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What this talk 1s about...

We intend to give a survey of:
* Bounded Arithmetic

e In particular, the role of the Pigeonhole Principle
in these weak systems of arithmetic

* And how the surjective pigeonhole principle plays
a role 1n the reverse mathematics of Komolgorov
Complexity results in these systems.



Bounded Arithmetics

e Have BASIC axioms like:
y<x Dy=S(x)
X+Sy = S(x+y)
for the symbols 0, S, +, -, x#y := 22XV |x| := length of x, -, |_X/2iJ , <
* Have IND,, induction axioms of the form:
A0) AV x<lItl_[A(x) D A(S(x))] D A(ltl)
Here t is a term made of compositions of variables and our function symbols
and Ixly=x, IxI_=l x| .
* Have a language with:

— Limited subtraction ( - ) and | x/2!| which allows one to project out blocks of bits
and do sequence coding using just terms in the language.

— Smash (#) which allows the length of terms to grow polynomially in the length of
the inputs, which is useful for defining complexity classes like NP.



Bounded Arithmetics cont’d

A YP.-formula is a formula of the form:
dx,;=t,;Vx,<t,- - - Qx, =t Qx,, < It,

1+1

A

'i+1 alternations, innermost begin length bounded

where A is an open formula. A []°-formula is defined similarly but with the

outer quantifier being universal.

By a bounded formula we will mean a formula all of whose quantifiers
are bounded.

Fact: X" -sets are precisely the NP-sets (nondeterministic polynomial
time sets); [1°,-sets are the co-NP sets, etc.

Let
T, is the theory BASIC + X ".-IND,
S, is the theory BASIC + X ".-IND;,
R, is the theory BASIC + > °.-IND,

If we add to the language a function symbol x#,y with |x#,yl=Ixl#lyl, then
get theories T';, S5, RY,.



Well-known Results

Parikh’s Theorem. Let A be a bounded formula. If

one of our bounded arithmetic theories T proves

VxdyA(x,y) then there is a term t such that T proves
Vxdy=<tA(x.,y).

— This has both a proof theory based proof and a
compactness argument proof. It shows that functions of
exponential growth are not definable in bounded
arithmetic.

Buss’ Theorem. The X ®,-definable functions of S!,
are precisely the polynomial time computable
functions, the class FP.

Conservativity. (Buss)(Jerabek i = 0) For i=0, Si*!,
is Y. | conservative over T',.



Pigeonhole Principles

Let m > n. Given a relation R(x,y,z)
e iPHP™ (R):
Vx<m3dly<nRX)y,z)D
dx,x,<m3dy<n[x; =X, AR(X.y,2) AR(X,,y, 7) ]

If R 1s a function from m into n, it is not one-to-one (two points map
to the same value).

e sPHP™ (R):
Vx<ndly<mR(EX)y,z) Ddy<mV x <n-R(x,y,z)

If R 1s a function from 7 into m, then it 1s not onto (some value for y
1s missed).

e mPHP™ (R):
Vx<mdy<nRx)y,z)D
dx,x,<m3dy<n[x, =X, AR(X.y,2) AR(X,,y, 7) ]

If R 1s a multifunction from m into » it is not one-to-one (two points
map to the same value).

These principles for a class of relations C is denoted by vPHP™ (C) where
v=1,s, or m. We will write PV for p-time relations.



How much power does the weak
pigeonhole principle add?

By a weak pigeonhole principle we will mean the case where m = 2n.
The main reason for interest in these cases rather than using m = n+1 is
that the string length changes.

BASIC(R) proves mPHP™ (R) implies both sPHP™ (R) and
iPHP™ (R).

S, (R) proves mPHP" (R).
(Maciel, et al) T2,(R) proves mPHP™? (R).

(Wilkie) The X° -definable functions of S',(PV) + mPHP™? _(PV) can
be witnessed by multifunctions from RP, randomized p-time.

(Jerabek) If S1, +sPHP""?_(PV) proves iPHP™2 (PV) then factoring
1s in probabilistic p-time.



Surjective Weak Pigeonhole
Principle and Hard Strings

Let n=IxI, the length of our input sizes. Let HARD, be the
formalization of the statement: “There 1s a string S of length at most
2nk whose bit values are not the output of any circuit of size n*on
inputs O™, O%!+1,.., 0% + 2nk-1.”

It is straightforward to define a function from circuits of size n*to
strings of length at most 2n*. Applying sSPHP**2 (PV) to this implies
HARD, over Si,.

It turns out (Jerabek ’04) has shown over S!, that sSPHP**2 (PV) and
the HARD, principles are equivalent

For HARD, D sWPHP(PV), suppose there is a p-time function f for
which the sWPHP fails...

