x)→ A(Sx))→ ∀x A(||x||)

for A(x) ∈ Ö. In general, for m ≥ 1, Ö-LmIND is

A(0) ∧ ∀x (A(x)→ A(Sx))→ ∀x A(|x|m)

for A(x) ∈ Ö, where |x|1 := |x| and |x|m+1 := | |x|m |.
The theoryS i2 is the theory axiomatized by theBASIC axioms andÓ

b
i -LIND,

and Ri2 is the theory given by BASIC and Ó
b
i -LLIND.

Definition 2. Given a term t ∈ L2 we define a monotonic L2-term t∗ as follows: If
t is constant or a variable, then t = t∗. If t is f(s), where f is a unary function
symbol, then t∗ is f(s∗). If t is s1 ◦ s2 for ◦ a binary operation other than

. or
MSP, then t∗ is s∗1 ◦ s

∗
2 . Lastly, if t is s1

. s2 orMSP(s1, s2), then t∗ is s∗1 .

It is easily proved in BASIC +open-LIND that t∗ is monotonic, and t ≤ t∗. The
following terms will be used frequently below. Let

2|x| := 1#x

mod2(x) := x
.
2 · b
1

2
xc

Bit(x, i) := mod2(MSP(x, i))

2min(x,|y|) :=MSP(2|y|, |y|
.
x)

LSP(x, i) := x
.
2min(i,|x|) ·MSP(x, i)

âa(w, i) :=MSP(LSP(w, Si · |a|), i · |a|)
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so that LSP(x, |y|) returns the number consisting of the last |y| bits of x, and
if w codes a sequence 〈b1, . . . , b`〉 with |bi | ≤ |a| for all i , then âa(w, i) = bi .
The code for this sequence is simply the number w whose binary representation
consists of a 1 followed by the binary representations of the bi concatenated, each
padded with zeroes to be of exact length |a|. If we set bd (a, s) := 2(2a#2s), then
bd (a, s) is thus a bound on the code for a sequence of length |s | with each item
bounded by a.
We also define a pairing operation that does not rely on an explicitly men-

tioned bound. Let B = 2|max(x,y)|. Pairs are coded as 〈x, y〉 := (B + y) ·
2B + (B + x). The terms (w)1 := âb 12 |w|c

. 1(0, âb 12 |w|c
(0, w)) and (w)2 :=

âb 12 |w|c
. 1(0, âb 12 |w|c

(1, w)), project out the left and right coordinates from an

ordered pair. To check if w is a pair we use the formula

ispair(w) := Bit(w, b
1

2
|w|c

.
1) = 1 ∧ 2 · |max((w)1, (w)2)|+ 2 = |w| .

For a class of formulas Ö, the replacement scheme BBÖ is

∀x≤|s | ∃y≤ t(x) A(x, y)→

∃w<bd (t∗(|s |), s) ∀x≤|s | ât∗(|s|)(w, x) ≤ t(x) ∧ A(x, ât∗(|s|)(w, x))

for each A(x, y) ∈ Ö.
The theoryC 02 is defined asBASIC+open-LIND+BBÓ

b
0 . The following the-

orem summarizes some relations between Óbi -definability in the theories defined
and computational complexity.

Theorem 1. – The Óbi -definable functions in S
i
2 are exactly those in

FPÓ
P
i−1 , for each i ≥ 1 [4].

– The Ób1 -definable functions in R
1
2 are exactly those in NC [1, 5].

– The Ób1 -definable functions in C
0
2 are exactly those in TC

0 [8, 9].

The comprehension axiom for formula A(x), denoted COMPA(a), is the
formula

∃y<2|a| ∀x< |a|
(

Bit(y, x) = 1 ↔ A(x)
)

.

The Äb1-comprehension rule, Ä
b
1-COMP, is the following inference rule

A(x) ↔ B(x)

COMPA(t)
,

where A(x) is Ób1 and B(x) is Ð
b
1 , and t is an arbitrary L2-term. Note that this

rule is different from the possibly stronger Äb1-comprehension axiom

∀x
(

A(x) ↔ B(x)
)

→ COMPA(a) ,

thus it is essential that in a sequent calculus context, the rule must not have any
side formulas.
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Definition 3. Let Äb1-CR be the theory axiomatized by BASIC , open-LIND and
the Äb1-COMP rule.

