
Peer-to-Peer Networking and Applications manuscript No.
(will be inserted by the editor)

TontineCoin: Survivor-based Proof-of-Stake

Chris Pollett · Thomas H. Austin · Katerina

Potika? · Justin Rietz · Prashant Pardeshi

the date of receipt and acceptance should be inserted later

Received: date / Accepted: date

Abstract Proof-of-Stake cryptocurrencies avoid many of the computational and
environmental costs associated with Proof-of-Work protocols. However, they must
address the nothing-at-stake problem, where a validator might attempt to sign off
on competing blocks, with the hopes of earning coins regardless of which block
becomes accepted as part of the blockchain. Cryptocurrencies such as Tendermint
resolve this challenge by requiring validators to bond coins, which can be seized
from a validator that is caught signing two competing blocks. Nevertheless, as
the number of validators increases, it becomes increasingly infeasible to effectively
monitor all validators, and to reach consensus.

In this work, we incentivize proper block monitoring by allowing validators to
form tontines. In the real world, tontines are financial agreements where payouts
to each member increase as the number of members decreases. In our system, a
tontine is a group of validators that monitor each other’s behavior, “murdering”
any cheating tontine members to seize their stake. As the number of validators
in a tontine is smaller than the number of validators in the currency as a whole,
members can effectively police each other. We propose two methods whereby a
Tendermint-like currency can be extended to allow for the creation of tontines: a
pure Proof-of-Stake model, and a hybrid Proof-of-Stake/Proof-of-Work model. We
describe snitch mechanisms for both the inter- and intra-tontine setting, argue our
incentive mechanisms increase monitoring, and describe how it handles a variety
of possible attacks.

We extend our model to act as a validator delegated cryptocurrency, with the
users having an incentive to partially participate. We show that these strategies

? Corresponding author.

Chris Pollett, Thomas H. Austin, Katerina Potika, Prashant Pardeshi
Computer Science Department, San Jose State University
E-mail: chris@pollett.org, E-mail: thomas.austin@sjsu.edu,E-mail: katerina.potika@sjsu.edu,E-
mail: prashant.pardeshi@sjsu.edu

Justin Rietz
Economics Department, San Jose State University
E-mail: justin.rietz@sjsu.edu

2 Chris Pollett et al.

may benefit validators as well as speed up the block formation process. Moreover,
we describe a prototype implementation of TontineCoin, and perform various ex-
periments that support our theoretical analysis.

Keywords Proof-of-Stake · Cheater Detection · Cryptocurrency · Scalability

1 Introduction

Since its introduction, Bitcoin has changed the way that we think about money. By
carefully aligning incentives, the Bitcoin protocol has provided a decentralized, re-
silient payment system. Its blockchain model has inspired new systems for handling
sophisticated smart contracts [46], providing distributed storage [20, 32, 34, 43],
and even such interesting applications as finding prime numbers [24] and building
a public-key infrastructure [2].

However, Bitcoin’s Proof-of-Work (PoW) based design has been the source of
many problems. The irregular payment for the miners who maintain the blockchain
has led to the formation of mining pools [39], reducing Bitcoin’s decentralization.
Its throughput is limited to one block of transactions for every ten minutes, causing
scalability problems. The increasing expense in terms of electricity usage has raised
environmental concerns.

Proof-of-Stake (PoS) protocols seek to address these issues by instead tying the
amount of coins a client has to its influence in the blockchain formation process.
The idea is that the more coins a client possesses, the more vested that client is
in the cryptocurrency’s success.

While many variants of Proof-of-Stake protocols exist, Tendermint’s approach
is commonly adopted for other Proof-of-Stake systems. In this approach, valida-
tors bond coins for the right to produce and verify blocks of transactions. The
validator is temporarily unable to spend the bonded coins, but receives shares
in the rewards associated with the creation and validation of new blocks. If the
validator misbehaves, other validators may write a transaction to the blockchain
providing evidence of the cheating; the cheating validator is ejected from the set of
validators and loses its bonded coins, which are divided up amongst the remaining
validators. Section 3.2 discusses Tendermint’s design in depth.

Unfortunately, as the set of validators increases, so does the cost of monitoring
other validators, making it increasingly likely that validators will elect not to spend
the cost, and instead rely on the work of other validators.

To enforce fair behavior it is important to design a monitoring mechanism that
detects cheaters and punishes them. Such a mechanism should make cheating less
attractive. Moreover, the cooperation among users in order to detect cheaters must
become profitable. The problem of detecting cheaters is a problem that is studied
in distributed multiplayer games [29, 47]. The use of small groups [14, 19, 21] is
studied as a way to create an attack-resistant distributed system that is scalable,
and might also improve robustness. As we describe in the related work, our system
is novel with respect to prior work in that it focuses on when people have incentive
to monitor each other rather than trying to make groups that must reach consensus
before a global consensus between groups is reached. Since our approach does not
rely on multiple tiers of agreement, we argue that it will make for a more easily
implemented system.

TontineCoin: Survivor-based Proof-of-Stake 3

In this work, we provide TontineCoin, a new Proof-of-Stake protocol based
on the financial structure of tontines. A tontine is an agreement where investors
commit initial capital in exchange for a payout of funds over their lifetimes, with
the unique property that the payouts are divided among the surviving beneficiaries.
With this design, beneficiaries are (sometimes strongly) motivated to kill each
other off, and thereby increase their payout. Not surprisingly, tontines have served
as a staple of murder mysteries such as Agatha Christie’s 1957 novel The 4:50 From

Paddington and as a plot device in TV episodes such as The Simpson’s Season 7
episode, Raging Abe Simpson. . . and the Archer Season 2 episode, The Double Deuce.

While the economic incentives of tontines make them a questionable investment
scheme, we find that it makes an excellent basis for a Proof-of-Stake protocol.
Clients form tontines to earn the right to validate transactions, and hence gain
an income. However, if a client in a tontine misbehaves, it can be kicked out of
the tontine by the other members. Our design ensures that members of a tontine
have a vested interest in detecting and announcing the bad behavior of other
members, thereby addressing the nothing-at-stake problem. Furthermore, since
the work required to monitor other validators is more limited, and the payout is
divided amongst a smaller number of players, the expected benefit of monitoring
for cheaters is not reduced as the number of validators increases.

This paper is an expanded version of a conference paper [37]. We have added
additional background information on tontines, described a prototype implemen-
tation of our TontineCoin, and proposed various validator strategies that define
different levels of participation in the monitoring and in the block creation. A de-
tailed analysis is presented on the payout users receive under the various strategies,
and how that can lead to a form of validator delegation. Moreover, we perform
experiments using one of these strategies, the copy fast strategy, to show that it
is a viable validator strategy and to show the effect on the network’s behavior as
the number of copy fast validators increases; in short, we find that the network
comes to consensus more quickly, but at the undesirable cost of reduced valida-
tion. Also, we add to the original paper a discussion of relaxed “murder” sentences
for cheaters considering punishments like seizing parts of, rather than all of, the
cheater’s stake.

The organization of the paper follows: Section 2 reviews related work; Section 3
discusses the necessary background to understand our design, such as project Spar-
tanGold (Section 3.1), Tendermint (Section 3.2) and tontines (Section 3.3); Sec-
tion 4 describes two models for how tontines could be formed, including the hybrid
Proof-of-Stake/Proof-of-Work “train model” (Section 4.1) and the pure Proof-of-
Stake “mining cart model” (Section 4.2); Section 5 describes how tontines operate
once formed; Section 6 gives an economic analysis of validator monitoring in our
tontine setting, as well as considers validator strategies less than full monitoring
and their incentive properties; Section 7 presents experiments for our proposed
copy fast validator strategy and simulations of our TontineCoin approach; Sec-
tion 8 contains implementation details of our TontineCoin; Section 9 extends the
model to more forgiving “murder” modes; Section 10 discusses future directions
for TontineCoin; and Section 11 concludes.

4 Chris Pollett et al.

2 Related Work

Proof-of-Stake (PoS) protocols are rapidly being incorporated into real world dis-
tributed ledger systems, having been deployed in systems such as Cosmos with
Tendermint [26], Ethereum with Casper [10] and Cardano with Ouroboros [23].
Other PoS protocols examples being considered for such systems include Chains-
of-Activity [7], Hot-Stuff [1], Algorand[13], and StakeCube[14]. A summary of the
characteristics of most of these protocols can be found in [36]. In this section, we
consider some of these systems and how they relate to TontineCoin.

The Cosmos system 1 consists of a network of various independent blockchains,
which are called zones. The zones use in their core Tendermint. Cosmos offers a
light client option which has the same security as a full client, but with minimal re-
source requirements. A light client can receive proofs of the state of the blockchain
from any full client. If a full node is disconnected it can use the Fastsync syn-
chronization protocol, formally specified and model checked in [8], to learn blocks
fast without participating in the consensus process. Both these approaches, i.e.,
the light clients and Fastsync, are different from our copy fast and tontine monitor

copy rest strategies (described in Section 6.3) since nodes in our system are not
predefined as full or light clients and so can switch from one strategy to the other
in how they participate in the consensus.

