The Surjective Weak Pigeonhole Principle in Bounded Arithmetic

> Chris Pollett San Jose State University Feb. 1, 2008.

What this talk is about...

We intend to give a survey of:

- Bounded Arithmetic
- In particular, the role of the Pigeonhole Principle in these weak systems of arithmetic
- And how the surjective pigeonhole principle plays a role in the reverse mathematics of Komolgorov Complexity results in these systems.

Bounded Arithmetics

• Have BASIC axioms like:

 $y \le x \ \supset y \le S(x)$

x+Sy = S(x+y)

for the symbols 0, S, +, ·, $x#y := 2^{|x||y|}$, $|x| := \text{length of } x, \underline{\cdot}, \lfloor x/2^i \rfloor, \leq$

• Have IND_m induction axioms of the form:

 $A(0) \land \forall x < \mathsf{ltl}_{\mathsf{m}}[A(x) \supset A(S(x))] \supset A(\mathsf{ltl}_{\mathsf{m}})$

Here t is a term made of compositions of variables and our function symbols and $|x|_0 = x$, $|x|_m = |x|_{m-1}|$.

- Have a language with:
 - Limited subtraction (\cdot) and $\lfloor x/2^i \rfloor$ which allows one to project out blocks of bits and do sequence coding using just terms in the language.
 - Smash (#) which allows the length of terms to grow polynomially in the length of the inputs, which is useful for defining complexity classes like NP.

Bounded Arithmetics cont'd

• A $\sum_{i=1}^{b}$ formula is a formula of the form:

 $\exists x_1 \le t_1 \forall x_2 \le t_2 \cdots Q x_i \le t_i Q x_{i+1} \le |t_{i+1}| A$

i+1 alternations, innermost begin length bounded

- where A is an open formula. A $\prod_{i=1}^{b}$ formula is defined similarly but with the outer quantifier being universal.
- By a **bounded formula** we will mean a formula all of whose quantifiers are bounded.
- Fact: Σ^b₁-sets are precisely the NP-sets (nondeterministic polynomial time sets); Π^b₁-sets are the co-NP sets, etc.
- Let

 T_{2}^{i} is the theory BASIC + $\sum_{i}^{b} -IND_{0}$ Sⁱ₂ is the theory BASIC + $\sum_{i}^{b} -IND_{1}$ Rⁱ₂ is the theory BASIC + $\sum_{i}^{b} -IND_{2}$

• If we add to the language a function symbol $x\#_3y$ with $|x\#_3y|=|x|\#|y|$, then get theories T_3^i , S_3^i , R_3^i .

Well-known Results

- **Parikh's Theorem**. Let A be a bounded formula. If one of our bounded arithmetic theories T proves $\forall x \exists y A(x,y)$ then there is a term t such that T proves $\forall x \exists y \leq t A(x,y)$.
 - This has both a proof theory based proof and a compactness argument proof. It shows that functions of exponential growth are not definable in bounded arithmetic.
- **Buss' Theorem.** The Σ_1^{b} -definable functions of S_2^{1} are precisely the polynomial time computable functions, the class FP.
- **Conservativity.** (Buss)(Jerabek i = 0) For i ≥ 0 , Sⁱ⁺¹₂ is $\sum_{i=1}^{b}$ conservative over Tⁱ₂.

Pigeonhole Principles

Let m > n. Given a relation R(x,y,z)

- $iPHP_{n}^{m}(R)$:
 - $\forall x < m \exists ! y < n R(x,y,z) \supset$

 $\exists x_1, x_2 < m \exists y < n [x_1 \neq x_2 \Lambda R(x_1, y, z) \Lambda R(x_2, y, z)]$

If R is a function from *m* into *n*, it is not one-to-one (two points map to the same value).

• $sPHP_{n}^{m}(R)$:

$\forall x < n \exists ! y < m R(x,y,z) \supset \exists y < m \forall x < n \neg R(x,y,z)$

If R is a function from *n* into *m*, then it is not onto (some value for y is missed).