In [9], it is proved that C 02 proves the Ä
b
1-COMP axiom, therefore Ä

b
1-CR is a

subtheory of C 02 . But we will show that C
0
2 is not much stronger:

Theorem 2. C 02 is ∀Ó
b
1 -conservative over Ä

b
1-CR.

This implies immediately:

Corollary 1. The Ób1 -definable functions of Ä
b
1-CR are precisely TC

0.

Hence S12 = Ä
b
1-CR implies P = TC

0, and R12 = Ä
b
1-CR implies NC = TC

0.
We will show that the connection between the theory Äb1-CR and TC

0 is still
tighter: theÓb2 -theorems of Ä

b
1-CR can be witnessed by a type of interactiveTC

0-
computations to be defined below. This will allow us to show that the equality of
Äb1-CR to either of the stronger theories S

1
2 or R

1
2 implies a further collapse of

complexity classes:

Theorem 3. If S12 = Ä
b
1-CR or R

1
2 = Ä

b
1-CR, then NP is contained in non-uniform

TC 0.

The method could further be generalized to show that NP ⊆ non-uniform TC 0

follows from Äb1-CR ` Ób1 -L
mIND for any m > 0.

The following further axiom schemes will be used below. The Ób1 -length-
maximization scheme, Ób1 -LMAX , is the axiom

∃x≤a A(x)→ ∃x≤a
(

A(x) ∧ ∀y≤a
(

|y| > |x| → ¬A(y)
))

for everyÓb1 -formulaA(x). Similarly, theÓ
b
1 -double-length-maximization scheme,

Ób1 -LLMAX , is the axiom

∃x≤a A(x)→ ∃x≤a
(

A(x) ∧ ∀y≤a
(

||y|| > ||x|| → ¬A(y)
))

for every Ób1 -formula A(x). The following proposition is well-known.

Proposition 3. S12 ` Ób1 -LMAX and R
1
2 ` Ób1 -LLMAX . In fact, Ó

b
1 -LMAX

is equivalent to Ób1 -LIND and Ó
b
1 -LLMAX is equivalent to Ó

b
1 -LLIND over

BASIC + open-LIND.

4 Proof of Conservativity

The following two lemmas are well-known and easily proved by the method of
[6]:

Lemma 1. The Ób0 -predicates are computable in TC
0. In particular, the L2-base

functions are in TC 0.
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Lemma 2. Let f be a function in TC 0. Then the function

ìj< |x| (f(j, x) = 0)

is also in TC 0.

Lemma 3. b|a|/|b|c is contained in TC 0.

Proof. By Lemma 2 and Lemma 1 we can define

b|a|/|b|c := ìn≤|a| (|a| < (n + 1)|b|) .

Suppose g(n,x) ≤ t(x) and s, t are L2-terms. Then a length-sum is a sum of
the form

|s|
∑

n=0

g(n,x) · 2n·|t
∗| .

Lemma 4. TC 0 is closed under length-sums.

Proof. Suppose we want to define the length-sum

f(a, x) :=

|a|
∑

n=0

h(n, x)2n|s
∗(x)|

using CRNwhere h(n, x) ≤ s(x) are functions in TC 0 . We use CRN to compute
the bits of f from the most significant bit to the least significant bit. The function

t(i, a, x) := |a|
.
b|i |/|s∗(x)|c

allows us to determine which term in f we are computing the bits from. The
function

p(i, x) := |s∗(x)|
.
(|i |
.
b|i |/|s∗(x)|c|s∗(x)|)

.
1

gives us the positionwithin a term.Define the functionf ′byCRN in the following
way:

f′(0, a, x) = Bit(p(0, x), h(t(0, a, x), x))

f′(2i + 1, a, x) = f′(2i, a, x) = 2f′(i, a, x) + Bit(p(i, x), h(t(i, a, x), x)).

Then the desired f(a, x) is f′(2|a||s
∗(x)|+|h(|a|,x)| . 2, a, x). The expression in the

first component of f′ is easily defined using ·, #, andMSP. ut

Lemma 5. Äb1-CR proves the Ä
b
1-LIND axioms, and Ä

b
1-CR proves the bit-

extensionality axiom:

|a| = |b| ∧ ∀i < |a|
(

Bit(a, i) = Bit(b, i)
)

→ a = b .
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Proof. If A is Äb1 in Ä
b
1-CR, then Ä

b
1-CR proves the LIND axiom for A since

Äb1-CR proves COMPA(a) and Ä
b
1-CR proves LIND on x for the formula

Bit(y, x) = 1. The second statement is easily proved by LIND on x in the
following Ób0 -formula:

∀i < |a|
(

i ≤ x → Bit(a, i) = Bit(b, i)
)

→ LSP(a, x) = LSP(b, x) .

