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What this talk is about…

We intend to give a survey of:
•  Bounded Arithmetic
•  In particular, the role of the Pigeonhole Principle 

in these weak systems of arithmetic
•  And how the surjective pigeonhole principle plays 

a role in the reverse mathematics of Komolgorov 
Complexity results in these systems.



Bounded Arithmetics
•  Have BASIC axioms like:

y ≤ x  ⊃ y ≤ S(x)
x+Sy = S(x+y)
for the symbols 0, S, +, ·, x#y := 2|x||y|, |x| := length of x,  · , x/2i , ≤

•  Have INDm induction axioms of the form:
A(0) Λ ∀ x<|t|m[A(x) ⊃ A(S(x))] ⊃ A(|t|m)
Here t is a term made of compositions of variables and our function symbols 

and |x|0=x, |x|m=| |x|m-1|.
•  Have a language with:

–  Limited subtraction ( · ) and x/2i which allows one to project out blocks of bits 
and do sequence coding using just terms in the language.

–  Smash (#) which allows the length of terms to grow polynomially in the length of 
the inputs, which is useful for defining complexity classes like NP.



Bounded Arithmetics cont’d
•  A ∑b

i-formula  is a formula of the form:
 ∃x1≤ t1∀x2 ≤ t2 · · · Qxi ≤ ti Qxi+1 ≤ |ti+1|A

where A is an open formula. A ∏b
i-formula is defined similarly but with the 

outer quantifier being universal.
•  By a bounded formula we will mean a formula all of whose quantifiers 

are bounded. 
•  Fact: ∑b

1-sets are precisely the NP-sets (nondeterministic polynomial 
time sets); ∏b

1-sets are the co-NP sets, etc. 
•  Let
 Ti

2 is the theory BASIC + ∑b
i-IND0 

 Si
2 is the theory BASIC + ∑b

i-IND1
Ri

2 is the theory BASIC + ∑b
i-IND2  

•  If we add to the language a function symbol x#3y with |x#3y|=|x|#|y|, then 
get theories Ti

3, Si
3, Ri

3.

i+1 alternations, innermost begin length bounded 



Well-known Results
Parikh’s Theorem. Let A be a bounded formula. If 

one of our bounded arithmetic theories T proves 
∀x∃yA(x,y) then there is a term t such that T proves 
∀x∃y≤tA(x,y). 
–  This has both a proof theory based proof and a 

compactness argument proof. It shows that functions of 
exponential growth are not definable in bounded 
arithmetic. 

Buss’ Theorem. The ∑b
1-definable functions of S1

2 
are precisely the polynomial time computable 
functions, the class FP. 

Conservativity. (Buss)(Jerabek i = 0) For i≥0, Si+1
2 

is ∑b
i+1 conservative over Ti

2.



Pigeonhole Principles
Let m > n. Given a relation R(x,y,z) 
•  iPHPm

n(R): 
∀ x < m ∃! y < n R(x,y,z) ⊃
 ∃ x1,x2 < m ∃ y < n [x1 ≠ x2 Λ R(x1,y, z) Λ R(x2,y, z) ]

If R is a function from m into n, it is not one-to-one (two points map 
to the same value).

•  sPHPm
n(R):

∀ x < n ∃! y < m R(x,y,z) ⊃ ∃ y < m∀ x < n¬R(x,y,z)
If R is a function from n into m, then it is not onto (some value for y 

is missed). 
•  mPHPm

n(R):
∀ x < m ∃ y < n R(x,y,z) ⊃
 ∃ x1,x2 < m ∃ y < n [x1 ≠ x2 Λ R(x1,y, z) Λ R(x2,y, z) ]

If R is a multifunction from m into n it is not one-to-one (two points 
map to the same value).

These principles for a class of relations C is denoted by vPHPm
n(C) where 

v=i,s, or m. We will write PV for p-time relations.



How much power does the weak 
pigeonhole principle add?

•  By a weak pigeonhole principle we will mean the case where m ≥ 2n. 
The main reason for interest in these cases rather than using m = n+1 is 
that the string length changes.

•  BASIC(R) proves mPHPm
n(R) implies both sPHPm

n(R) and 
iPHPm

n(R). 

•  S1
2(R) proves mPHPn

|n|(R).
•  (Maciel, et al) T2

2(R) proves mPHPn^2
n(R). 

•  (Wilkie) The ∑b
1-definable functions of S1

2(PV) + mPHPn^2
n(PV) can 

be witnessed by multifunctions from RP, randomized p-time. 
•  (Jerabek) If S1

2 +sPHPn^2
n(PV) proves iPHPn^2

n(PV) then factoring 
is in probabilistic p-time. 



Surjective Weak Pigeonhole 
Principle and Hard Strings

•  Let n=|x|, the length of our input sizes. Let HARDk be the 
formalization of the statement: “There is a string S of length at most 
2nk  whose bit values are not the output of any circuit of size nk on 
inputs 0|x|, 0|x|+1,.., 0|x| + 2nk-1.”

•  It is straightforward to define a function from circuits of size nk
 to 

strings of length at most 2nk. Applying sPHPx^2
x(PV) to this implies 

HARDk over S1
2.

