
TontineCoin: Murder-Based Proof-of-Stake
1st Chris Pollett∗, 2nd Thomas H. Austin∗, 3rd Katerina Potika∗ and 4th Justin Rietz†

∗Department of Computer Science
San José State University, San Jose, CA, United States

Email: chris@pollett.org, thomas.austin@sjsu.edu, katerina.potika@sjsu.edu
†Department of Economics, San Jose, CA, United States

Email: justin.rietz@sjsu.edu

Abstract—Proof-of-stake cryptocurrencies avoid many of the
computational and environmental costs associated with proof-of-
work protocols. However, they must address the nothing-at-stake
problem, where a validator might attempt to sign off on competing
blocks, with the hopes of earning coins regardless of which block
becomes accepted as part of the blockchain. Cryptocurrencies
such as Tendermint resolve this challenge by requiring validators
to bond coins, which can be seized from a validator that is caught
signing two competing blocks. Nevertheless, as the number of
validators increases, it becomes more and more infeasible to
effectively monitor all validators.

In this work, we incentivize proper block monitoring by
allowing validators to form tontines. Tontines are financial agree-
ments where payouts to each member increase as the number
of members decreases. In our system, a tontine is a group of
validators that monitor each other’s behavior, “murdering” any
cheating tontine members to seize their stake. As the number of
validators in a tontine is smaller than the number of validators
in the currency as a whole, members can effectively police
each other. We propose two methods whereby a Tendermint-like
currency can be extended to allow for the creation of tontines: a
pure proof-of-stake model, and a hybrid proof-of-stake/proof-
of-work model. We describe snitch mechanisms for both the
inter- and intra-tontine setting, argue our incentive mechanisms
increase monitoring, and describe how it handles a variety of
possible attacks.

I. INTRODUCTION

Bitcoin [16] has changed the way that we think about
money. The Bitcoin protocol has provided a decentralized,
resilient payment system. Its blockchain model has inspired
new systems for handling sophisticated smart contracts [20],
providing distributed storage [8], [14], [15], [18], and even
such interesting applications as finding prime numbers [12]
and building a public-key infrastructure [2].

However, Bitcoin’s proof-of-work (PoW) based design has
been the source of many problems. The irregular payment for
the miners who maintain the blockchain has led to the forma-
tion of mining pools [17], reducing Bitcoin’s decentralization.
Its throughput is limited to one block of transactions for every
ten minutes, causing scalability problems. The expense in
terms of electricity usage has raised environmental concerns.
Proof-of-stake (PoS) protocols seek to address these issues by
instead tying the amount of coins a client has to its influence
in the blockchain formation process. The idea is that the more
coins a client possesses, the more vested that client is in the
cryptocurrency’s success.

While many variants of PoS protocols exist, Tendermint’s
approach is commonly adopted for other PoS systems. In
this approach, validators bond coins for the right to produce
and verify blocks of transactions. The validator is temporarily
unable to spend the bonded coins, but receives shares in the
rewards associated with the creation and validation of new
blocks. If the validator misbehaves, other validators may write
a transaction to the blockchain providing evidence of the
cheating; the cheating validator is ejected from the set of
validators and loses its bonded coins, which are divided up
amongst the remaining validators.

Unfortunately, as the set of validators increases, so does
the cost of monitoring other validators, making it increasingly
likely that validators will elect not to spend the cost, and
instead rely on the work of other validators.

To enforce fair behavior it is important to design a monitor-
ing mechanism that detects cheaters and punishes them. Such
a mechanism should make cheating less attractive. Moreover,
the cooperation among users in order to detect cheaters must
become profitable. The use of small groups [6], [9] is studied
as a way to create an attack-resistant distributed system that
is scalable, and might also improve robustness.

The blockchain technology, which is the basis of cryp-
tocurrencies, has the potential of replacing various financial
transactions, and if adopted more widely can have an impact
on the lives of millions of people. So it is meaningful to
investigate how old ideas of financial partnership, such as
tontines, can be incorporated into the blockchain technology.