We are now ready to show the functions in TC 0 are Ób1 -definable in Ä
b
1-CR.

Theorem 4. Äb1-CR can Ó
b
1 -define the functions in TC

0.

Proof. The base functions symbols are obviously Ób1 -definable in Ä
b
1-CR, and

closure under composition is straightforward. So it suffices to show the Ób1 -
definable functions of Äb1-CR are closed under CRN.
Suppose that f is defined by CRN from g(x) and h0(n, x), h1(n, x), where

g, h0, h1 are Ó
b
1 -defined in Ä

b
1-CR. Define t(a, x) to be

|a|
∑

n=0

cond (Bit(|a|
.
n, a), h0(n, x), h1(n, x)) · 2

n ,

then f(a, x) = g(x) · 2|t(a,x)| + t(a, x). It suffices to show the length-sum t(a, x)
is Ób1 -definable, since then f(a, x) will be by composition.
Notice k(n, x, a) := cond (Bit(|a| . n, a), h0(n, x), h1(n, x)) is Ó

b
1 -defined in

Äb1-CR. Let Ak(n, a, x, y) be its defining formula. Given the other parameters,
Äb1-CR proves the value y is unique and bounded by 1. Therefore Ä

b
1-CR

` Ak(n, x, a, 1) ↔ ¬Ak(n, x, a, 0) and Ak(n, x, a, 1) is true iff k(n, x, a) = 1
so k(n, x, a) = 1 is a Äb1-property in Ä

b
1-CR. We want to define the sum

∑|a|−1
n=0 k(n, x, a) · 2

n . Äb1-COMP on k(n, x, a) = 1 implies

(∃w ≤ s)(∀n ≤ |a|)(Bit(n,w) = 1 ↔ k(n, x, a) = 1) ,

the value w is the desired sum and it can be proven unique using extensionality.
ut

Remark 1. Given two Ób1 -defined in Ä
b
1-CR functions f,g, the property f(x) =

g(x) will be Äb1 in Ä
b
1-CR. Using this, Ä

b
1-LIND, and extensionality it is not hard

to showÄb1-CR proves simple properties of both theì-operation and length-sums.
For instance, Äb1-CR proves that if h(n, x) ≤ s(x) then

â|s∗|(j,

|a|
∑

n=0

h(n, x)2n|s
∗(x)|) = h(j, x)

for j ≤ |a|.

To prove the conservativity result, we formalize the witnessing proof for C 02 in
Äb1-CR. First we define a witness bounding term and witness predicate for Ó

b
1 -

formulas as follows:
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– If A(a) ∈ Ób0 then tA = 0 andWitA(w, a) := A(a) ∧ w = 0.

– If A(a) is of the form B ◦ C where ◦ is ∧ or ∨ then tA := 4 · (2
|max(tB ,tC )|)2

and

WitA(w, a) := ispair(w) ∧ (WitB ((w)1, a) ◦WitC ((w)2, a))

– If A(a) is of the form ∃x≤ t B(x, a) where B(x, a) ∈ Ób0 then tA := t and

WitA(w, a) := w ≤ t ∧ B(w, a) .

– If A(a) is of the form ∃x ≤ t B(x, a) where B(x, a) ∈ Ób1 \ Ó
b
0 , then tA :=

4 · (2|max(t,tB )|)2 and

WitA(w, a) := ispair(w) ∧ (w)1 ≤ t ∧WitB((w)2, (w)1, a) .

– If A(a) is of the form ∀x ≤ |s | B(x, a) where B(x, a) ∈ Ób1 \ Ób0 , then
tA := bd (t

∗
B(|s |), s) and

WitA(w, a) := w ≤ tA ∧ ∀x≤|s |WitB(âtA(x,w), x, a)) .

The following lemma is true for this witness predicate:

Lemma 6. If A(a) ∈ Ób1 , then:

(a) WitA is a Ób0 -predicate.
(b) Äb1-CR ` ∃w≤ tA(a)WitA(w, a)→ A(a).

Proof. Part (a) follows from the definition of witness and since â and the pairing
functions are defined by L2-terms. Part (b) is easily proved by induction on the
complexity of A. ut

To prove the witnessing theorem, we formalize C 02 in a sequent calculus LKB
that has special rules for the introduction of bounded quantifiers (see [4]). In
this formalization, open-LIND and BBÓb0 are given as inference rules, which are
shown in the proof below.