•  It turns out (Jerabek ’04) has shown over S1
2 that sPHPx^2

x(PV)  and 
the HARDk principles are equivalent

•  For  HARDk  ⊃ sWPHP(PV), suppose there is a p-time function f for 
which the sWPHP fails…

•  Then there is a nk' size circuit family {Cf
n} computing this function for 

some k'. Can iterate f according to a string i0i1··  



More Hard Strings

f f 

f 
i1=0 

i1=1 

f i0=1 

f 

For any k>k' , iterating Cf
n O(|

n|) times, we can get a circuit 
C' of size nk'+1 whose domain 
is |2nk-1| x 2n-bit numbers but 
whose range is all strings of 
size 2nk.

Input: 2n bit 
string. (2|x|)2 

= 22|x|, n=|x| 

Let C be the circuit which on input i <2nk and s and an 2n bit number computes 
the ith bit of C'. For any fixed S of length <2nk we can now hard code the s that 
maps to it in C to get a circuit showing S is not the hard string of HARDk.

In a similar fashion (Pollett-Danner’05) have come up with an 
iterated hard block principle that is equivalent to 
mPHPx^2

x(Iter(PV,logO(1))) over S1
2. 



Komolgorov Complexity Arguments 
in Bounded Arithmetic

•  Many textbook examples (Li Vitanyi) of proofs 
using Komolgorov complexity, to show 
computational complexity results, number theory 
results, or combinatorics rely on the existence of a 
hard string of the kind we just discussed.

•  This suggests trying to formalize them in of S1
2 

together with the surjective weak pigeonhole 
principle for some complexity class.

•  We now consider a couple of examples where this 
was taken as the starting point and then 
modifications were done to get proofs that work.



Complexity Theory
(Danner-Pollett ) S1

2 + psPHPn^2
n(∑b

1 ) proves that recognizing the 
language {x0|x|x | x in {0,1}* } on a 1-tape Turing machine 
(palindrome checking) in requires time t(n)> Ω(n2). Here ps is for 
partial surjective.

The proof idea is to define a function cross_seq(e, x, w, i) which consists 
of the sequence of (state, tape square value) corresponding to the times 
where machine e on input x just before it did a move from square i to 
square i+1 in computation w. S1

2 can prove that the sum of length of 
the crossing sequences 0≤i≤|x|+t(|x|) is a lower bound on the length of 
the computation. Lemmas are then proven to show for m and i such 
that m ≤ i ≤ 2m and crossing sequence c there is a unique x, |x|=m and 
w such that cross_seq(e, x0|x|x , w, i) =c. This gives a partial surjection 
from crossing sequences to strings. So at for some x the crossing 
sequence has |x|. As there are |x| many i’s, and the total runtime is 
greater than the sum of the crossing sequences this gives the result. 



Number Theory
•  Some older known results concerning weak 

pigeonhole principles are:
–  (Woods, Paris-Wilkie-Woods)  S1

2+iPHPn^2
n(PV) 

proves for 1 ≤ x < y one of y, y+1, …, y+x has a prime 
divisor p > x.

–  (Berarducci and Intraglia) IΔ0+WPHP(Δ0) proves the 
four squares theorem. My suspicion is this proof can be 
pushed down to S1

2+iPHPn^2
n(PV). Proof establishes 

multiplicative properties of Legendre Symbol in the 
theory to show -1 is the sum of two squares mod p then 
uses recursive descent at most length many times.

•  (Danner-Pollett) T1
2+mPHPn^2

n(PLSNP) proves 
π(x)≥x/log2x. Here π(x) is the number of primes ≤ 
x. 



Some comments on the density of 
primes results

•  If you have exponentiation you can define 2m choose m and carry out 
Chebyshev’s lower bound of 1/2x/ln x.

•   PWW result gives a lower bound around log x in S1
2+iPHPn^2

n(PV) .
•  The idea is using PWW, you can argue the correctness of a PLSNP  

local search algorithm for the mth prime. Here we can give a circuit to 
compute each step which has some fixed polynomial size, nk, using 
some fixed oracle to get a next prime. 

•  Using T1
2+sPHPn^2

n(PLSNP) can get a hard string result for such local 
searches. 

•  Given a number N you can uniquely encode it by m and k=N/pm where 
pm is the mth prime. Choose the encoding as the code(|m|)mk. Here 
code(x0 x1..xn)= x00 x10.. xn1. So this encoding has length 2log|m| +log 
m+ log(N/pm) 

•  Using the hard string result, there is some N for which log N ≤ circuit 
size of local search problem to find N≤ 2log |m| + log m + log N - log 
pm. This give pm ≤ m log2 m from which the density result follows.



Combinatorics
•  As a last couple of examples, I briefly mention some new 

results of Jerabek:
–  A tournament on n vertices is a directed graph such that for every i, j 
≤ n exactly one of (i, j) and (j, i) is in the graph. A dominating set D 
in a tournament T is a set such for any j not in D there is an i in D 
with (i, j) in T. Tournaments play a role in proofs in complexity 
theory about selective sets. Let G be a new relation symbol. S2

2(G) + 
sWPHP(PV2(G)) proves a tournament on N vertices has a dominating 
set of size |N|.

–  A clique C in a graph is a set of vertices such that for every i, j in C 
the edge (i, j) is in C. S2

2(G) + sWPHP(PV2(G))  proves an undirected 
graph G on N vertices has either a clique or a co-clique of size 1/2log 
N.



Conclusion

•  Hopefully, it seems plausible that some interesting 
reverse mathematics style results can be had in 
weak systems using weak pigeonhole principles.

•  It would be interesting to know if any of these 
previous results is exact.

•  For instance, can one show that palindrome 
checking is equivalent to 
S1

2 + psPHPn^2
n(∑b

1 ) ?