The present paper performs some theoretical and experimental analysis of both
the Tendermint and the TontineCoin system following in the tradition of earlier
analyses of PoS protocols. The original Tendermint protocol is analyzed and mod-
ified by Amoussou-Guenou et al. [3] in order to implement one-shot and repeated
consensus. Additionally, they reconsider the fairness of the protocol in the selec-
tion mechanism on the agreement set as well as the reward mechanism for the
validators participating in the agreement. Ouroboros [23] proposes a PoS, which
contains a provable security analysis. Moreover, it suggests a reward mechanism,
such that the strategy of the faithful players to the protocol is an approximate
Nash Equilibrium.

Though not strictly speaking a Proof-of-Stake system, Bitcoin-NG [16] at-
tempts a similar approach to Tendermint in order to increase Bitcoin’s transac-
tion throughput. After a miner has announced a Proof-of-Work and produced a
new block (dubbed a key block), it may produce additional microblocks without a
Proof-of-Work until another miner finds a valid Proof-of-Work and takes control.
As with Tendermint, if the miner produces conflicting microblocks at the same
height, other miners may write an evidence transaction (called a poison transaction

in their terminology).

Some other protocols, closer to our approach, aim to improve scalability by
considering subsets or shards (groups) of users. In the former category belongs
Algorand [13] that proposes a new Byzantine agreement protocol, which considers
only a subset of users as participants for the consensus step. The participants
are found by the use of verifiable random functions that select users in a private
and non-interactive way, given the users have a private key. In the latter category
belongs StakeCube [14] that combines users into shards, and chooses a constant
size committee in each shard to perform the distributed steps of the consensus.
In order to achieve an average sublinear communication per user, the number of

1 https://cosmos.network

TontineCoin: Survivor-based Proof-of-Stake 5

shards is chosen as O(n1/2). We obtain a similar result on the number of tontines
for the tontine monitor ignore rest strategy in order to keep the total number of
messages linear (see Section 6.3).

Several approaches beyond PoS systems leverage groups of participants to make
various systems resilient to attacks while still avoiding excessive communication
and routing costs [12, 21]. In the distributed system considered by Jaiyeola [21]
the size of each group is shrunk to O(log logn), yet a fault tolerant system is
created even under the assumption that a constant fraction of all the participants
are faulty. By using PoW they manage to limit the amount of participants an
adversary controls.

We conclude this section by mentioning that numerous technologies can be
built on both PoS and PoW ledgers. The blockchain has been considered as an
authorization database for a large-scale heterogeneous network [42], as a trusted
service mechanism of a crowdsourcing system in 5G-smart cities [44] with smart
contracts, and as a data sharing model for 5G drones [18].

3 Preliminaries

Cryptocurrencies can be classified in terms of how blocks of transactions are proven
to be part of the blockchain of all transactions in the currency. Common strategies
for this are Proof-of-Work, Proof-of-Stake, or some kind of hybrid between these.
The integrity of the currency is determined by the incentives the verifiers of trans-
actions in the currency, henceforth referred to as miners, have to behave honestly
when determining which blocks constitute part of the blockchain, the number
of verifiers, and the speed at which consensus is arrived at. In this section, we
briefly survey well-known representatives of the Proof-of-Work and Proof-of-Stake
approaches, discuss some of their strengths and weaknesses, and indicate why ton-
tines may be useful to address some of the weaknesses. We also fix definitions and
notations for the rest of the paper.

Bitcoin [35] is the most well known cryptocurrency and is an example of a
Proof-of-Work system. In it, a transaction ledger is maintained as a nearly se-
quential tree of blocks. A block consists of two main parts: its header and a list of
transactions.

The header consists of a version number, a SHA256 hash of a previous block
in the Bitcoin blockchain2, a SHA256 hash that is the root of a Merkle tree of
SHA256 hashes [31] of transactions contained within the block, a time stamp for
when the block was created, a difficulty target, and a nonce.

As we said earlier, after the header, a block contains a list of transactions. A
transaction consists of a list of inputs and outputs each of which consist of bit-
coin addresses together with auxiliary information. A bitcoin address is based on
SHA256 hash of a public key. The inputs represent unspent transaction outputs
(UTXOs) from earlier transactions. Each input contains a transaction ID referenc-
ing the transaction (and hence block) that contains the UTXO, its index within
that transaction, a signature field proving the user can spend that UTXO, and a
sequence number. This signature typically requires knowledge of the private key

2 For the starting block, known as the genesis block, the previous block hash field has a
special value.

6 Chris Pollett et al.

corresponding to the public key used to make the bitcoin address. The outputs are
new UTXOs that can be used in future transactions. They consist of an amount
of bitcoin and the kind of signature needed to unlock these coins. This locking
script information can be used to reconstruct a bitcoin address corresponding to
this UTXO.

Each block is certified by a hashcash [5] Proof-of-Work. For Bitcoin, the hard-
ness of this Proof-of-Work is specified by the difficulty target in the header. To
satisfy the difficulty target the nonce must be set by the block miner to a value
such that when the block header is hashed, the hash result has a number of leading
0’s at least as long as required by the target. Although only the header is hashed,
the integrity of the transactions within the block is ensured as the header contains
the root of the Merkle tree of the transactions. The miner as per the version of the
Bitcoin used by the block can specify as one of the transactions listed, a special
transaction which “creates/mints” some new bitcoins, with an address that the
miner could then use to spend in later transactions. Once a miner has created a
valid block, the miner publishes it to the network of bitcoin miners. Honest min-
ers, following the bitcoin protocol, when presented with chains whose headers all
validate are supposed to deem the one with the larger total amount of work as the
valid one. The process, by which consensus of which chain in the blockchain is the
legitimate one, can be viewed as a Byzantine agreement process.

3.1 SpartanGold

SpartanGold [4] is a simplified blockchain-based cryptocurrency written in JavaScript.
The goal of the project is to be a tool for rapid prototyping of new blockchain de-
signs, as well as a tool for education.

SpartanGold’s design is patterned after Bitcoin, though it is simplified to allow
for easier experimentation. For instance, the blockchain only supports the moving
of funds, and does not offer support for a scripting language.

The project is designed to run in either a single-threaded mode or run over a
network connection. The former mode simplifies demonstrations and experimen-
tation, while the latter version serves to provide a more realistic environment.

3.2 Tendermint Overview

Transaction throughput has been a major bottleneck in Proof-of-Work cryptocur-
rencies, like Bitcoin. The transactions per second is determined by the number
of transactions that can fit into a block, the rate at which the difficulty targets
increase given the size and processing power of the pool of miners, and the time
for these miners to reach a consensus.

The Proof-of-Stake model attempts to address this bottleneck, while still main-
taining the same decentralized nature of Proof-of-Work cryptocurrencies, like Bit-
coin. Instead of Bitcoin’s “one-CPU-one-vote” model, these protocols tie voting
power to the amount of coins a client controls. For instance, Peercoin [25] relies on
a variable Proof-of-Work, where a client with more coin age (the number of coins
multiplied by the time since those coins were last spent) gets an easier Proof-

TontineCoin: Survivor-based Proof-of-Stake 7

of-Work target. EOS [28] uses Delegated-Proof-of-Stake (DPoS) [27], where coin
holders elect delegates responsible for maintaining the blockchain.

In this paper, we compare our design to Tendermint [9, 26], one of the most
well-known Proof-of-Stake systems. We now provide an overview of the Tendermint
design to facilitate better understanding of our own design.

Much of Tendermint’s design follows that of other blockchains. Nodes partic-
ipating in a Tendermint system are arranged in a network and relay new infor-
mation to each other. Each node maintains a complete copy of a totally ordered
sequence of events called a blockchain. Clients have accounts that hold some quan-
tity of coins. Accounts are identified by a hash of the user’s public key address.
Clients may submit transactions to nodes to move coins from one account to an-
other, typically offering some coins as a transaction fee. The number of coins held
by an account can be determined from the blockchain by examining the number
of coins transferred to and from an account.

Tendermint has four types of transactions:

– Send transactions are used to transfer coins to other clients.
– With bond transactions, a client offers coins as a surety bond. It gains the right

to become a validator3 responsible for making blocks and verifying the blocks
produced by other validators. However, if the validator is caught cheating, it
loses all of the coins that is has bonded.

– The reverse of the bond transaction is the unbonding transaction; a validator
regains its bonded coins and loses the right to be a validator. Bonded coins
cannot be used until a certain number of blocks have been created after the
unbonding transaction; this design prevents a validator from quickly recovering
its coins before its cheating can be detected.

– If a validator is caught cheating, any client can post an evidence transaction

showing the validator’s two conflicting commit/vote signatures or its signature
on an invalid checkpoint. A portion of the validator’s coins are then destroyed
and the validator is ejected from the set of validators.

The Tendermint blockchain is initialized with a genesis block, which identifies
initial validators (defined below) and quantities of coins they have in escrow. Ten-
dermint validators have voting power equivalent to the amount of coins that they
have bonded. Validators in Tendermint are incentivized to include transactions
in blocks by receiving a proportion of the transaction fees for each transaction
according to the amount of coin they have in escrow. Besides using Proof-of-Stake
rather than Proof-of-Work, Tendermint also differs from Bitcoin in that it assumes
users have accounts and transactions transfer money between accounts rather than
in the Bitcoin setup, where UTXOs are used.

A block in Tendermint consists of a header followed by a sequence of trans-
actions. We formulate our description of the header to more closely match our
description of Bitcoin rather than use exactly the same terminology used by
Kwon [26]. The header contains the block height (distance from the root block)
and other meta data, the previous block header’s hash, the root hash of a Merkle
tree of validator signatures for the previous block, and a hash of the block’s trans-
actions.