• $mPHP_{n}^{m}(R)$:

 $\forall \ x < m \ \exists \ y < n \ R(x,y,z) \supset$

 $\exists x_1, x_2 < m \exists y < n [x_1 \neq x_2 \Lambda R(x_1, y, z) \Lambda R(x_2, y, z)]$

If R is a multifunction from *m* into *n* it is not one-to-one (two points map to the same value).

These principles for a class of relations C is denoted by vPHP^m_n(C) where v=i,s, or m. We will write PV for p-time relations.

How much power does the weak pigeonhole principle add?

- By a weak pigeonhole principle we will mean the case where m ≥ 2n. The main reason for interest in these cases rather than using m = n+1 is that the string length changes.
- BASIC(R) proves mPHP^m_n(R) implies both sPHP^m_n(R) and iPHP^m_n(R).
- $S_{2}^{1}(R)$ proves mPHPⁿ_{|n|}(R).
- (Maciel, et al) $T^{2}_{2}(R)$ proves mPHP^{n^2}_n(R).
- (Wilkie) The \sum_{1}^{b} -definable functions of $S_{2}^{1}(PV) + mPHP_{n}^{n}(PV)$ can be witnessed by multifunctions from RP, randomized p-time.
- (Jerabek) If S_{2}^{1} +sPHP^{n^2} (PV) proves iPHP^{n^2} (PV) then factoring is in probabilistic p-time.

Surjective Weak Pigeonhole Principle and Hard Strings

- Let n=lxl, the length of our input sizes. Let HARD_k be the formalization of the statement: "There is a string S of length at most 2n^k whose bit values are not the output of any circuit of size n^k on inputs 0^{|x|}, 0^{|x|}+1,..., 0^{|x|} + 2n^k-1."
- It is straightforward to define a function from circuits of size n^k to strings of length at most 2n^k. Applying sPHP^{x^2}_x(PV) to this implies HARD_k over S¹₂.
- It turns out (Jerabek '04) has shown over S_2^1 that $sPHP_x^2(PV)$ and the HARD_k principles are equivalent
- For $HARD_k \supset sWPHP(PV)$, suppose there is a p-time function f for which the sWPHP fails...
- Then there is a $n^{k'}$ size circuit family $\{C_n^f\}$ computing this function for some k'. Can iterate f according to a string i_0i_1 .

More Hard Strings

For any k>k', iterating $C_n^f O(|n|)$ times, we can get a circuit C' of size $n^{k'+1}$ whose domain is $|2n^{k-1}| \ge 2n$ -bit numbers but whose range is all strings of size $2n^k$.

Let C be the circuit which on input i $<2n^k$ and s and an 2n bit number computes the ith bit of C'. For any fixed S of length $<2n^k$ we can now hard code the s that maps to it in C to get a circuit showing S is not the hard string of HARD_k.

In a similar fashion (Pollett-Danner'05) have come up with an iterated hard block principle that is equivalent to $mPHP^{x^2}_{x}(Iter(PV,log^{O(1)}))$ over S^1_2 .

Komolgorov Complexity Arguments in Bounded Arithmetic

- Many textbook examples (Li Vitanyi) of proofs using Komolgorov complexity, to show computational complexity results, number theory results, or combinatorics rely on the existence of a hard string of the kind we just discussed.
- This suggests trying to formalize them in of S¹₂ together with the surjective weak pigeonhole principle for some complexity class.
- We now consider a couple of examples where this was taken as the starting point and then modifications were done to get proofs that work.

Complexity Theory

(Danner-Pollett) $S_{2}^{1} + psPHP_{n}^{2}(\Sigma_{n}^{b})$ proves that recognizing the language $\{x0^{|x|}x \mid x \text{ in } \{0,1\}^{*}\}$ on a 1-tape Turing machine (palindrome checking) in requires time $t(n) > \Omega(n^{2})$. Here ps is for partial surjective.