In this work, we describe TontineCoin, a new proof-of-
stake protocol based on the financial structure of tontines.
A tontine is an agreement where investors commit initial
capital in exchange for a payout of funds over their lifetimes,
with the unique property that the payouts are divided among
the surviving beneficiaries. With this design, beneficiaries are
(sometimes strongly) motivated to kill each other off, and
thereby increase their payout.

While the economic incentives of tontines make them a
questionable investment scheme, we find that it makes an
excellent basis for a PoS protocol. Clients form tontines to earn
the right to validate transactions, and hence gain an income.
However, if a client in a tontine misbehaves, it can be kicked
out of the tontine by the other members. Our design ensures
that members of a tontine have a vested interest in detecting
and announcing the bad behavior of other members, thereby



addressing the nothing-at-stake problem. Furthermore, since
the work required to monitor other validators is more limited,
and the payout is divided amongst a smaller number of players,
the expected benefit of monitoring for cheaters is not reduced
as the number of validators increases.

This paper is organized as follows: Section II discusses the
background to understand our coin design, especially Tender-
mint; Section III describes two models for tontines formation,
the hybrid proof-of-stake/proof-of-work “train model” (Sec-
tion III-A) and the pure proof-of-stake “mining cart model”
(Section III-B); Section IV describes how tontines operate
once formed; Section V describes the economics of our model;
and Section VI concludes.

II. TENDERMINT OVERVIEW

In a PoS protocol, the creator of the next block is chosen
either by a blockwise Byzantine agreement such as in Tender-
mint [13], the Ethereum Casper protocol [4], Hot-Stuff [1],
Algorand [5] and StakeCube [6], or by a random chain-based
consensus such as Ourobouros [11]. In this paper, we compare
our design to Tendermint [3], [13], one of the most well-known
PoS systems. We now provide an overview of the Tendermint
design to facilitate understanding of our own design. We
formulate our description of Tendermint to more closely match
Bitcoin’s widely used terminology rather than use exactly the
same terminology used by Kwon [13].

Much of Tendermint’s design follows that of other
blockchains. Nodes participating in a Tendermint system are
arranged in a network and relay new information to each other.
Each node maintains a complete copy of a totally ordered
sequence of events called a blockchain. Clients have accounts
that hold some quantity of coins. Accounts are identified by
a hash of the user’s public key address. Clients may submit
transactions to nodes to move coins from one account to
another, typically offering some coins as a transaction fee. The
number of coins held by an account can be determined from
the blockchain by examining the number of coins transferred
to and from an account.

Tendermint has four types of transactions: standard trans-
actions are used to transfer coins to other clients; bond
transactions are used by a client to offer coins as a surety bond,
gaining the right to become a validator (roughly analogous to
a miner in a PoW system); unbonding transactions are used by
a client to regain spending access to bonded coins at the cost of
losing the right to be a validator; finally, evidence transactions
are used to announce a cheating validator.

Validators are responsible for making blocks and verifying
the blocks produced by other validators in exchange for a
reward. However, if the validator is caught cheating, it will
lose all of the coins that it has bonded. Bonded coins cannot
be used until a certain number of blocks have been created
after the unbonding transaction to prevent a validator from
quickly recovering its coins before its cheating can be detected.
Evidence transactions contain two conflicting commit/vote
signatures of a cheater or the cheater’s signature on an invalid
checkpoint. Once this transaction is accepted, the cheater’s

bonded coins are no longer spendable and the cheater is ejected
from the set of validators.

The Tendermint blockchain is initialized with a genesis
block, which identifies initial validators (defined below) and
the quantities of coins that they have in escrow. Tendermint
validators have voting power equivalent to the amount of
coins that they have bonded. Validators in Tendermint are
incentivized to include transactions in blocks by receiving a
proportion of the transaction fees for each transaction accord-
ing to the amount of coin they have in escrow. Besides using
PoS rather than PoW, Tendermint also differs from Bitcoin
in that it assumes users have accounts and that transactions
transfer money between accounts rather than using Bitcoin’s
unspent transaction output (UTXOs) model.