3 A validator in a Proof-of-Stake system is roughly analogous to a miner in a Proof-of-Work
system.

8 Chris Pollett et al.

Blocks are added to the blockchain using a variation of a Byzantine Agreement
protocol given in Dwork et al. [15]. This protocol assumes a known upper bound ∆
on times for messages to be delivered, and so a validator can use this in determining
when to start processing a new block, when rounds end, etc.

Algorithm 1: Pseudocode for updating accumulated power

Precondition : accumPower: key-value pairs address & power
bondBalances: key-value pairs address, amount of coins bonded
proposerAddr: address of current block proposer

Postcondition: Block proposer’s accumulated power decreased by total coins bonded
Other validators’ power increased by amount of coins they have
bonded.

Function : updatePower(accumPower, bondBalances, proposerAddr)
1 totalBonded := 0;
2 for (addr, amountBonded) in bondBalances do
3 accumPower[addr]+ = amountBonded;
4 totalBonded+ = amountBonded;

5 end
6 accumPower[proposerAddr]− = totalBonded;

When trying to come to consensus on a new block, each validator first deter-
mines who the other potential validators might be. This determination is based on
the current blockchain and who currently has bonded coins. The validator pool is
then reduced, eliminating those potential validators whose minimum of the time
since their bonding and the time since last participating in the validation process
is greater than some parameter time Y .

The validators then go through multiple rounds in an attempt to arrive at a
consensus for the next block. Each round consists of several phases: a proposal
phase, where a single validator proposes a valid block; a prevote phase, where all
validators attempt to lock on to the best block they see; and a precommit phase,
where all validators attempt to commit to the locked block.

Proposal phase In the proposal phase, each validator determines who the next
proposer of a block should be. For each validator, an initial score given by the
amount of coins bonded times the number of block proposal opportunities since
bonding is computed. From this result, a score is computed by subtracting for
each time that validator was a proposer in the past the total value of bonded
coins at the time they were a proposer. Algorithm 1 shows the pseudocode for this
algorithm4. We update the block proposer’s accumulated power by decreasing it
and the rest of the validators’ power by increasing it.

Prevote phase After waiting ∆ time for block proposals, each validator must broad-
cast a prevote according to the following rules:

4 We provide JavaScript implementations of this pseudocode and the pseudocode examples
in the remainder of this paper for use with the SpartanGold framework. The implementation
is available at https://github.com/taustin/tendermint-sg. The function names used in our
pseudocode and in our JavaScript code are identical. Review of this implementation may
facilitate better understanding of Tendermint’s design.

TontineCoin: Survivor-based Proof-of-Stake 9

– If the validator has locked on to a block from a previous round, they vote for
that block.

– Otherwise, if they have received a valid block from the proposer, they vote for
that block.

– Otherwise they prevote “NIL VOTE” to indicate that no valid block was re-
ceived.

Note that there should only be one valid proposal for a given block height and
round. If conflicting proposals are received from the proposer, the validator may
report this as Byzantine behavior.

Precommit phase After again waiting ∆ time for prevotes, each validator must
decide on the next step:

– If a block has gained 2/3 of the prevotes, the validator locks on to the block
and broadcasts a precommit vote for that block.

– Otherwise, if “NIL VOTE” has gained 2/3 of the prevotes, the validator re-
leases any locks. No vote is broadcast.

– Otherwise, the validator does nothing.

Our pseudocode of this phase is shown in Algorithm 2.

Algorithm 2: Pseudocode for Precommit method

Precondition : prevotes: key-value pairs blockID (or NIL VOTE) and amount of
votes
roundNumber: number of attempts to reach consensus at this block
height
delta: constant for waiting time multiplier based on latency

Postcondition: Validator is precommited to a block if there is a winning block.
Function : precommit(prevotes, roundNumber, delta)

1 winningBlockID := countV otes(prevotes);
2 if winningBlockID is undefined then

// Failed to reach consensus; do nothing
3 else if winningBlockID == NIL V OTE then
4 releaseLocks();
5 end
6 else
7 lock(winningBlockID);
8 broadcastPrecommitVote(winningBlockID);

9 end

10 end
11 wait (roundNumber * delta) msec ;

Commit decision At this point, the validator must decide whether to commit to
the block, or to start a new round.

The validator again waits ∆ time for precommits. If a block has gained 2/3
of the precommit votes, the validator broadcasts a commit vote for the block. At
this point, the validator does not participate in additional rounds until the next
block height; their commit vote counts as both their prevote and precommit votes
for all subsequent rounds. They wait until they receive 2/3 of the commits from
other validators before beginning a new block height.

10 Chris Pollett et al.

If the validator has not received sufficient precommits, they begin a new round
starting at the block proposal phase. The ∆ time is increased for the next round,
allowing the network to slow down when needed. The ∆ time is reset for the next
block height.

Tendermint’s Proof-of-Stake model eliminates some of the throughput issues of
Proof-of-Work models in that it does not depend on the somewhat hard to predict
rate at which proofs of work are found and the related convergence issues this
causes. Instead, throughput is largely determined by the message delivery rate ∆.
On the other hand, in the Tendermint system one has to be careful about denial of
service issues against proposers. There is also the issue that as the pool of validators
gets larger the incentive to monitor the honesty of any particular validator goes
down. The first of these problems is solved using a system of sentry nodes that
act as intermediaries to prevent the direct address of the current proposer from
being known [45]. In this paper, we are proposing using a tontine mechanism to
solve the second problem.

3.3 Tontine Overview

In this section, we briefly summarize the history of and concepts related to tontines.
Much of the details here come from the excellent survey of McKeever [30]. A history
of tontines starting in Holland and later Britain as well as comparison between
tontines and other kinds of annuities can be found in Milevsky [33].

Several investment vehicles have gone under the name tontine. For example, in
French influenced Africa and Asia, tontines usually refer to an Rotating Savings
and Credit Association (ROSCA) in which members agree to contribute up to
a fixed quantity M of money at regular meetings, and at those meetings, one
member of the association receives all of that meeting’s contributions. In one set-
up, members are either live or dead. Live members bid a value less than or equal
to M , and the lowest bidder receives the distribution for that meeting, but all live
bidders only pay this low bid amount. Tie low bids are usually broken randomly.
A member can receive this distribution only once, at which they become dead, and
for all future meetings must pay M . When everyone who belongs to the tontine
has received a payout, the tontine ends. This form of tontine dates to at least
Tang dynasty (850s A.D.) China. It is alternatively formulated as the highest
bidder winning the distribution for a given period, but where the remaining live
members only pay M − b, where b was the winning bid. More on bidding equilibria
for ROSCAs and this history can be found in Fang and Ke 2006 [17]. The modern
tontine that we are interested in for this paper was proposed by, and gets its
name from, Lorenzo de Tonti in the 1653. His idea, which he submitted to the
Chief Minister of Louis XIV as a way to raise money for the French Government,
was that subscribers would each buy an annuity at 300 livres per share and then
nominate a third party as the life interest in the stake. These nominees would then
be grouped by age ranges and would receive an equally divided annual payment
based on the interest earned on the combined initial capital put up from members
in that age range. As members in the given cohort die, the proportion of this annual
payment for the surviving members would increase. Although de Tonti’s proposal
was never implemented, by the 1670s similar proposals had been established in
Holland.

TontineCoin: Survivor-based Proof-of-Stake 11

Tontines have been used to structure clubs, where the money contributed is
used to purchase the facilities of the club, which are then used and owned by the
members. They have been used as a form of insurance and estate planning. They
have also been used for installment plan purchase scams. In the latter set-up, a
cohort of individuals would make regular payments for a set time period. The
members who never missed a payment for the whole period would receive either a
diamond or 150% of their investment as their reward. As long as sufficiently many
people miss a payment the selling company of this form of tontine could make
money.

All of the tontines set-ups described above accrue benefits to the individuals
that survive the longest, and incentivize these individuals to eliminate other ton-
tine members. For this reason, tontines have acquired a bad reputation. In the
early twentieth century in the United States, various states such as Wisconsin and
New York enacted statutes that forbid deferred dividend insurance, where deferred
in the former case meant a period of greater than five years, which implicitly tar-
geted tontines [38]. Louisiana and South Carolina have actual statutes forbidding
tontines. These statutes also provide a definition of a tontine as a policy that
distribute benefits from a special fund to the oldest member of a division of its
policyholders or the members of the division and class whose policy has been in
force the longest period of time upon the death of a member in the division.

Tontines as used in TontineCoin defer benefits on a much shorter timescales
than those mentioned above, on the order of hours or days, so likely are not
governed by the former statutes. The benefits also do not accrue based on the
death of a member, but instead on the provable discovery of cheating of a member,
so likely do not run afoul of the latter statutes related to tontines.

4 TontineCoin – Tontine Formation

Unlike Tendermint, clients in TontineCoin must form groups in order to join the
set of validators, though once they have joined, they work independently from the
other members of their tontine.

We outline two different approaches. In our hybrid model, clients form tontines
off-chain and race to find a PoW. They then use this proof as a bid; the members
of the tontine with the best bid5 join the set of validators once the bidding is
complete.