Theorem 5. Suppose
C 02 ` Ã =⇒ Ä

whereÃ andÄ are cedents ofÓb1 -formulas. Let a be the free variables in this sequent.
Then there is a TC 0 function f which is Ób1 -defined in Ä

b
1-CR such that:

Äb1-CR `Wit∧Ã (w, a)→Wit
∨

Ä(f(w, a), a).

Proof. This is proved by induction on the number of sequents in a C 02 proof of
Ã =⇒ Ä. By cut elimination, we can assume all the sequents in the proof areÓb1 .
Most of the cases are similar to previous witnessing arguments so we only show
the (∀ : right) case, open-LIND case and the BBÓb0 case.
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(∀:right case) Suppose we have the inference:

b ≤ t, Ã =⇒ A(b), Ä

Ã =⇒ ∀x≤ t A(x), Ä

By the induction hypothesis there is a TC 0 function g such that

Äb1-CR `Witb≤t ∧
∧

Ã (w, a, b)→WitA ∨
∨

Ä(g(w, a, b), a, b) .

By cut-elimination, ∀x≤ t A(x) is a Ób1 -formula, so t must be of the form t = |s |.
There are two case: where A is Ób0 and where A is Ó

b
1 \Ó

b
0 . In the first case, let y

be ìi ≤|s | ¬A(i) and define f to be g(〈0, w〉, a, y). The 0 in the ordered pair is
sinceWitb≤t(w, b) = b ≤ t ∧ w = 0. This is in TC

0 by Lemma 1 and Lemma 2
and it is not hard to show that

Äb1-CR `WitÃ (w, a)→Wit∀x≤|s| A ∨
∨

Ä(f(w, a), a) .

In the second case, sinceWitA is a Ó
b
0 -formula, its characteristic function ÷WitA is

in TC 0. Let k be the function

k(w, a) = ìj≤|s | [¬WitA((g(〈0, w〉, a, j))1, a, j)] .

Let t′ := (tA(t))
∗ where tA(x) is from Lemma 6. Now define f(w, a) from k as

follows

f(w, a) =

{

〈
∑|s|
j=0(g(〈0, w〉, a, j))1 · 2

j·|t′|, 0〉 if k(w, a) = |s |+ 1

〈0, (g(〈0, w〉, a, k(w, a)))2〉 otherwise
,

then using the remark after Theorem 4

Äb1-CR `WitÃ (w, a)→Wit∀x≤|s| A ∨
∨

Ä(f(w, a), a) .

(open-LIND case) Suppose we have the inference

A(b), Ã =⇒ A(Sb), Ä

A(0), Ã =⇒ A(|s |), Ä

where A is an open formula and s is a term in L2. By the induction hypothesis
there is a TC 0 function g such that

Äb1-CR `WitA(b) ∧
∧

Ã (w, b, a)→WitA(Sb) ∨
∨

Ä(g(w, b, a), b, a).

From our definition of theWit predicate and Lemma 1, we know TC 0 contains
the predicateWit∨Ä. Define

f(w, a) := g(w, (ìy< |s | )(¬Wit∨Ä((g(w, y, a)))2, y, a)), a).
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Notice WitA(v, b, a) := A ∧ v = 0 as A is open, so the value of a witness to A
does not depend on b. So it will witness A(b) for all b ≤ |s |. Using this, the idea
is f(w, a) runs g on the least value y less than |s | that produces a witness for Ä.
If no such value exists then it must be the case that A(|s |) holds and so, as A is
open, the cedent is trivially witnessed. From this it is not hard to show:

Äb1-CR `WitA(0) ∧
∧

Ã (w, a)→WitA(|s|) ∨
∨

Ä(f(w, a), a).

(BBÓb0 :case) Suppose we have the inference:

Ã =⇒ ∀x≤|s | ∃y≤ t A(x, y), Ä

Ã =⇒ ∃v≤bd (t∗(|s |), s) ∀x≤|s | (ât∗(|s|)(x, v) ≤ t ∧ A(x, ât∗(|s|)(x, v))), Ä

where s, t are terms in L2 and A(x, y) ∈ Ó
b
0 . By the induction hypothesis there is

a TC 0 function g such that

Äb1-CR `Wit∧Ã (w, a, b)→Wit∀x≤|s| ∃y≤t A ∨
∨

Ä(g(w, a), a) .

