
This paper presents a proof theoretic framework for obtaining relativized
separation results between bounded arithmetic theories. The most well-
studied of these theories are the theories Si2 and T i2. These are axiomatized
using a base theory BASIC together with respectively Σb

i length induction
axioms or Σb

i induction axioms and form a hierarchy Si2 ⊆ T i2 ⊆ Si+1
2 . Here

the predicates definable by Σb
i -formulas correspond exactly to the class Σp

i

of the polynomial hierarchy. Since the theories only have bounded axioms
by Parikh’s theorem these theories cannot define exponentiation, so length
and usual induction may be different. The theories Si2 and T i2 are studied
because of their many connections to open problems in computational com-
plexity [1]. Relativized variants of these theories, Si2(X) and T i2(X), can be
defined by adding an undefined predicate symbol to the language of these
theories. In the nonrelativized case, it is known that Si+1

2 = T i2 implies the
collapses of the polynomial hierarchy and Si2 = T i2 would have consequences
for bounded query classes; on the other hand, in the relatived case one can
show that Si+1

2 (X) 6= T i2(X) and Si2(X) 6= T i2(X) [3][2]. The paper under
review considers theories sΣb

i(X)-LmIND which have prenex Σb
i induction in

the relativized language up to m lengths of a number. The paper computes
a so-called “dynamic ordinal” for these theories where m and i satisfy some
conditions and uses this to prove relativized separations.

Relativized separations of this type have also been obtained in the re-
viewer’s paper [4] which was written at about the same time as this paper.
The proof techniques in the two papers are, however, different. In the re-
viewer’s paper, a generalized conservation result is used to give a characteri-
zation of the ∆b

j(X)-predicates (for j ≤ i and m satisfying some conditions)
of the theory in question. Then a complexity theoretic oracle result is used
to give the separation. The paper under review is inspired by the ordinal
theoretic separations of the fragments of Peano Arithmetic, IΣn. The dy-
namic ordinal of a bounded arithmetic theory is the set of terms up to which
the theory can proved bounded order induction for prenex Πb

1(X)-formulas.
For example, for T 1

2 (X) one can show this is the set of terms majorizable
by terms of the form 2|x|

k
for some k. Theories with different dynamic ordi-

nals can be shown to be distinct theories by the order induction principle for
some Πb

1-formula. Computing the dynamic ordinal of a theory is done in two
steps: First, a lower bound on the ordinal is obtained by showing, as neces-
sary, order induction for iterated jump formulas of prenex Πb

i formulas are
provable in the theory. This amounts to doing a repeated speed-up of induc-
tion argument where one trades-off less induction for formulas with greater

1



quantifier complexity with more induction for formulas with less quantifier
complexity. Then an upper bound is obtained by showing an embedding
from bounded arithmetic proofs into proofs defined in a semi-formal system
introduced in the paper. A lower bound on lengths of proof of order in-
duction in the semi-formal system is shown for proofs where cuts have been
eliminated. Using this bound and applying cut-elimination to proofs of order
induction that arise from the embedding of bounded arithmetic proofs one
gets a bound on the terms the bounded arithmetic can prove order induction
to. This argument has as its virtue that its method are “pure”— it does not
need to resort to computational complexity results or messy diagonalization
arguments. Thus, there is hope that studying variants of this argument can
yield insight on nonrelativized separations without necessarily implying hard
complexity results.
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[3] J. Kraj́ıček, P. Pudlák, and G.Takeuti. Bounded arithmetic and the
polynomial hierarchy. Annals of Pure and Applied Logic. Vol. 52. pp.
143–153. 1991.

[4] C. Pollett Structure and Definability in General Bounded Arithmetic
Theories. Annals of Pure and Applied Logic. Vol 100. October 1999.
pp.189–245.

2