With the pure PoS model, clients instead submit a transaction to bond their
coins and request to become validators. Once sufficient clients have requested to
become validators, a new tontine is formed. The clients join the set of validators
and remain in operation until the end of the tontine.

For both models, the number of active tontines is bounded by m and we have
a maximum duration of liveness of each tontine. While the intention is that these
two models are alternative solutions, nothing prevents both approaches from being
used in the same implementation if so desired.

5 When comparing two Proof-of-Work values, we often describe it in terms of leading ze-
roes – the better proof produces more leading zeroes when the block is hashed. However, we
actually compare the two hash values simply as numerical values, making the odds of a tie
astronomically unlikely.

12 Chris Pollett et al.

4.1 Hybrid Tontine Cryptocurrencies – The Train Model

In our first approach, the hybrid mode, we combine a Proof-of-Work (PoW) and
Proof-of-Stake (PoS) model. Essentially, clients band together to form tontines and
collectively search for a PoW that will serve as a bid to become validators. Once
accepted, the tontine members independently validate transactions in order to gain
rewards. By integrating Proof-of-Work into our system, we provide an additional
form of Sybil resistance. Furthermore, we provide a way for clients without much
stake to participate in the system and gain coins.

This design bears a certain resemblance to mining pools – a collection of clients
bands together to help earn rewards. However, the coordination only exists while
the tontine competes for acceptance. Once the tontine is accepted, the clients
independently validate transactions without coordination.

We refer to this design as the train model, since a new tontine is added to the
validators every N blocks. In other words, the tontine “train” leaves at a regular
schedule whether or not anyone is on board.

4.1.1 Hybrid Tontine Formation

In order to join the list of validators, clients must band together to form a valid
tontine, where a tontine must have exactly S staked coins. A bid for a tontine
includes:

– The ID of the block where the most recent tontine was selected. This field
prevents a tontine from searching for a Proof-of-Work for a block far into the
future.

– The amount of coins contributed by each member of the tontine, which must
add up to exactly S coins.

– The share of each member of the tontine, defined as the combination of the
client id, the computation power, and the number of coins stake they have
contributed.

– A nonce, that when combined with the above fields produces a PoW.

Note that there is no target for the PoW. Instead, when the selection round is
reached, the tontine with the best PoW is selected automatically6.

A tontine needs two distinct resources – coins and computing power. Our
protocol does not specify the trade-off in value between the two resources, and
instead leaves that to the tontine members to resolve. We expect that clients with
more hashing power may require a larger share of the rewards relative to the
amount of coins they have staked.

See an example in Figure 1 on how to form a tontine in the train model. Four
clients with IDs A, B, C, and D and with different coins (respectively 4, 5, 8, and
3), and different hashing power (not shown) are bonding to form a tontine that
has exactly S, where S = 20, total stake coins. After this group has produced
the best PoW, they are accepted as tontine with an assigned ID. Note that after
the tontine with ID 9742 is accepted, each of the members act as an independent
validator.

6 Our discussion assumes that only a single tontine is created in any given round. However,
it is trivial to modify the protocol to accept the top X bids.

TontineCoin: Survivor-based Proof-of-Stake 13

B:5

A:4

C:8

D:3

S==20?
&

Best PoW

Yes

tontine ID
9742

B:5
C:8

A:4 D:3

Fig. 1 Train model tontine formation example. Each client (circle), inside circle client ID:
coins. And S = 20.

4.1.2 Hybrid Tontine Selection

When the tontine has found a Proof-of-Work that beats the current best bid on the
blockchain, they submit a transaction to the network; we call this transaction the
bid transaction. As with other transactions, a transaction fee is typically required
for this transaction to be accepted. This design also motivates the tontine to avoid
spurious bid transactions.

The tontine with the current best bid for the next tontine selection is referred
to as the bid leader. The process works as follows:

1. A client from the tontine submits a bid transaction, containing the bid infor-
mation detailed earlier. The Proof-of-Work must beat the current bid leader’s
proof.

2. The block producer adds the bid transaction to the current block.
3. Once accepted to the block, the previous bid leader’s coins are unbonded,

potentially to be used in an additional bid transaction.
4. Once the selection block is reached, the bid leader is accepted, and its coins

remain bonded until the end of the tontine’s duration.
5. After D blocks delay, the new tontine begins operation,
6. As soon as the new tontine starts operation, the oldest tontine ceases to oper-

ate, and its coins are unbonded7.

The three first steps are for the bid leader selection, i.e., the tontine that is
selected to begin operation. See the flow of these steps in Figure 2. A candidate
tontine t competes to become the next tontine selected.

4.2 Pure Proof-of-Stake Tontine Cryptocurrencies – The Mining Cart Model

In our second approach to tontine formation, we do not use a Proof-of-Work to
determine who gets to join a tontine. To form a tontine clients bond coins with a
transaction as in the Tendermint approach. The two key differences with Tender-
mint are

7 Should there be no other active tontines, the remaining tontine may continue to operate
indefinitely.

14 Chris Pollett et al.

tontine t performs
PoW

finding
the bid
leader

if (t's PoW)
better than

(bid leader's PoW)

Yes

No

previous bid leader's
 coins unbonded

tontine t submits a bid
transaction

bid transaction of t is
added to block

transaction t becomes
the bid leader

Fig. 2 Train model tontine selection. Flowchart of the bid leader selection.

– that the bonding transaction will have a tontine ID associated with it and
– that there is a maximum amount S that can be bound by a transaction.

The tontine ID is an integer which must be one larger than the tontine ID of
the last tontine, whose creation has been validated in the blockchain. A tontine
with a fixed ID can begin validating transactions, that is, it is started, when the
number of coins bonded with its ID exceeds S coins. The first bonding transaction
for a tontine ID that exceeds this quantity will be the last new member of this
tontine. The proposer of a block gets to choose the ordering of bonding transactions
within it, which determines which tontine a given bonding transaction belongs to.
To facilitate identifying tontines, at the start of a block after the header, the
block proposer lists the tontines formed in that block as well as the last bonding
transaction hash of these tontines. Unlike the hybrid approach, the time at which
a new tontine is created depends on when clients decide to bond coins, rather
than at fixed intervals. We can view this design as clients deciding to jump into

TontineCoin: Survivor-based Proof-of-Stake 15

a mining cart, and when the cart is full, starting to go along the rails. Hence, we
call this version of tontine formation the mining cart model.

From our description above, it follows that in the mining cart approach a
tontine can never have more than 2 · S coins associated with it in the mining cart
model. It is also entirely possible for a tontine to be formed by a single client or
for multiple tontines to be formed in a single block. In the case where all tontines
have a single member, the mechanics of the PoS TontineCoin will largely reduce
to that of Tendermint, where the minimum bonding transaction involves S coins.
However, a client, with more than S coins to use in TontineCoin, who divides their
coins amongst tontines with more than one member has an additional method of
making money, catching cheaters, and hence is incentivized not to form single
member tontines.

One remaining difference with Tendermint is that there are no explicit un-
bonding transactions in TontineCoin. Instead, coins are implicitly unbonded after
T blocks have been validated or M newer tontines have been formed, whichever
comes later. The first clause ensures that a member of a tontine gets to participate
in the validation of a minimum number of blocks. The second clause in the implicit
unbonding condition ensures that there are always a minimum of M tontines in
operation.

See an example in Figure 3 on how to form a tontine in the mining cart model.
The first client is A with 8 coins, the second client is B with 10 coins and the last
client is C with 4 coins. The total coins of the tontine with ID 4548 is 22, which
is bigger than S.

A:8

B:10

C:4

A:8 A:8

B:10

S=20

tontine ID
4548

bonding transaction
of A with 8 coins

bonding transaction
of B with 10 coins

bonding transaction
of C with 4 coins

Fig. 3 Mining cart model formation example. A tontine with ID 4548, each client (rectangle),
inside the rectangle client ID: contributed coins. And S = 20.

16 Chris Pollett et al.

5 TontineCoin Operation

Once a tontine has been established, regardless of the approach used, the members
validate transactions and monitor the behavior of other tontines. In this section,
we review the operation of TontineCoin and the roles that tontines and their
validators play.

5.1 Block Validation in TontineCoin

Like Tendermint and Bitcoin, both our PoW and PoS TontineCoin variants have
a genesis block. This block lists the initial set of tontines and their validator
properties such as how much stake each initial validator has. Block validation in
TontineCoin is done the same way for both our train and mining cart model. Block
validation is like Tendermint in that a potential list of validators is determined to
see whose turn it is to propose a block. Unlike Tendermint, the validator’s score is
with respect to their share within a tontine. So if a validator has money staked in
two or more tontines, they will accordingly have two or more scores. When they
become a proposer there is an associated tontine for the stake that allowed them
to be the proposer. This fact will be later used when we describe our mechanism
for handling cheaters. Other than this, the mechanics of block proposal and the
voting to determine the next block is the same as the Tendermint model described
earlier. Because of this, block convergence of this protocol has the same guarantees
as provided by Tendermint.

5.2 Rewards for Tontine Members

Validators are rewarded for their work with both transaction fees and with newly
minted coins. We depart slightly from Tendermint’s design, which only offers trans-
action fees. However, the number of newly minted coins created in a block is
configurable, allowing us to match Tendermint by setting this value to zero.

Transaction fees in a block are divided evenly among all active tontines. Each
member of a tontine is allocated funds according to their share within the tontine.
However, the tontine member only receives their reward if they sign off on the
block. Otherwise, their share of the transaction fees are burned.