A block in Tendermint consists of a header followed by
a sequence of transactions. The header contains the block
height (distance from the root block) and other meta data,
the previous block header’s hash, the root hash of a Merkle
tree of validator signatures for the previous block, and a hash
of the block’s transactions.

Blocks are added to the blockchain using a variation of
a Byzantine Agreement protocol given in Dwork et al. [7].
This protocol assumes a known upper bound ∆ on times for
messages to be delivered, and so a validator can use this
in determining when to start processing a new block, when
rounds end, etc. New blocks in the Tendermint variation of
this agreement process are added in the following manner:

1) Each validator first determines who the other potential
validators might be based on the current blockchain and
who currently has bonded coins.

2) The validator pool is then reduced, by eliminating those
potential validators whose minimum of the time since
their bonding and the time since last participating in
the validation process is greater than some parameter
time Y .

3) Next each validator determines who the next proposer
of a block should be. To do this an initial score for each
validator is determined by the amount of coins bonded
times the number of block proposal opportunities since
bonding is computed. A final scores is computed by
subtracting from this for each time that the validator
was a proposer in the past the total value of bonded
coins at the time they were a proposer. The validator
with the largest final score is the next proposer and has
a window of time in which to propose a block before
the proposal calculation is redone.

4) To propose a block, a proposer sends the block together
with their signature to all validators. At this point the
Merkle root of signers is not yet filled in the block
header. Validation proceeds in rounds until validators
agree on a block of a proposer.

In each round, validators broadcast votes to all other val-
idators consisting of their validator address, the block height,
the round number, a proposed block, and their signature and
then increments the round number. On receipt of these votes
for a given round, an honest validator checks if they have

2



previously fixed onto a proposed block. If so, their next round
vote is this fixed onto this block. If not, they vote for the at
most one valid block proposal received for that round. If the
amount of coins in escrow of validators agreeing on the same
block is more than 2/3 of the total amount of coins in escrow,
we say a 2/3 majority is achieved. At which point, an honest
validator should send a vote with a precommit flag and fix on
to the block with the 2/3 majority. If in a round an honest
validator sees more than a 1/3 vote weight for a different
precommit block than their fixed onto value, the validator
should unfix their block choice. If, on the other hand, they
see a 2/3 majority with precommit flags for the same block
matching their own, then the validator should view the next
block in the blockchain as having been determined and the
sorted signatures of validators from the majority should be
used to make the Merkle tree root for use in the next block’s
header. The honest validator should then increments its block
height parameter.

Tendermint’s PoS model eliminates some of the throughput
issues of PoW models in that it does not depend on the
somewhat hard to predict rate at which proofs of work are
found and the related convergence issues this causes. Instead,
throughput is largely determined by the message delivery rate
∆. On the other hand, in the Tendermint system one has to be
careful about denial of service issues against proposers. There
is also the issue that as the pool of validators gets larger the
incentive to monitor the honesty of any particular validator
goes down. The first of these problems is solved using a system
of sentry nodes that act as intermediaries to prevent the direct
address of the current proposer from being known [19]. In this
paper, we are proposing using a tontine mechanism to solve
the second problem.

III. TONTINECOIN – TONTINE FORMATION

Clients in TontineCoin must form groups in order to join
the set of validators, though once they have joined, they work
independently from the other members of their tontine.

We outline two different approaches. In our hybrid model,
clients form tontines off-chain and race to find a PoW. They
then use this proof as a bid; the members of the tontine with
the best bid join the set of validators once the bidding is
complete. With the pure PoS model, clients instead submit
a transaction to bond their coins and request to become
validators. Once sufficient clients have requested to become
validators, a new tontine is formed. The clients join the set
of validators and remain in operation until the end of the
tontine. For both models, the number of active tontines is
bounded by m and we have a maximum duration of liveness of
each tontine. While the intention is that these two models are
alternative solutions, nothing prevents both approaches from
being used in the same implementation if so desired.