For this case, it suffices to notice that the predicates

Wit∀x≤|s| ∃y≤t A

and
Wit∃v≤bd (t∗(|s|),s) ∀x≤|s| (ât∗(s(|x|))(x,v)≤t ∧ A)

are the same. Hence, if we let f = g then

Äb1-CR `Wit∧Ã (w, a, b)→Wit∃w≤bd (t∗,s) ∀x≤|s|A ∨
∨

Ä(f(w, a), a).

This completes the cases and the proof. ut

Now Thm. 2 follows from this witnessing theorem as follows: Suppose C 02
proves aÓb1 -formulaA(x). Then by Theorem 5, taking Ã to be the empty cedent,
Äb1-CR ` WitA(g(x),x), where g is a TC

0 function. By Lemma 6, we have
Äb1-CR ` A(x). ut

5 Counterexample Computations with TC 0 functions

In this section we view binary relations R(x, y) in TC 0 as optimization problems:
given x, the task is to find a solution y of maximal length |y| ≤ |x| such that
R(x, y) holds. We consider a particular way of solving such optimization prob-
lems, viz. counterexample computations as introduced implicitly in [12] and made
explicit in [13, 11].
A counterexample computation is performed by two agents: Student, who

has limited computational power, and Teacher who has unlimited knowledge.
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In order to find a maximal solution, Student can ask questions of the form “Is
y a maximal solution?”, to which Teacher can either reply “yes” or provide a
counterexample, i.e., a better solution.
There are two natural measures of complexity for counterexample computa-

tions: the computational power of Student, and the number of counterexamples.
Note that every optimization problem can be solved withO(|x|) many counterex-
amples by the trivial Student, who just repeats each counterexample provided as
his next question.
Here we are interested in the case where Student has the computational ca-

pabilities of TC 0 and the number of counterexamples is bounded by a constant.
We will show that the hypothesis that every optimization problem in TC 0 can be
computed in this way, formalized by principle Ù(TC 0) below, implies that every
NP predicate is computable by non-uniform TC 0 circuits.
For an optimization problem R(x, y) let R∗(x, y, z) be defined by

|y| ≤ |x| ∧
(

y > 0→ R(x, y)
)

∧
(

|y| < |z| ≤ |x| → ¬R(x, z)
)

,

so that ∀z R∗(x, y, z) expresses that y = 0 or y is a maximal solution.

Principle Ù(TC 0): for every predicate R(x, y) ∈ TC 0 there are k ∈ N and
functions f1, . . . fk ∈ TC

0, such that

Either ∀z R∗(a, f1(a), z) or if b1 is such that ¬R
∗(a, f1(a), b1),

then either ∀z R∗(a, f2(a, b1), z) or if b2 is such that ¬R
∗(a, f2(a, b1), b2),

...
then ∀z R∗(a, fk(a, b1, . . . , bk−1), z).

Proposition 4. Ù(TC 0) implies NP ⊆ non-uniform TC 0.

Proof. Let A be NP-complete under TC 0-reductions, and be given by x ∈ A ↔
∃w ≤ x B(x,w) with B ∈ TC 0. We say that w witnesses x if w ≤ x ∧ B(x,w)
holds.
We will construct an advice function h with |h(n)| ≤ nO(1) and g ∈ TC 0 such

that g(x, h(|x|)) witnesses x for all x ∈ A, i.e.,

x ∈ A iff B(x, g(x, h(|x|))) , (1)

and hence A ∈ TC 0/poly, assuming Ù(TC 0).
Let the relation R(a, b) be defined by

a and b code sequences, and length(a) ≥ length(b)

and for all i ≤ length(b) : (b)i witnesses (a)i .

Obviously R ∈ TC 0, so by Ù(TC 0) there are functions f1, . . . , fk that for
a sequence a =

〈

x1, . . . , xm
〉

interactively compute a maximal sequence b of
witnesses for an initial segment of a.
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y := f1(a)
if length(y) ≥ 1 and R(a, y) then

output 〈1, (y)1〉
stop

fi
for j from 2 to k do

y := fj(a, b1, . . . , bj−1)
if length(y) ≥ j and R(a, y) then

output 〈j, (y)j〉
stop

fi
od

Algorithm W. bj is defined as
〈

w(x1), . . . , w(xj)
〉

.