5.3 Strategies for Rewarding Snitches

In Tendermint, validators who sign multiple blocks at the same height may be
punished by having their stake seized. In Kwon [26], this stake is then destroyed,
however, the seized coins may be divided up using different strategies, in the hopes
of rewarding clients who provide evidence transactions. We refer to the clients who
submit these transactions as snitches.

In a näıve snitch-takes-all strategy, the snitch gains the cheater’s staked coins.
This has the benefit of strongly incentivizing the snitch to find cheaters, and
also allows any client (and not just validators) to participate in monitoring the
network. Unfortunately, a cheater can easily abuse this mechanism. By creating

TontineCoin: Survivor-based Proof-of-Stake 17

a second account, a cheater can “self-snitch” by forging a fraudulent transaction
and then reporting it, thereby using the reporting mechanism to unbond without
going through the usual unbonding process. Alternately, the cheater could wait
until their cheating was identified, and once spotted, race the snitch to report the
cheating to the network.

Another approach is to divide up the rewards amongst all of the validators.
For the Tendermint protocol, this strategy avoids the problems with the snitch-
takes-all approach. However, validators are only weakly incentivized to monitor
each other, since the payout is minimal, and they receive the reward regardless.
This approach also limits the pool of snitches to validators.

With the tontine strategy, the rewards are divided up amongst the tontine
members, provided that the snitch is a member of the tontine. This approach
more strongly encourages tontine members to motivate one another, but raises
some greater risk of tontine members colluding. We can address that concern by
ensuring tontines are large enough to reduce the likelihood of colluding, and by
having tontines monitor one another.

5.4 Inter-Tontine Monitoring

While tontines encourage greater monitoring within a tontine (intra-tontine
monitoring), there is a risk of members of a tontine colluding to ignore each other’s
cheating, called the “joint cheating” strategy. This risk is heightened by the lack
of a form of Sybil resistance, since all members of the tontine might be controlled
by a single person.

Our first defense against this collusion is to revert to Tendermint’s approach
– any validator that is not a member of the tontine may still write an evidence
transaction. In this case, the cheater loses their stake, which is divided amongst all
validators in the network. However, while this approach ensures that the cheater
always runs some risk of being detected, it lacks the additional incentive to monitor
validators that our tontines were designed to introduce.

Our solution is to introduce inter-tontine monitoring, where tontines are ran-
domly assigned to monitor the members of another tontine. We call the tontine
that is assigned to observe another tontine the watcher tontine; the tontine be-
ing observed is the monitored tontine. Whenever a member of the watcher tontine
writes an evidence transaction implicating the member of the monitored tontine,
that the cheater’s lost stake is divided only amongst the members of the watcher
tontine.

The assignment of tontines for monitoring is done as follows: periodically, ton-
tines are ordered according the hash of their tontine ID and the previous block
hash. Every tontine monitors the following tontine in the ordering, except for the
last tontine, which instead monitors the first tontine in the ordering.

18 Chris Pollett et al.

5.5 Pre-evidence and Evidence Transactions

As with Tendermint, TontineCoin allows a client to write evidence transactions
showing proof that a validator has attempted to cheat. However, since the rewards
are not divided up amongst all participants, some new attacks may come into play.

We are particularly concerned that the block producer might attempt to steal
credit for an evidence transaction from the client that originally identified the
cheating. We refer to the client that first identified the cheating as the snitch

in the rest of this section. Essentially, the block producer could throw away the
snitch’s evidence transaction, and use the details it provided to a new evidence
transaction.

If the snitch and the block producer are in different tontines, it is in the eco-
nomic interest of the block producer to steal the evidence transaction8. In order
to avoid this problem, we introduce pre-evidence transactions. The pre-evidence
transaction contains a hash of the (still unposted) evidence transaction. After this
transaction has been posted, the snitch then has a window of W blocks to submit
the matching evidence transaction, gaining the reward after the W -block period
has completed. Should two different clients post both pre-evidence and evidence
transactions, the reward is given to the client that posted the first pre-evidence
transaction.

A PE

0 10 30 40 80 1010 1030

B PE B R A R A paid B paid,
if not defeated

......

Fig. 4 An example on how the pre-evidence transactions work. Client A submits a pre-
evidence (PE) transaction in block 10 and is therefore the snitch, and so does client B but
later in block 30. Since, A submits the PE before B it will collect the reward after 100 blocks.
The order of the evidence, denoted with R, is not important as long as A submits R before
block 1010.

Figure 4 shows an example of this process where two users A and B both
identify a cheater. In this example, we assume W = 1000 and that a validator
cheats at block 0. Note that while user B reveals the cheater first, resulting in
the cheater’s tokens being seized at block 40, A will receive the reward at block
1010 since A’s pre-evidence transaction was received first. However, if A failed to
submit the evidence transaction, B would receive the reward at block 1030. Our
assumption is that B would not be able to suppress A’s evidence transaction for
the entirety of this period.

Note that A is not prohibited from posting an evidence transaction after block
1010, but loses priority. For instance, if A submitted their evidence transaction at
block 1040 after B had already claimed the reward, and A receives no benefit.

8 The block producer might also have an incentive to steal the snitch’s evidence transaction
even if they are in the same tontine. If the block producer has accounts in multiple tontines,
the block producer might gain a larger share of the seized tokens in a different tontine, in
which case the block producer has an incentive to steal the evidence transaction and deny the
snitch their reward.

TontineCoin: Survivor-based Proof-of-Stake 19

6 Economic Analysis and Monitoring Strategies

Now that we have introduced our TontineCoin model, we’d like to analyze its in-
centive structures. We first begin with an analysis of the expected payout from
participating in a tontine. This is used to further justify the inter-tontine monitor-
ing of Subsection 5.4. We next discuss the potential benefits if a cryptocurrency
makes uses of some kind of validator delegation. We then consider how plausible
validator strategies in the TontineCoin setting naturally lead to the delegation
of block production for any given block to a smaller subset of validators, while
avoiding the potential collusion problems that might occur with a more direct
delegation model.

6.1 Inter-tontine Monitoring Prevents No Monitoring Equillibria

The expected payout for a member of a tontine is a function of the probability q

of being caught cheating, the number of members m, a member’s stake s, and the
appropriate rate of return r (e.g. transaction fees or some other mining reward).

After joining a tontine, the expected payout a member receives is the prob-
ability weighted sum of the payout when caught cheating and when not caught
cheating:

E(payout) = q · 0 + (1 − q)
ms(1 + r)

m(1 − q)
= s(1 + r) (1)

The first term on the right hand side of the equation, q · 0, represents the fact
that a member receives no payout if they are caught cheating. The payout that
a member receives when they are not caught cheating is the total of all members
stakes ms times the gross rate of return 1 + r divided by the number of members
still in the tontine m(1 − q).

Thus, and somewhat trivially, the tontine is actuarially fair in that the expected
payout is the same as investing in a financial instrument that pays a rate of return
r [40].

However, in the use of the tontine described above, the probability of death
q is not independent of the actions of the members of the tontine. Let ei be the
effort that member i puts into monitoring other members of the tontine. And let
the probability of detection of bad behavior be

Pr(detect) = f(Σiei) = f(E) (2)

where f is some function such that df
dE = f ′(E) > 0. That is, the probability of

bad behavior being detected is strictly increasing in the effort members put into
detecting such behavior. For member i, the probability of being caught is therefore
f(E−i), where −i indicates all members but i, as we assume that an individual
member does not monitor itself.
Therefore, for member i, the expected payout is

E(payout) = (1 − f(E−i))
s(1 + r)

1 − f(E)
− ei (3)

However, if we assume that all agents are identical, and no agent monitors itself,
it can be assumed that f(E−i) = f(E), in which case we are left again with an

20 Chris Pollett et al.

expected payout of s(1 + r) minus the cost of monitoring ei. This suggests that all
members are better off if they can coordinate on not monitoring each other.

In order to avoid this “no monitoring” equilibrium, the cost of monitoring
must be outweighed by the benefit from the perspective of an individual member.
Starting from a position of no monitoring, member i will monitor if

s(1 + r)

1 − f ′(E)ei
− ei > s(1 + r) (4)

where f ′(E) is the derivative of f(E) and therefore the marginal benefit of addi-
tional monitoring.

s(1 + r)f ′(E)ei
1 − f ′(E)ei

− ei > 0 (5)

Thus, as long as a relatively small amount of effort can significantly increase
the chances of catching a bad member and/or the payoff to being part of the
tontine is high, members will have an incentive to monitor each other9.

As previously mentioned, tontine members may coordinate on a “joint cheat-
ing” strategy when the payoff to this strategy outweighs the net benefit of intra-
tontine monitoring. This is a particular possibility when tontine sizes are small,
member identities are known, communication between members is possible, and/or
there is a credible external enforcement mechanism (see Kandori [22] and Camera
and Casari [11] for discussions of coordination given anonymity, memory, and com-
munity enforcement mechanisms). In this case, a secondary mechanism of between
or inter-tontine monitoring may be effective. A member of a tontine is assigned to
monitor the member(s) of another tontine, and as long as the number of tontines is
large and the assignment is randomly changed periodically, inter-tontine coordina-
tion would become prohibitively difficult. A benefit of this monitoring mechanism
is that it avoids the cost of a “one-to-all” relationship as with Tendermint, thus
reducing the monitoring costs for any given member and therefore for the network
as a whole.