A. Hybrid Tontine Cryptocurrencies – The Train Model

In our hybrid mode, we combine a PoW and PoS model.
Clients band together to form tontines and collectively search
for a PoW that will serve as a bid to become validators.

Once accepted, the tontine members independently validate
transactions in order to gain rewards. By integrating PoW into
our system, we provide an additional form of Sybil resistance.
Furthermore, we provide a way for clients without much stake
to participate in the system and gain coins.

We refer to this design as the train model, since a new
tontine is added to the validators every N blocks. In other
words, the tontine “train” leaves at a regular schedule whether
or not anyone is on board.

1) Hybrid Tontine Formation: In order to join the list of
validators, clients must band together to form a valid tontine,
where a tontine must have exactly S staked coins. A bid for
a tontine includes:
• The hash of the block where the most recent tontine was

selected.
• An amount of coins contributed by each tontine member,

adding up to exactly S coins.
• The share of each tontine member.
• Nonce.
The block hash prevents a tontine from searching for a PoW

for a block far into the future. Note that there is no target for
the PoW. Instead, when the selection round is reached, the
tontine with the best PoW is selected automatically.

The share of each tontine member is defined as the com-
bination of the client id and the percentage of rewards that
the tontine member will earn. A tontine needs both coins and
computing power. Our protocol does not specify the trade-off
in value between the two resources, leaving that to the tontine
members to resolve. We expect that clients with more hashing
power may require a larger share of the rewards relative to the
amount of coins they have staked.

2) Hybrid Tontine Selection: When the tontine has found
a PoW that beats the current best bid on the blockchain, they
submit a transaction to the network; we call this transaction
the bid transaction. As with other transactions, a transaction
fee is typically required for this transaction to be accepted.
This design also motivates the tontine to avoid spurious bid
transactions.

The tontine with the current best bid for the next tontine
selection is referred to as the bid leader. The process works
as follows:

1) A client from the tontine submits a bid transaction, con-
taining the bid information detailed earlier. The proof-
of-work must beat the current bid leader’s proof.

2) The block producer adds the bid transaction to the
current block.

3) Once accepted to the block, the previous bid leader’s
coins are unbonded, potentially to be used in an addi-
tional bid transaction.

4) Once the selection block is reached, the bid leader is
accepted, and its coins remain bonded until the end of
the tontine’s duration.

5) After D blocks delay, the new tontine begins operation,
6) As soon as the new tontine starts operation, the oldest

tontine ceases to operate, and its coins are unbonded.

3



(Should there be no other active tontines, the remaining
tontine may continue to operate indefinitely.)

B. Pure Proof-of-Stake Tontine Cryptocurrencies – The Min-
ing Cart Model

In our second approach to tontine formation, we do not use a
PoW to determine who gets to join a tontine. To form a tontine
clients bond coins with a transaction as in the Tendermint
approach. The two key differences with Tendermint are that
the bonding transaction will have a tontine ID associated with
it and that there is a maximum amount S that can be bound by
a transaction. The tontine ID is an integer which must be one
larger than the tontine ID of the last tontine, whose creation
has been validated in the blockchain. A tontine with a fixed ID
can begin validating transactions, that is, is started, when the
number of coins bonded with its ID exceeds S coins. The first
bonding transaction for a tontine ID that exceeds this quantity
will be the last new member of this tontine. The proposer of
a block gets to choose the ordering of bonding transactions
within it, which determines which tontine a given bonding
transaction belongs to. To facilitate identifying tontines, at
the start of a block after the header, the block proposer lists
the tontines formed in that block as well as the last bonding
transaction hash of these tontines. Unlike the hybrid approach,
the time at which a new tontine is created depends on when
clients decide to bond coins, rather than at fixed intervals. We
can imagine this as clients deciding to jump into a mining
cart, and when the cart is full, starting to go along the rails.
Hence, we call this version of tontine formation the mining
cart model.

