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One of the oldest outstanding problems in bounded arithmetic is whether the hi-
erarchy of theories Si collapses. It is known if this hierarchy collapses then in fact
the polynomial time hierarchy collapses. Since the the theories S4 are defined in a way
reminiscent to the theories I3 and the latter are known to be separable by Godel-style
arguments, it seems reasonable to try Gdodel-style arguments to separate the theories
S%. So far this approach has not been successful and there have been results indicat-
ing the approach is unlikely to work. In particular, P. Pudlak (4 note on bounded
arithmetic. Fundamenta Mathematice, vol. 136 (1990) pp. 85-89) has shown that
Ss = U;S% does not prove the bounded consistency of S3. By bounded consistency
of a theory 7', we mean the statement that 7" does not prove 0 = 1 with a proof in-
volving only formulas with bounded quantifiers. Due to this kind of results G.Takeuti
(Open Problems. Arithmetic, Proof theory, and computional complexity, edited
by P.Clote and J. Kraj{éek. pp. 1-9) conjectured that S» cannot prove the consistency
of the equational fragment S5 *° of Sy which allows only equations of the form s = ¢
for closed terms and natural rules based on recursive definitions of the base symbols.
The paper under review proves this latter conjecture is false and shows in fact that S3
can prove the consistency of a reasonably broad class of equational theories.

More precisely, the paper defines what it means for a set of equations Az involving
the functions symbols F to be a nice set of recursive azioms. For Ax to be nice, F
must contain a finite list of 0 or 1-ary constructors (at least one 0 and one 1l-ary), C,
such that the closed terms (free algebra) over C can be used used as the numerals of
Az. Then for each f € F\C and each ¢ € C there must exist exactly one equation s = ¢
in Az such that s has the form f(c,x1,%2...,xy) if ¢ has arity zero or has the form
fe(zo),z1,22... ,zxn) if ¢ has arity one. Lastly, the only rules in Az must be of the
previously defined type. Given such an Az, the paper defines the theory EqT(Az) to
be the theory consisting of closed instances of Az and those equations derivable from
Az by using either the definition of equality as an equivalence relation or by using the
compatibility of function symbols with equality. By fixing a 0-ary constructor ¢ and a
1-constructor ¢’, both in C, 0 = 1 can be defined as ¢ = ¢'(c), and EqT(Az) is consistent
if it does not contain a proof of this. The main result of the paper is then that

S5 + Con(EqT(Ax)).

The class of nice sets of recursive axioms mentioned above is quite general. The
author gives several interesting examples. The running example throughout the paper
is the theory that uses 0 and S to define numerals and then has equational axioms
to define the symbols +, ‘’, and eéxp, denoting addition, multiplication and a kind
of exponentiation. In addition to this example, the author shows how a nice set of
recursive axioms can be given for the primitive and p-recursive functions over N, and
how the system PV without the substitution and induction rules satisfies the definition
of nice. Here PV is theory defined by Cook (Feasibly constructive proofs and the
propositional calculus. Seventh annual ACM symposium on theory of computing,
pp. 83-97) for reasoning about polynomial time computable functions.

The proof of the main result uses a blend of a term rewriting argument together with
an approximation scheme. Write  —, » to mean that there is some axiom s = ¢
in Az and a ground substitution ¢ such that so is a ground term and v is the result
of replacing exactly one occurrence of s in u by to. Define u +—, v iff u —4, v
or v —Y, u. Let «—7%, and be the transitive closure of «+—,. The article shows
that S3 can prove that if u = v is provable in EqT(Az) then u <—7%, v and that if
u <%, v and u and v are numerals then the Godel codes for u and v are the same.
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Thus, S3 + Con(EqT(Az)) because if 0 = 1 is provable in EqT(Az) then 0 «—7%, 1
and hence 0 and 1 must have the same code which is a contradiction.

The result that S5 proves if u = v is provable in EqT(Az) then u <—, v is proven
by a straightforward induction on the EqT(Az) proof. The second result that S3 proves
that if u «—7, v and u and v are numerals then the G&del codes for u and v are the
same is the heart of the argument. To do this a new symbol * is introduced and u < v
is defined to mean roughly that v can be obtained from u by replacing some of the
subterms of v by *. It is obvious that if u <v <u then v = v. Using now terms over
F U {x}, a notion of evidence is defined which captures schematically (replacing non-
relevant things by *) what happens in a given reduction sequence. A notion of one
term approximating another given some evidence is also defined. The definition entails
that if w approximates ¢ then ¢ < w. It is shown that S can prove that if u and v
approximate the same term according to some evidence then either u <v or v <u. By
induction on the reduction sequence of u «—7%, v, S3 proves that there is an evidence
such u approximates v. By a similar induction, one can show with the same evidence
that v approximates u. Thus, we get u < v <u, and hence, u = v.

The paper under review is very well written with many examples. There was only one
typo that caused this reviewer some minor confusion: In the example on page 288 right
after Definition 4.6, the f’s in the given table should be replaced with eéxp’s. This same
mix-up of f and éxp also occurs in the equation right after the third paragraph of page
287. Both the main result of the paper and the proof technique are interesting. The
paper gives some hope to the program that consistency statements might eventually be
used to separate non-trivial bounded arithmetic theories. By showing some consistency
results provable in these theories it may also help as a guide in finding statements
provable in one theory but not in another.
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