6.2 Validator Delegation

Suppose Tendermint or tontine members delegate validation to a subset of mem-
bers, this subset receives an additional benefit of increased fees from processing
transactions but also an increased cost of processing transactions (e.g. bandwidth
costs, computing costs, etc.). Other non-validators still incur the costs of monitor-
ing the validators, but this cost is reduced as the number of validators is smaller as
not all members are processing transactions. The non-validators, however, lose out
on transaction fees, so a cryptocurrency would need a mechanism to incentivize
delegation where possible.

While similar to the analysis above, the addition of increased transaction fees
for the subset of members who are validators may reduce the incentive to cheat
as validators now have more to lose – the future stream of higher transaction fees

9 We have abstracted away from the fact that as the effort put into monitoring increases,
there is a two fold impact: 1) for a given level of cheating, cheaters are more likely to be caught,
but 2) increased monitoring will likely lead to less cheating given the increased likelihood of
being caught.

TontineCoin: Survivor-based Proof-of-Stake 21

– if they are caught misbehaving. That is, their opportunity cost of misbehaving
is greater given the increased revenue from processing a larger number of transac-
tions. Therefore, a potential benefit of delegation is that delegating members will
need to expend less effort, and therefore incur lower costs, monitoring each other.
This is similar in some ways to the Shapiro-Stiglitz shirking model [41] in which
employers offer their workers higher wages in order to increase the cost to workers
of “shirking” and therefore lowers the employers’ ongoing monitoring costs.

6.3 Monitoring Strategies

We would now like to explore natural strategies that validators in TontineCoin
might follow and how they result in a form of delegation in TontineCoin. As a
byproduct, we will also be able to compare the cost of monitoring in Tendermint
and TontineCoin.

To start let’s consider one simple way a Tendermint validator can avoid mon-
itoring: The validator in the Byzantine agreement protocol rather that actually
count the votes from all the possible participants in a given round, instead waits
for a vote from a particular participant that is trustworthy, or, maybe just fast,
and then votes the same way as that person. Such a validator never votes twice in
a round, and otherwise, maintains consistency, so won’t be caught cheating. One
can see a validator might even be incentivized to do this, as by doing this, blocks
might be created faster, and so there is the potential to accrue more fees. If too
many validators do this, then only a small number of validators might actually
be checking transactions – probably the fastest ones – and these could have an
incentive to collude. Section 7 offers some details of how this strategy could be
implemented.

There are a couple of mechanisms in TontineCoin that reduce the severity of
this problem. First, we note that TontineCoin has rules on how long a tontine
exists, the longer of T new blocks or M new tontine formations. Call this length of
time D. So the payoff per tontine to a validator is bound to D and so maybe slightly
less tied to the block creation rate. The second mechanism is that if a validator
catches a cheater within their own tontine or the other tontine that their tontine
is monitoring, the reward is split only amongst members of the same tontine, so
would be higher than if it is split amongst all validators or if the cheater’s share
was burned, this in turn is less than the reward in the TontineCoin setting if the
cheater was caught in a monitored tontine.

To analyze this further, let’s call the strategy of copying the first vote received,
copy fast, and the strategy of doing full monitoring, monitor. We also assume that
not all machines are equally fast at validating. If there is a total of T that has
been staked, and there are n validators each with equal stake T/n < S < T , where
S is the tontine size threshold in TontineCoin, a caught cheater loses T/n. To keep
things simple let’s assume m·T/n = S, where m is some integer. In the Tendermint
setting, this T/n is burned. So there is no incentive not to use copy fast. If the
reward were split equally, each remaining validator in Tendermint would receive a
reward of T

n(n−1)
. If the average rate at which cheaters per unit time is discovered is

r, then if the speed up from copy fast produces more r·T
n(n−1)

additional transactions

fees, it would be the preferred strategy. In the TontineCoin setting, the through
rate reward is determined as a linear combination of the reward if the cheater

22 Chris Pollett et al.

belonged to a monitored tontine and the reward when the cheater did not belong
to a monitored tontine:

r ·
(

2 · S′

T
· T

n · (m− 1)
+
(
1 − 2 · S′

T

) T

n(n− 1)

)
for some S < S′ < 2 · S where S′ depends on the exact size of the two tontines in
question. As m < n−1, there would be more incentive to use the monitor strategy.

One could imagine that the most likely cheater is the current block proposer.
Given this, the payout for catching a cheater when the proposer is not from the
tontine a validator is monitoring could be low enough that the validator is better
off using the copy strategy, but when the proposer is from a monitored tontine,
the validator is better off monitoring. Call this strategy tontine monitor copy rest.

When following any of these three strategies, the validator needs to send mes-
sages to all members of the validator pool. In Tendermint, the validator pool
consists of validators who have either bonded coins in any of the last Y rounds
or who have bonded coins and who have participated in block production in the
last Y rounds. The tontine monitor strategy suggests a modification to the valida-
tor pool so as to reduce the overall network bandwidth used in block production.
First, when a cheater is caught by a validator that was not from a monitored
tontine, the cheaters coins are distributed equally amongst all those with bonded
coins. Second, modify the validator pool so that it consists of validators who have
bonded coins within the last Y rounds, those who have participated in the last Y
block productions, or those members of the same tontine as the proposer or of the
monitoring tontine of the tontine of the proposer, that have participated in block
production in one of the last Y times the given tontine had a member to propose
a block. These modifications makes it clear that validators can skip participating
in the monitoring for rounds where the proposer does not belong to a tontine they
are monitoring and yet still participate when the proposer does belong to a tontine
they are monitoring. Call the strategy of only monitoring when the proposer is
from a tontine you are monitoring and otherwise not participate, tontine monitor

ignore rest. Notice this strategy has the salutory effect that it might result in fewer
messages being exchanged in a give round if many people follow it. This in turn
could speed up the production of blocks.

If all validators followed tontine monitor ignore rest, one could ask how tontines
should be sized, so as to maximize the number of validators monitoring any given
transaction, yet minimize the number of messages that need to be passed for
Byzantine agreement. In the case of Tendermint, every validator monitors every
other validator (“all-to-all”). So, potentially, they must monitor all messages the
total number of monitoring is in the worst case is O(n2), since each user has to
monitor (n− 1) other users.

For each validator that chooses the strategy tontine monitor ignore rest we save
on the message exchange. In the best case those are all the validators except the
ones that cannot choose this strategy, which altogether are the validators of two
tontines: the proposer’s and the watcher to the proposer’s one. For this discussion,
we will denote by M , the total number of tontines. Let us set S = (n)1/2 for all
tontines. So we will have M = (n)1/2 tontines. Within a tontine each person is
monitored by (n)1/2−1 the rest of the tontine users, and also monitored by (n)1/2

user of the watcher tontine, thus total number of messages passed is O(n). More
generally, we can set S = n1/k and M = n(k−1)/k, where k is a constant, and still

TontineCoin: Survivor-based Proof-of-Stake 23

keep the number of messages to O(n). Note that for tontines of size less than n1/2

we always get less than O(n) many total messages.
Another extreme to be considered is the case where all tontines have just one

member. In this case, we again have O(n) total messages, but now every validator
is only monitored by one other validator.

7 Experiments

In this section, we show our experimental analysis. We first review the copy fast

validator strategy in order to test its effectiveness and to better understand its
overall behavior on the network. We then use an agent-based model to estimate
the number of “checks” - and therefore effort and network usage - that would need
to occur between validators in order to detect cheating under both the Tendermint
and TontineCoin frameworks.

7.1 Evaluating Effectiveness of the copy fast Validator Strategy

The copy fast validator strategy described in Section 6.3 seeks to increase profits
for a validator by reducing the work required. In this section, we show how that
strategy could be implemented and discuss the effect on network behavior as an
increasing number of validators adopt this strategy. In short, we note that the
network is able to come to consensus more quickly as the number of copy fast

validators increases. Our results suggest that this strategy is a practical attack of
concern to Proof-of-Stake cryptocurrencies that use a similar design to Tendermint.

In this version of the Validator class, the validator does not attempt to make its
own decisions on voting, instead copying the first prevote, precommit, and commit
vote that it sees for a round. The rules for locking or committing are still followed
in accordance with the validator’s vote.

Note that the copy fast validators still propose blocks normally. As a result,
they must also collect commit votes normally. If they did not collect commit votes,
they would not know when to move to a new height in the blockchain, potentially
missing their turn to propose a block.

Our copy fast validator implementation tracks which rounds it has cast a pre-
vote or a precommit to avoid duplicate votes. It also tracks when it has committed
to a block at the current height.

We review the code for precommit votes to illustrate this design. In contrast to
the precommit function for standard validators, previously shown in Algorithm 2,
this function does nothing except set the timer to listen for the next subround:

precommit(prevotes , roundNumber , delta):
wait (roundNumber * delta) msec

Instead most of the logic for a precommit is moved to the collectPrecommit

function, normally responsible only for validating and collecting precommit votes.
The modified collectPrecommit function is shown in Algorithm 3.