From our description above, it follows that in the mining
cart approach a tontine can never have more than 2 · S coins
associated with it. It is also entirely possible for a tontine
to be formed by a single client or for multiple tontines to
be formed in a single block. In the case where all tontines
have a single member, the mechanics of the PoS TontineCoin
will largely reduce to that of Tendermint, where the minimum
bonding transaction involves S coins. However, a client, with
more than S coins to use in TontineCoin, who divides their
coins amongst tontines with more than one member has an
additional method of making money, catching cheaters, and
hence is incentivized not to form single member tontines.

One remaining difference with Tendermint is that there are
no explicit unbonding transactions in TontineCoin. Instead,
coins are implicitly unbonded after T blocks have been
validated or M newer tontines have been formed, whichever
comes later. The first clause ensures that a member of a tontine
gets to participate in the validation of a minimum number of
blocks. The second clause in the implicit unbonding condition
ensures that there are always a minimum of M tontines in
operation.

See Figure 1 on how to form a tontine in the mining cart
model. The first client is A with 8 coins, the second client is B
with 10 coins and the last client is C with 4 coins. The tontine’s
total coins with ID 4548 is 22, which is bigger than S.

Fig. 1. A tontine with ID 4548, each client (rectangle), inside the rectangle
a client ID with contributed coins, and S = 20.

IV. TONTINECOIN OPERATION

Once a tontine has been established, regardless of the
approach used, the members validate transactions and monitor
the behavior of other tontines. In this section, we review the
operation of TontineCoin and the roles that tontines and their
validators play.

A. Block Validation in TontineCoin

Like Tendermint and Bitcoin, both our TontineCoin variants
have a genesis block. This block lists the initial set of tontines
and their validator properties. Block validation in TontineCoin
is done the same way for both our train and mining cart model.
Block validation is like Tendermint in that a potential list of
validators is determined to see whose turn it is to propose a
block. Unlike Tendermint, the validator’s score is with respect
to their share within a tontine. So if a validator has money
staked in two or more tontines, they will accordingly have
two or more scores. When they become a proposer there is
an associated tontine for the stake that allowed them to be
the proposer. This fact will be later used when we describe
our mechanism for handling cheaters. Other than this, the
mechanics of block proposal and the voting to determine the
next block is the same as the Tendermint model described
earlier. Thus, block convergence of this protocol has the same
guarantees as provided by Tendermint.

B. Rewards for Tontine Members

Validators are rewarded for their work with both transaction
fees and with newly minted coins. We depart slightly from
Tendermint’s design, which only offers transaction fees. How-
ever, the number of newly minted coins created in a block is
configurable, allowing us to match Tendermint by setting this
value to zero.

Transaction fees in a block are divided evenly among all
active tontines. Each member of a tontine is allocated funds
according to their share within the tontine. However, the
member only receives their reward if they sign off on the
block. Otherwise, their share of the fees are burned.

C. Strategies for Rewarding Snitches

In Tendermint, validators who sign multiple blocks at the
same height may be punished by having their stake seized. The

4



seized coins may be divided up using different strategies, in the
hopes of rewarding clients who provide evidence transactions.
We refer to the clients who submit these transactions as
snitches.

In a naive snitch-takes-all strategy, the snitch gains the
cheater’s staked coins. This has the benefit of strongly in-
centivizing the snitch to find cheaters, and also allows any
client (and not just validators) to participate in monitoring
the network. Unfortunately, a cheater can easily abuse this
mechanism. By creating a second account, a cheater can “self-
snitch” by forging a fraudulent transaction and then reporting
it, thereby using the reporting mechanism to unbond without
going through the usual unbonding process. Alternately, the
cheater could wait until their cheating was identified, and once
spotted, race the cheater to report the cheating to the network.