For a fixed length n, let V1 := {x ∈ A ; |x| = n }, and for each x ∈ V1, let
w(x) be a canonical witness. Algorithm W below computes a pair 〈j, w〉 from
an input a =

〈

x1, . . . , xk
〉

∈ V k1 such that w witnesses xj . Since there is a

sequence of witnesses b0 =
〈

w(x1), . . . , w(xk)
〉

of length k, a length maximal b
with R(a, b) has to be of length k. By our assumption of Ù(TC 0), such a length
maximal b is computed by one of the fj(a, b1, . . . , bj−1), so Algorithm W halts
at one of the stop instructions for every a ∈ V k1 .
For a set Q ⊆ V1 with |Q| = k − 1 and v ∈ V1 \Q we define Q helps v if for

some ordering a :=
〈

x1, . . . , xj−1, v, xj+1, . . . , xk
〉

of Q ∪ {v}, AlgorithmW on
input a outputs a pair 〈j, w〉 such that w witnesses v.
As there is only a constant number k! of orderings of Q ∪ {v}, there is a

function in TC 0 that, given Q, v and canonical witnesses for the elements of Q,
uses Algorithm W to decide whether Q helps v, and if so computes a witness
w(Q, v) for v.
There are at least

(

|V1|
k

)

pairs 〈Q, v〉 such that Q helps v, but there are only
(

|V1|
k−1

)

possible sets Q of size k − 1. Hence there is a set Q1 ⊆ V1 such that Q1

helps at least |V1|−k+1
k different elements of V1.

Inductivelywe defineVi+1 := { v ∈ Vi ; Qi does not help v }, and by the same
argument as above, if |Vi+1| > k then there is a setQi+1 ⊆ Vi+1 that helps at least
|Vi+1|−k+1

k elements of Vi+1 \Qi+1.

Let t be the least j such that |Vj | ≤ k, then since |Vi+1| <
(

k−1
k

)i
|V1| + k

we get t = dlogk/(k−1) |V1|e = O(n). For i < t let Si be the sequence of pairs

〈x,w(x)〉 for x ∈ Qi , and let St be the sequence of pairs 〈x,w(x)〉 for x ∈ Vt .
Finally, let the advice h(n) be S :=

〈

S1, . . . , St
〉

. Note that |S| = O(kn2).
Finally, Algorithm G computes a witness for v ∈ V1 from inputs v and S.

By the remark above, lines 5–6 of Algorithm G can be implemented in TC 0,
and hence the function g computed by Algorithm G is in TC 0. By construction
g(x, h(|x|)) witnesses x iff there is a witness for x, hence the equivalence (1)
holds. ut
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if v occurs in S then
output w(v) (∗ also occurs in S next to v ∗)

else
for j ∈ {1, . . . , t − 1} do in parallel

if Qj helps v then
wj := w(Qj , v)

od
output wj with j < t minimal

fi

Algorithm G.

We now consider a variant where the measure to be maximized is ||y|| instead
of |y|. Principle Ù∗(TC 0) is thus exactly the same as Ù(TC 0), only with the
relation R∗(x, y, z) replaced by R∗∗(x, y, z), which is defined as

||y|| ≤ ||x|| ∧
(

y > 0→ R(x, y)
)

∧
(

||y|| < ||z|| ≤ ||x|| → ¬R(x, z)
)

.

Proposition 5. Ù∗(TC 0) implies NP ⊆ non-uniform TC 0.

Proof. Modify the proof of Prop. 4 as follows: Let ` := 2k−1. Algorithm W is
replaced by Algorithm W∗, which gets input a =

〈

x1, . . . , x`
〉

∈ V `1 . Now again

y := f1(a)
if length(y) ≥ 1 and R(a, y) then

output 〈1, (y)1〉
stop

fi
for j from 2 to k do

y := fj(a, b1, . . . , bj−1)
if length(y) ≥ 2j−1 and R(a, y) then

w :=
〈

(y)2j−2+1, . . . , (y)2j−1
〉

output 〈j, w〉
stop

fi
od

Algorithm W∗. bj is defined as
〈

w(x1), . . . , w(x2j−1)
〉

.