The proof idea is to define a function cross_seq(e, x, w, i) which consists of the sequence of (state, tape square value) corresponding to the times where machine e on input x just before it did a move from square i to square i+1 in computation w. S¹₂ can prove that the sum of length of the crossing sequences $0 \le i \le |x|+t(|x|)$ is a lower bound on the length of the computation. Lemmas are then proven to show for m and i such that $m \le i \le 2m$ and crossing sequence c there is a unique x, |x|=m and w such that cross_seq(e, $x0^{|x|}x$, w, i) =c. This gives a partial surjection from crossing sequences to strings. So at for some x the crossing sequence has |x|. As there are |x| many i's, and the total runtime is greater than the sum of the crossing sequences this gives the result.

Number Theory

- Some older known results concerning weak pigeonhole principles are:
 - (Woods, Paris-Wilkie-Woods) $S_{2}^{1}+iPHP_{n}^{n}(PV)$ proves for $1 \le x < y$ one of y, y+1, ..., y+x has a prime divisor p > x.
 - (Berarducci and Intraglia) $I\Delta_0$ +WPHP(Δ_0) proves the four squares theorem. My suspicion is this proof can be pushed down to S¹₂+iPHP^{n^2}_n(PV). Proof establishes multiplicative properties of Legendre Symbol in the theory to show -1 is the sum of two squares mod p then uses recursive descent at most length many times.
- (Danner-Pollett) $T_2^1 + mPHP^{n^2}_n(PLS^{NP})$ proves $\pi(x) \ge x/\log^2 x$. Here $\pi(x)$ is the number of primes $\le x$.

Some comments on the density of primes results

- If you have exponentiation you can define 2m choose m and carry out Chebyshev's lower bound of 1/2x/ln x.
- PWW result gives a lower bound around log x in S_2^1 +iPHP^{n^2}_n(PV).
- The idea is using PWW, you can argue the correctness of a PLS^{NP} local search algorithm for the *m*th prime. Here we can give a circuit to compute each step which has some fixed polynomial size, n^k, using some fixed oracle to get a next prime.
- Using T_2^1 +sPHP^{n^2}_n(PLS^{NP}) can get a hard string result for such local searches.
- Given a number N you can uniquely encode it by m and $k=N/p_m$ where p_m is the *m*th prime. Choose the encoding as the code(lml)mk. Here $code(x_0 x_1..x_n) = x_0 0 x_1 0.. x_n 1$. So this encoding has length 2loglml +log $m+ log(N/p_m)$
- Using the hard string result, there is some N for which $\log N \le \text{circuit}$ size of local search problem to find $N \le 2\log |m| + \log m + \log N - \log p_m$. This give $p_m \le m \log^2 m$ from which the density result follows.

Combinatorics

- As a last couple of examples, I briefly mention some new results of Jerabek:
 - A **tournament** on n vertices is a directed graph such that for every i, j ≤ n exactly one of (i, j) and (j, i) is in the graph. A **dominating set** D in a tournament T is a set such for any j not in D there is an i in D with (i, j) in T. Tournaments play a role in proofs in complexity theory about selective sets. Let G be a new relation symbol. $S_2^2(G)$ + sWPHP(PV₂(G)) proves a tournament on N vertices has a dominating set of size |N|.
 - A clique C in a graph is a set of vertices such that for every i, j in C the edge (i, j) is in C. $S_2^2(G) + sWPHP(PV_2(G))$ proves an undirected graph G on N vertices has either a clique or a co-clique of size 1/2log N.

Conclusion

- Hopefully, it seems plausible that some interesting reverse mathematics style results can be had in weak systems using weak pigeonhole principles.
- It would be interesting to know if any of these previous results is exact.
- For instance, can one show that palindrome checking is equivalent to $S_{2}^{1} + psPHP^{n^{2}}(\Sigma_{1}^{b})$?