Instead, Tendermint divides up the rewards amongst all
of the validators. This strategy avoids the problems with
the snitch-takes-all approach. However, validators are only
weakly incentivized to monitor each other, since the payout is
minimal, and they receive the reward regardless. This approach
also limits the pool of snitches to validators.

With the tontine strategy, the rewards are divided up
amongst the tontine members, provided that the snitch is a
member of the tontine. This approach more strongly encour-
ages tontine members to monitor one another, but raises some
risk of members colluding. We can address that concern by
ensuring tontines are large enough to reduce the likelihood of
colluding, and by having tontines monitor one another.

D. Inter-Tontine Monitoring

While tontines encourage greater monitoring within a ton-
tine (intra-tontine monitoring), there is a risk of members of
a tontine colluding to ignore each other’s cheating, called
the “joint cheating” strategy. Our first defense against this
collusion is to revert to Tendermint’s approach – any validator
that is not a member of the tontine may still write an evidence
transaction. In this case, the cheater loses their stake, which is
divided amongst all validators in the network. However, while
this approach ensures that the cheater always runs some risk
of being detected, it lacks the additional incentive to monitor
validators that our tontines were designed to introduce.

Our solution is to introduce inter-tontine monitoring, where
tontines are randomly assigned to monitor the members of
another tontine. We call the tontine that is assigned to observe
another tontine the watcher tontine; the tontine being observed
is the monitored tontine. Whenever a member of the watcher
tontine writes an evidence transaction implicating the member
of the monitored tontine, the cheater’s lost stake is divided
only amongst the members of the watcher tontine.

The assignment of tontines for monitoring is done as
follows: periodically, tontines are ordered according to the
hash of their tontine ID and the previous block hash1. Every

1This ordering could potentially be biased by the block producer of
the previous block. In future work, we plan to explore using randomized
assignment, following approaches like Algorand [5].

tontine monitors the following tontine in the ordering, except
for the last tontine, which monitors the first tontine.

We note that a similar approach could be used to have
validators randomly assigned to monitor other validators with-
out tontines. However, this approach would require more
calculation on the part of validators to know whom they
should be monitoring. Since individual validators are already
monitored by the members of their tontines, we can keep the
inter-tontine monitoring relatively infrequent, and thus less
overhead for the validators.

E. Pre-evidence and Evidence Transactions

As with Tendermint, TontineCoin allows clients to write
evidence transactions showing proof that a validator has at-
tempted to cheat. However, new attacks may come into play
since the rewards are not divided up amongst all participants.

We are particularly concerned that the block producer might
attempt to steal credit for an evidence transaction from the
client that originally identified the cheating. We refer to the
client that first identified the cheating as the snitch in the rest
of this section. Essentially, the block producer could throw
away the snitch’s evidence transaction, and use the details it
provided to a new evidence transaction.

If the snitch and the block producer are in different tontines,
it is in the economic interest of the block producer to steal the
evidence transaction. The block producer might also have an
incentive to steal the snitch’s evidence transaction even if they
are in the same tontine. If the block producer has accounts
in multiple tontines, the block producer might gain a larger
share of the seized tokens in a different tontine, in which
case the block producer has an incentive to steal the evidence
transaction and deny the snitch their reward.

In order to avoid these problems, we introduce pre-evidence
transactions. The pre-evidence transaction contains a hash of
the (still unposted) evidence transaction. After this transaction
has been posted, the snitch then has a window of W blocks to
submit the matching evidence transaction, gaining the reward
after the W -block period has completed. Should two different
clients post both pre-evidence and evidence transactions, the
reward is given to the client that posted the first pre-evidence
transaction.

Fig. 2. Client A (the snitch) submits a pre-evidence (PE) transaction in block
10, and so does client B but later in block 30. The order of the evidence,
denoted with R, is not important as long as A submits R before block 1010.