Then there is a n* size circuit family {C! } computing this function for
some k'. Can 1terate f according to a string 1,1,



More Hard Strings

For any k>k' , iterating C'  O(
nl) times, we can get a circuit
C' of size n**! whose domain
is 12n*1l x 2n-bit numbers but
whose range is all strings of
size 2nk.

Let C be the circuit which on input i <2n* and s and an 2n bit number computes
the ith bit of C'. For any fixed S of length <2n* we can now hard code the s that
maps to it in C to get a circuit showing S is not the hard string of HARD, .

In a similar fashion (Pollett-Danner’05) have come up with an

iterated hard block principle that 1s equivalent to
mPHP*2 (Iter(PV,log®M)) over S',.



Komolgorov Complexity Arguments
in Bounded Arithmetic

 Many textbook examples (L1 Vitany1) of proofs
using Komolgorov complexity, to show
computational complexity results, number theory
results, or combinatorics rely on the existence of a
hard string of the kind we just discussed.

e This suggests trying to formalize them in of S,
together with the surjective weak pigeonhole
principle for some complexity class.

* We now consider a couple of examples where this
was taken as the starting point and then
modifications were done to get proofs that work.



Complexity Theory

(Danner-Pollett ) S', + psPHP™2 (3°, ) proves that recognizing the
language {x0*x | x in {0,1}" } on a 1-tape Turing machine
(palindrome checking) in requires time t(n)> Q(n?). Here ps is for
partial surjective.

The proof idea is to define a function cross_seq(e, X, w, 1) which consists
of the sequence of (state, tape square value) corresponding to the times
where machine e on input x just before it did a move from square 1 to
square i+1 in computation w. S, can prove that the sum of length of
the crossing sequences O<i<Ix|+t(Ix|) is a lower bound on the length of

the computation. Lemmas are then proven to show for m and 1 such
that m <1 < 2m and crossing sequence c there is a unique X, IxI=m and
w such that cross_seq(e, x0*'x , w, i) =c. This gives a partial surjection
from crossing sequences to strings. So at for some x the crossing
sequence has Ixl. As there are Ix| many 1’s, and the total runtime is
greater than the sum of the crossing sequences this gives the result.



Number Theory

e Some older known results concerning weak
pigeonhole principles are:
— (Woods, Paris-Wilkie-Woods) S!',+iPHP" (PV)
proves for ] =x<yoneofy,y+l, ..., y+x has a prime
divisor p > X.

— (Berarducci and Intraglia) IA;,+WPHP(A,) proves the
four squares theorem. My suspicion is this proof can be
pushed down to S!,+iPHP"_(PV). Proof establishes

multiplicative properties of Legendre Symbol in the
theory to show -1 1s the sum of two squares mod p then
uses recursive descent at most length many times.

e (Danner-Pollett) T',+mPHP"*2? _(PLSN?) proves
m(x)=x/log?x. Here m(x) is the number of primes <
X.



Some comments on the density of
primes results

e If you have exponentiation you can define 2m choose m and carry out
Chebyshev’s lower bound of 1/2x/In x.

PWW result gives a lower bound around log x in S!,+iPHP"? (PV) .

o The idea is using PWW, you can argue the correctness of a PLSNP
local search algorithm for the mth prime. Here we can give a circuit to
compute each step which has some fixed polynomial size, n¥, using
some fixed oracle to get a next prime.

« Using T!,+sPHP" (PLS™P) can get a hard string result for such local
searches.

* Given a number N you can uniquely encode it by m and k=N/p_, where

p,, 18 the mth prime. Choose the encoding as the code(Iml)mk. Here
code(X, X;..X,)= X0 x,0.. x, 1. So this encoding has length 2loglml +log

m+ log(N/p,.)

e Using the hard string result, there 1s some N for which log N < circuit
size of local search problem to find N< 2log Iml + log m + log N - log
p,,- This give p_. < m log? m from which the density result follows.



Combinatorics

e As alast couple of examples, I briefly mention some new
results of Jerabek:

— A tournament on n vertices is a directed graph such that for every 1, j
< n exactly one of (i, j) and (j, 1) is in the graph. A dominating set D
in a tournament T is a set such for any j not in D there is an1in D
with (1, J) in T. Tournaments play a role in proofs in complexity
theory about selective sets. Let G be a new relation symbol. S%,(G) +
sWPHP(PV,(G)) proves a tournament on N vertices has a dominating
set of size INI.

— A clique C in a graph is a set of vertices such that for every i, j in C

the edge (i, j) is in C. S?,(G) + sWPHP(PV,(G)) proves an undirected
graph G on N vertices has either a clique or a co-clique of size 1/2log
N.



Conclusion

e Hopefully, it seems plausible that some interesting
reverse mathematics style results can be had in
weak systems using weak pigeonhole principles.

e It would be interesting to know if any of these
previous results 1s exact.

e For instance, can one show that palindrome
checking 1s equivalent to

S', + psPHP™? (30, ) ?