In our experiments, we simulated a network where messages would be delayed
and potentially received out of order, but where they would always arrive. We then
ran 16 validators in our SpartanGold Tendermint implementation until they had

24 Chris Pollett et al.

Algorithm 3: Precommit method for a validator using the copy fast strat-
egy

Function: collectPrecommit(vote, height, roundNumber)
1 if havePrecommitted() then
2 return;
3 end

// The copyVote method broadcasts a vote agreeing with the copied vote, if
the validator has not yet voted this round. Returns boolean indicating
whether copying was successful.

4 success := copyV ote(vote);
5 if success & vote.height == height & vote.roundNumber == roundNumber then

// Follow copied vote’s choices on locking/unlocking block.
6 if vote.blockID == NIL V OTE then
7 releaseLocks();
8 end
9 else

10 lock(vote.blockID);
11 end

12 end

copy fast Average time Median time Low High Std. Dev.
validators (seconds) (seconds) (seconds) (seconds)
0/16 168.27 143.5 93 431 78.95
1/16 159.42 138.5 95 499 77.18
2/16 142.85 124.0 91 293 55.44
3/16 134.88 104.5 91 310 60.22
4/16 139.35 119.0 91 393 60.97
5/16 129.12 127.0 95 203 26.59
6/16 135.38 129.5 95 238 31.80
7/16 122.04 114.5 91 211 26.03
8/16 106.92 103.5 87 165 15.01
9/16 120.35 113.5 87 187 22.62

10/16 109.62 102.5 85 200 25.07
11/16 120.62 102.0 82 392 62.02
12/16 106.31 98.0 84 199 24.68
13/16 108.04 98.0 85 211 30.06
14/16 109.00 96.0 87 212 30.58
15/16 104.69 103.5 83 125 11.79

Table 1 Effect on consensus time of copy fast validators

come to consensus on 10 blocks in the blockchain, selecting 0-15 of the validators to
follow the copy fast strategy. (If all validators follow this strategy, the network will
never come to consensus). For each number of copy fast validators, the experiment
was repeated 26 times. All experiments were run on a Apple MacBook Pro running
OSX v. 10.15.7 with a quad-core Intel Core i7 processor and with 16 gigabytes of
memory.

Our preliminary results are shown in Table 1. They suggest that the network
achieves consensus more quickly as the number of copy fast validators increases, as
Figure 5 shows in a graphical form. However, the variance between sample runs
leaves room for uncertainty.

TontineCoin: Survivor-based Proof-of-Stake 25

Fig. 5 Effect of copy fast validators on network consensus time

7.2 Simulations

One potential benefit of using small-group monitoring is that it reduces the effort
needed in order to ensure that cheaters are detected. In order to estimate this
benefit, we simulate cheating detection under Tendermint and TontineCoin using
an agent-based model. Under both frameworks we assume 150 validators with each
validator having an X% chance of cheating and a Y% chance that it is caught if
“checked” by another validator. Moreover, the likelihood that a validator cheats is
proportional to the number of remaining validators, i.e. we assume that as cheaters
are caught, the remaining validators are less likely to cheat. In Tendermint, all
validators check every other validator. However, under TontineCoin, validators
only check all other validators within their tontine, and one validator per tontine
is tasked with checking all members of another tontine. This setup is visualized in
Figure 6.

We run 50 simulations for 10,000 time periods for each framework, well over
the time needed for the number of cheaters detected to stabilize. That is, for
TontineCoin we run the simulation until there is one member left in each Tontine
as this provides the most conservative estimate of the average cost to catch a
cheater. We set the percent change that a validator will cheat, X%, to 3% and the
chance of being caught, Y%, to 50%. We find that on average Tendermint requires
approximately 10,000 checks per cheater cost versus 6,000 under TontineCoin,
suggesting that it is 66% more expensive to detect cheaters in Tendermint10. Using
a standard t-test, this difference in means is significant at p < .01 (see Table 2).

10 If we allow for the “murder” of cheaters under Tendermint, the cost per cheater is almost
three times as expensive as checking occurs until there is only one validator left.

26 Chris Pollett et al.

Tendermint TontineCoin
Mean 9,949 6,224

Median 9,948 6,298
St. Dev 76 739

Table 2 Number of checks per cheater caught.

8 TontineCoin Implementation

Fig. 6 Simulations: Tendermint (left) and TontineCoin (right).

We are currently working on developing a prototype of TontineCoin based
on the SpartanGold framework, initially following the hybrid model described in
Section 4.1.1. We describe our initial prototype here, noting this as ongoing work.

The TontineCoin fork of SpartanGold replaces SpartanGold’s Proof-of-Work
model with a Proof-of-Stake model akin to Tendermint’s design. Unlike Tender-
mint, this implementation organizes validators into tontines as described pre-
viously. The implementation is available at https://github.com/prashantp-git/

TontineCoin.

Transactions To support the Proof-of-Stake design, the TontineCoin implementa-
tion adds a type field. There is also a data field, whose contents vary by the type
of transaction. Of these transaction types, all but BID transactions have direct
equivalents in Tendermint’s design.

The transaction types include:

– REG (for regular), indicating a transaction where coins are exchanged. This
data field of this transaction includes the name of the receiver(s).

– BID, submitting a bid for a tontine of miners to join the validator set. The bid
transaction includes the details of a newly formed tontine, detailed in Section 8.

– BND, for transactions where coins are bonded, and the client bonding the coins
gains the right to join the set of validators, as well as the validator’s share and

TontineCoin: Survivor-based Proof-of-Stake 27

the ID of the tontine they belong to. The data field should contain bonding
validator’s name and public key.

– UND, for transactions where a client’s coins are unbonded, and hence where
the client is removed from the validator set.

– EVD, used for evidence transactions providing proof of a dishonest validator.
The data field contains the cheating validator’s name, the ID of that clients
BND transaction, and the two conflicting blocks.

Unbonding (UND) transactions are used both for a client to unbond its own
coins, and for the client’s stake to be seized in the case where evidence of cheating
has been provided. In the latter case, the ID of the evidence (EVD) transaction must
be provided. (This design allows us to more easily model different approaches for
seizing stake.)

Blocks Blocks in TontineCoin do not contain a PoW target or a coinbase transac-
tion. Instead, the blocks have two additional fields – a set of previous block commit
votes and the block creator’s signature.

Validators The Validator class replaces the role of Miner. A validator maintains
other validators’ stakes, accumulated powers, and the total amount of staked coins,
to be utilized in the consensus process. Additionally, they maintain:

– A ledger of other validators’ coins to check if a validator posting a BND trans-
action has the specified amount of coins.

– Other validators’ public keys to verify a block proposer’s signature.
– Other validators’ BND transactions utilized to retrieve a validator’s BND trans-

action in case they post a UND transaction.
– A proposer and their proposal for the current round.
– prevotes and commits for the current proposal received from the other valida-

tors.
– commits for the previous proposal.
– The transactions received from clients to be added to the blockchain.

The above fields are equivalent to what is needed for Tendermint. In addition,
a validator must track the ID of the tontine to which it belongs and its total share
within that tontine. Finally, the validator must track the current bid leader in
order to determine who the next tontine will be.

Tontine In our implementation, a tontine is made up of the following fields:

– nonce.
– members. This field specifies the name of the members along with their share

in the tontine, the amount of coins staked, and their BND transactions.
– id of the tontine.

It is assumed that the validators’ total stake is equal to a predefined amount
given by MAX AMNT, and that the total share is 1.

28 Chris Pollett et al.

9 Forgiving Modes

In our discussion so far, we have proposed a fairly unforgiving model – the word
“murder” implies a fairly severe and permanent punishment – but more relaxed
approaches might be more appropriate in many situations.

Of course, high-quality service for the validators is very desirable. Setting more
aggressive requirements can help to encourage this behavior. However, more ag-
gressive requirements may mean more failure on the part of honest validators. For
example, CosmosPool double-signed the same block 11. As a result, CosmosPool
was ejected from Cosmos’s validator set and had 5% of its staked tokens seized.
In the case of CosmosPool, the error happened because a back-up node and a
primary node both proposed blocks at the same height.

The Tontine model can be adapted to a more forgiving design while still main-
taining its benefits. Instead of seizing the entirety of a validator’s stake on proof
of misbehavior, we can configure the system to instead seize a portion of the val-
idator’s stake. Calibrating the punishment to be severe enough to be a strong
detriment for malicious behavior, but not overly draconian for rare, honest mis-
takes is of course a balancing act, but one that blockchain engineers have been
used to performing.

10 Future Work

While the fundamental goal of this paper was to increase the monitoring of valida-
tors, we see possible areas where the tontine structure might prove beneficial. We
note that communication between nodes in a decentralized protocol can become a
bottleneck. Limiting communication for inter-tontine coordination to a single node
within each tontine could address that issue, but raise the risk that the current
tontine node in charge of communication might be able to exploit its role. Poten-
tially, the tontine murder-incentive structure could be used to keep these nodes
honest.

Tontines might also be a useful structure for inter-communication between
sidechains [6]. With this approach, a tontine could sit on two chains, serving as a
currency exchange of sorts. If any tontine member attempted to abuse its power,
the other tontine members could seize its staked coins on both blockchains.

Additional areas for future work involve improving the design of TontineCoin.
For instance, it would be advantageous if TontineCoin members had identities to
defend against Sybil attacks. Our bid process in the hybrid “train model” design
works similarly to identity schemes used in protocols like Storj [43]. In future work,
we will seek to introduce a similar mechanism to our protocol.