there is a sequence of witnesses b0 =
〈

w(x1), . . . , w(x`)
〉

of length `, and hence
|b0| = n`, so ||b0|| = k+ |n|. Hence any sequence b withR(a, b) and ||b||maximal
has to be of length `, and by the assumptionÙ∗(TC 0), such a maximal b is found
by one of the fj(a, b1, . . . , bj−1).
For Q ⊆ V1 with |Q| = ` − 1 and v ∈ V1 \ Q, define Q helps v if for some

ordering a :=
〈

x1, . . . , xm−1, v, xm+1, . . . , x`
〉

of Q ∪ {v}, Algorithm W∗ on
input a outputs a pair 〈j, w〉 such that either j = m = 1 and w witnesses v,
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or 2j−2 < m ≤ 2j−1 and w is a sequence of length 2j−2 such that (w)m−2j−2
witnesses v.
The definition of the advice S is as before, only with k replaced by ` every-

where. So Algorithm G on input v and S will still output a witness for v if there
is one. ut

6 KPT witnessing for Äb1 -CR

In [12] it was shown that the ∃∀Óbi+1-theorems of T
i
2 can be witnessed by coun-

terexample computations using FPÓ
P
i -functions and constantly many counterex-

amples. For this to be true for i = 0, T 02 needs to be defined as having function
symbols for all functions in FP.
Analogously, we now show that the ∃∀Äb1-theorems of Ä

b
1-CR can be wit-

nessed by counterexample computations using TC 0-functions and constantly
many counterexamples. This will be the main tool for proving Thm. 3, but the
witnessing theorem and its proof might be of independent interest.

Theorem 6. Assume Äb1-CR ` ∃x ∀y A(a, x, y) , where A is Äb1 w.r.t. Ä
b
1-CR. Then

there are k ∈ N and functions f1, . . . , fk ∈ TC
0, that are Ób1 -definable in Ä

b
1-CR,

s.t. Äb1-CR proves

A(a, f1(a), b1) ∨ A(a, f2(a, b1), b2) ∨ . . . ∨ A(a, fk(a, b1, . . . , bk−1), bk) .

Proof. Let {fn ; n ≥ 1 } be an enumeration of all functions inTC 0 s.t.fn is n-ary
and every function inTC 0 occurs in the list infinitely often (possibly with dummy
arguments). Assume that A is Äb1 w.r.t. Ä

b
1-CR and Ä

b
1-CR ` ∃x ∀y A(a, x, y),

but the conclusion of the theorem does not hold. Then by compactness there is a
model

M |= Äb1-CR + {¬A(c, f1(c), d1), . . . ,¬A(c, fn(c, d1, . . . , dn−1), dn), . . . }

for new constants c, d1, d2, . . .
Define M ∗ := {f1(c), f2(c, d1), . . . , fn(c, d1, . . . , dn−1), . . . }. By the con-

struction of the enumeration fn, N ∪ {c, d1, d2, . . . } ⊆ M ∗, and M ∗ is closed
under all functions in TC 0.
We first showM ∗ �Ób0

M , i.e., for every Ób0 -formula B(x) and all parameters

a ∈M ∗,

M |= B(a) iffM ∗ |= B(a) .

This is proved by induction on the complexity of B(x). The only interesting case
is to show that for B(x) = ∃y≤|t(x)| A(x, y),M |= B(a) impliesM ∗ |= B(a).
Consider the function f(x) = ìy ≤ |t(x)| A(x, y). This function is in TC 0,
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hence f(a) ∈ M ∗, and if M |= B(a), then M |= A(a, f(a)), therefore M ∗ |=
A(a, f(a)) holds by the induction hypothesis.
Hence if A(x) is Ð b1 and B(x) is Ó

b
1 and a ∈ M ∗, then M |= A(a) implies

M ∗ |= A(a) andM ∗ |= B(a) impliesM |= B(a).
Let Äb1-CR0 denote BASIC + open-LIND, and inductively define

Äb1-CRi+1 to be the closure ofÄ
b
1-CRi under unnested applications ofÄ

b
1-COMP,

and Ãi to be the set of formulas that are Ä
b
1 w.r.t. Ä

b
1-CRi . Hence Ä

b
1-CRi+1 is

axiomatized by all theorems of Äb1-CRi and the axioms COMPA for all formulas
A ∈ Ãi , Ä

b
1-CR =

⋃

i Ä
b
1-CRi and the set of formulas that are Ä

b
1 w.r.t. Ä

b
1-CR is

Ã :=
⋃

i Ãi .
We shall show by simultaneous induction that for all i , M ∗ |= Äb1-CRi and