We also wish to develop a governance mechanism for TontineCoin. Tontines
may serve a valuable role in this process as well; if we create a tontine of governing
members, they could monitor one another’s behavior and punish any abuse of their
roles.

11 https://medium.com/@staked/slashing-risks-and-validator-diligence-f6901cc9622a

TontineCoin: Survivor-based Proof-of-Stake 29

11 Conclusion

In this paper, we have outlined how tontines may be used to improve monitoring
within a Proof-of-Stake protocol. We have provided an overview of TontineCoin, a
Proof-of-Stake protocol built around the tontine model, and shown two variants –
a hybrid Proof-of-Stake/Proof-of-Work version and a pure Proof-of-Stake variant.

Our results show that we can avoid a “no monitoring” equilibrium as long as
the cost of monitoring is low compared to the expected return. TontineCoin helps
push the incentives in this direction by both reducing the cost of monitoring by
reducing the number of validators to monitor, and increasing the expected payout
by dividing the seized coins among a smaller number of clients.

Acknowledgements

We would like to thank Jae Kwon of Tendermint/Cosmos for his valuable feedback
and insight, as well as the anonymous reviewers.

References

1. Abraham, I., Gueta, G., Malkhi, D.: Hot-stuff the linear, optimal-resilience, one-message
BFT devil. CoRR abs/1803.05069 (2018)

2. Ali, M., Nelson, J.C., Shea, R., Freedman, M.J.: Blockstack: A global naming and storage
system secured by blockchains. In: USENIX Annual Technical Conference, pp. 181–194.
USENIX Association (2016)

3. Amoussou-Guenou, Y., Pozzo, A.D., Potop-Butucaru, M., Tucci Piergiovanni, S.: Correct-
ness and fairness of tendermint-core blockchains. IACR Cryptology ePrint Archive 2018,
574 (2018)

4. Austin, T.H.: Spartangold: A blockchain for education, experimentation, and rapid pro-
totyping. In: Silicon Valley Cybersecurity Conference (SVCC) (2020)

5. Back, A.: Hashcash - a denial of service counter-measure,
http://www.hashcash.org/papers/hashcash.pdf. Tech. rep. (2002)

6. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poelstra, A.,
Timón, J., Wuille, P.: Enabling blockchain innovations with pegged sidechains. https:
//blockstream.com/sidechains.pdf (2014)

7. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In: Inter-
national conference on financial cryptography and data security, pp. 142–157. Springer
(2016)

8. Braithwaite, S., Buchman, E., Konnov, I., Milosevic, Z., Stoilkovska, I., Widder, J., Zamfir,
A.: Formal specification and model checking of the tendermint blockchain synchronization
protocol (short paper). In: 2nd Workshop on Formal Methods for Blockchains (FMBC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

9. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. CoRR
abs/1807.04938 (2018). URL http://arxiv.org/abs/1807.04938

10. Buterin, V., Griffith, V.: Casper the friendly finality gadget. CoRR abs/1710.09437
(2017)

11. Camera, G., Casari, M.: Cooperation among strangers under the shadow of the future.
American Economic Review 99(3), 979–1005 (2009)

12. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing for struc-
tured peer-to-peer overlay networks. ACM SIGOPS Operating Systems Review 36(SI),
299–314 (2002)

13. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: ALGORAND AGREEMENT: super fast
and partition resilient byzantine agreement. IACR Cryptology ePrint Archive 2018, 377
(2018)

30 Chris Pollett et al.

14. Durand, A., Anceaume, E., Ludinard, R.: Stakecube: Combining sharding and proof-of-
stake to build fork-free secure permissionless distributed ledgers. In: Networked Systems
- 7th International Conference, NETYS, Revised Selected Papers, pp. 148–165 (2019)

15. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J.
ACM 35(2), 288–323 (1988). DOI 10.1145/42282.42283. URL http://doi.acm.org/10.
1145/42282.42283

16. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-ng: A scalable blockchain
protocol. In: Symposium on Networked Systems Design and Implementation (NSDI), pp.
45–59. USENIX Association (2016). URL https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/eyal

17. Fang, H., Ke, R.: The insurance role of rosca in the presence of credit markets: Theory
and evidence, https://www.ssc.wisc.edu/ scholz/seminar/rosca-wisc.pdf (2006)

18. Feng, C., Yu, K., Bashir, A.K., Al-Otaibi, Y.D., Lu, Y., Chen, S., Zhang, D.: Efficient and
secure data sharing for 5G flying drones: a blockchain-enabled approach. IEEE Network
35(1), 130–137 (2021)

19. Fiat, A., Saia, J., Young, M.: Making chord robust to byzantine attacks. In: European
Symposium on Algorithms, pp. 803–814. Springer (2005)

20. Filecoin: A decentralized storage network. Tech. rep., Protocol Labs (2017)
21. Jaiyeola, M.O., Patron, K., Saia, J., Young, M., Zhou, Q.M.: Tiny groups tackle byzantine

adversaries. In: 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 1030–1039. IEEE (2018)

22. Kandori, M.: Social norms and community enforcement. The Review of Economic Studies
59(1), 63–80 (1992)

23. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure proof-
of-stake blockchain protocol. In: Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Proceedings, Part I, pp. 357–388 (2017)

24. King, S.: Primecoin: Cryptocurrency with prime number proof-of-work. http://
primecoin.org/static/primecoin-paper.pdf (2013)

25. King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. http://
primecoin.org/static/primecoin-paper.pdf (2012)

26. Kwon, J.: Tendermint: Consensus without mining, http://jaekwon.com/2014/05/11/tendermint/
(2014)

27. Larimer, D.: Delegated proof-of-stake (dpos) (2014)
28. Larimer, D.: Eos.io technical white paper. https://github.com/EOSIO/Documentation/

blob/master/TechnicalWhitePaper.md (2017)
29. Laurens, P., Paige, R.F., Brooke, P.J., Chivers, H.: A novel approach to the detection of

cheating in multiplayer online games. In: 12th IEEE International Conference on Engi-
neering Complex Computer Systems (ICECCS 2007), pp. 97–106. IEEE (2007)

30. Mckeever, K.: A short history of tontines. Fordham Journal of Corporate & Financial Law
15(2), 491–521 (2009)

31. Merkle, R.C.: Protocols for public key cryptosystems. 1980 IEEE Symposium on Security
and Privacy pp. 122–122 (1980)

32. Merrill, P., Austin, T.H., Thakker, J., Park, Y., Rietz, J.: Lock and load: A model for
free blockchain transactions through token locking. In: IEEE International Conference on
Decentralized Applications and Infrastructures (DAPPCON). IEEE (2019)

33. Milevsky, M.: King William’s Tontine Why the Retirement Annuity of the Future Should
Resemble Its Past (Cambridge Studies in Comparative Politics). Cambridge University
Press (2015)

34. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: Repurposing bitcoin work
for data preservation. In: IEEE Symposium on Security and Privacy, pp. 475–490. IEEE
Computer Society (2014)

35. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system,
https://bitcoin.org/bitcoin.pdf (2009)

36. Nguyen, C.T., Hoang, D.T., Nguyen, D.N., Niyato, D., Nguyen, H.T., Dutkiewicz, E.:
Proof-of-stake consensus mechanisms for future blockchain networks: fundamentals, appli-
cations and opportunities. IEEE Access 7, 85727–85745 (2019)

37. Pollett, C., Austin, T.H., Potika, K., Rietz, J.: Tontinecoin: Murder-based proof-of-stake.
In: J. Xu, S. Schulte, P. Ruppel, A. Küpper, D. Jadav (eds.) 2nd IEEE International
Conference on Decentralized Applications and Infrastructures, DAPPS 2020, Oxford, UK,
August 3-6, 2020, pp. 82–87. IEEE (2020)

TontineCoin: Survivor-based Proof-of-Stake 31

38. Ransom, R.L., Sutch, R.: Tontine insurance and the armstrong investigation: A case of
stifled innovation, 1868-1905. The Journal of Economic History 47(2), 379–390 (1987).
URL http://www.jstor.org/stable/2122236

39. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. Computing Research
Repository (CoRR) abs/1112.4980 (2011). URL http://arxiv.org/abs/1112.4980

40. Sabin, M.J., Forman, J.B.: The analytics of a single-period tontine. Available at SSRN
2874160 (2016)

41. Shapiro, C., Stiglitz, J.E.: Equilibrium unemployment as a worker discipline device. The
American Economic Review 74(3), 433–444 (1984)

42. Shi, N., Tan, L., Li, W., Qi, X., Yu, K.: A blockchain-empowered AAA scheme in the
large-scale HetNet. Digital Communications and Networks (2020)

43. Storj: A decentralized cloud storage network framework. Tech. rep., Storj Labs Inc. (2018)
44. Tan, L., Xiao, H., Yu, K., Aloqaily, M., Jararweh, Y.: A blockchain-empowered crowd-

sourcing system for 5G-enabled smart cities. Computer Standards & Interfaces 76, 103517
(2021)

45. Tendermint documentation. https://tendermint.com/docs/tendermint-core/
running-in-production.html#dos-exposure-and-mitigation (2018)

46. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. https://
gavwood.com/paper.pdf (2014)

47. Yeung, S., Lui, J.C., Liu, J., Yan, J.: Detecting cheaters for multiplayer games: theory,
design and implementation. In: Proc IEEE CCNC, vol. 6, pp. 1178–1182 (2006)