M ∗ �Ãi M . Obviously M
∗ |= BASIC . Now let M ∗ |= B(0) ∧ ¬B(|a|) for

some open formula B(x) and a ∈ M ∗. Then also M |= B(0) ∧ ¬B(|a|), hence
there is a least b ∈ M such that M |= b < |a| ∧ B(b) ∧ ¬B(b + 1). Since
the function f(x) := ìy < |x| ¬B(y + 1) is in TC 0, f(a) = b ∈ M ∗, and
M ∗ |= B(b)∧¬B(b+1). This showsM ∗ |= open-LIND and thusM ∗ |= Äb1-CR0.
Now assume thatM ∗ |= Äb1-CRi , and let B(x) ∈ Ãi . This means there are a

Ób1 -formula B
Ó(x) and aÐ b1 -formula B

Ð (x) such that

Äb1-CRi ` B
Ó(x) ↔ B(x) ↔ BÐ (x) .

Let a ∈M ∗, then we have

M |= B(a) =⇒ M |= BÐ (a)
(†)
=⇒ M ∗ |= BÐ (a)

(∗)
=⇒ M ∗ |= B(a)

M ∗ |= B(a)
(∗)
=⇒ M ∗ |= BÓ(a)

(†)
=⇒ M |= BÓ(a) =⇒ M |= B(a)

The implications marked (∗) hold since M ∗ |= Äb1-CRi , and those marked (†)
hold byM ∗ �Ób0

M . Hence we have shownM ∗ �Ãi M .

Again, let B(x) ∈ Ãi , and a ∈M ∗. Then the characteristic function of B , ÷B ,
is in TC 0, and from it we can define a function fB using CRN that satisfies

M |= ∀x< |a|
(

Bit(fB(a), x) = 1 ↔ ÷B(x) = 1
)

.

Since ÷B(x) = 1 is in Ãi , this formula is also in Ãi , and hence it also holds inM
∗,

and furthermore

M ∗ |= ∀x< |a|
(

÷B(x) = 1 ↔ B(x)
)

,

since this formula is in Ãi and holds inM . HenceM
∗ |= COMPB , and we have

shown thatM ∗ |= Äb1-CRi+1.
By induction,M ∗ |= Äb1-CR andM

∗ �Ã M . Finally, we show that

M ∗ |= ∀x ∃y ¬A(c, x, y) ,

which contradicts the assumption thatÄb1-CR ` ∃x∀yA(a, x, y), and thus proves
the theorem. Indeed, for a = fn(c, d1, . . . , dn−1) ∈ M

∗, let b = dn, then by
constructionM |= ¬A(c, a, b), and sinceM ∗ �Ã M , alsoM

∗ |= ¬A(c, a, b). ut
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Note that the proof does not show that M ∗ satisfies the Äb1-comprehension
axiom, but only the Äb1-COMP rule.

Corollary 2. If S12 = Ä
b
1-CR, then Ù(TC

0) holds, and R12 = Ä
b
1-CR implies

Ù∗(TC 0).

Proof. Let R(x, y) be a predicate in TC 0, then R(x, y) is Äb1 w.r.t. Ä
b
1-CR, and

hence also R∗(x, y, z) and R∗∗(x, y, z) are Äb1 w.r.t. Ä
b
1-CR. Now we have

S12 ` ∃y ∀z R∗(a, y, z) by Ób1 -LMAX

R12 ` ∃y ∀z R∗∗(a, y, z) by Ób1 -LLMAX

and thus if S12 = Ä
b
1-CR, then Ä

b
1-CR ` ∃y ∀z R∗(a, y, z), and by Thm. 6 there

are k ∈ N and functions f1, . . . fk ∈ TC
0 such that

R∗(a, f1(a), b1) ∨R
∗(a, f2(a, b1), b2) ∨ . . . ∨R

∗(a, fk(a, b1, . . . , bk−1), bk) ,

i.e., principle Ù(TC 0) holds. By the same argument with R∗∗ instead of R∗, if
R12 = Ä

b
1-CR then Ù

∗(TC 0) holds. ut

Corollary 2 together with Prop. 4 and 5 prove Thm. 3. The proof of Thm. 6
suggests some open question:

– First, is Äb1-CR = Ä
b
1-CRi for some i?

– For f ∈ TC 0, is there a relationship between the minimal i s.t. f is Ób1 -
definable in Äb1-CRi and the nesting depth of CRN required to define f in
the function algebra? Note that the proof of Thm. 4 actually shows every
function in TC 0 that can be defined by i nested applications of CRN is
Ób1 -definable in Ä

b
1-CRi .

– Moreover, is there a relation between either of these complexity measures
and the depth of a TC 0 circuit family computing f?
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