Figure 2 shows an example of this process where two users
A and B both identify a cheater. In this example, we assume
W = 1000 and that a validator cheats at block 0. Note that
while user B reveals the cheater first, resulting in the cheater’s
tokens being seized at block 40, A will receive the reward at
block 1010 since A’s pre-evidence transaction was received
first. However, if A failed to submit the evidence transaction,

5



B would receive the reward at block 1030. Our assumption is
that B would not be able to suppress A’s evidence transaction
for the entirety of this period.

Note that A is not prohibited from posting an evidence
transaction after block 1010, but loses priority. For instance,
if A submitted their evidence transaction at block 1040 after
B had already claimed the reward, then A receives no benefit.

V. ECONOMIC ANALYSIS

After joining a tontine, per member expected payout is

E(payout) = q · 0 + (1 − q)
ms(1 + r)

m(1 − q)
= s(1 + r) (1)

where q is the probability of being caught cheating, s is the
cost to join a tontine, and r is the rate of return earned by
the tontine (e.g. transaction fees). Thus, the expected payout
is the same as an asset that pays a rate of return r.

However, the probability of death q is not independent of
the tontine members’ actions. Let ei be the effort that member
i puts into monitoring other tontine members, and let the
probability of detection of cheating be

Pr(detect) = f(Σiei) = f(E) (2)

where f is a function such that df
dE = f ′(E) > 0. That is, the

probability of bad behavior being detected is strictly increasing
in the effort members put into detecting such behavior. For
member i, the probability of being caught is therefore f(E−i),
where −i indicates all members but i, as we assume that
an individual member does not monitor itself. Therefore, for
member i, the expected payout is

E(payout) = (1 − f(E−i))
s(1 + r)

1 − f(E)
− ei (3)

However, if we assume that members are identical and don’t
monitors themselves, f(E−i) = f(E), leaving the expected
payout of s(1 + r) minus the cost ei. That is, members are
better off if they can coordinate on not monitoring each other.

In order to avoid this “no monitoring” equilibrium, the cost
to monitoring must be outweighed by the benefit from the
perspective of an individual member. Starting from a position
of no monitoring, member i will monitor if

s(1 + r)f(ei)

1 − f(ei)
− ei > 0 (4)

Thus, as long as a relatively small amount of effort can
significantly increase the chances of catching a bad member
and/or the payoff to being part of the tontine is high, members
will have an incentive to monitor each other

Tontine members may coordinate on a “joint cheating”
strategy when the payoff outweighs the net benefit even given
the lack of multiple coordination channels (see Kandori [10]).
In this case, inter-tontine monitoring may be effective. If the
number of tontines is large and the assignment is randomly
changed periodically, inter-tontine coordination becomes pro-
hibitively difficult. A benefit of this mechanism is that it avoids
the cost of a “one-to-all” relationship as with Tendermint.

VI. CONCLUSION

We have outlined how tontines may be used to improve
monitoring within a PoS protocol. We have provided an
overview of TontineCoin, a PoS protocol built around the
tontine model, and shown two variants; a hybrid proof-of-
stake/proof-of-work and a pure proof-of-stake model. Our
results show that we can avoid a “no monitoring” equilibrium
as long as the cost of monitoring is low compared to the
expected return. TontineCoin helps push the incentives in
this direction by both reducing the cost of monitoring by
reducing the number of validators to monitor, and increasing
the expected payout by dividing the seized coins among a
smaller number of clients.

REFERENCES

[1] ABRAHAM, I., GUETA, G., AND MALKHI, D. Hot-stuff the linear,
optimal-resilience, one-message BFT devil. CoRR abs/1803.05069
(2018).

[2] ALI, M., NELSON, J. C., SHEA, R., AND FREEDMAN, M. J. Block-
stack: A global naming and storage system secured by blockchains. In
USENIX Annual Technical Conference (2016), USENIX Association,
pp. 181–194.

[3] BUCHMAN, E., KWON, J., AND MILOSEVIC, Z. The latest gossip on
BFT consensus. CoRR abs/1807.04938 (2018).

[4] BUTERIN, V., AND GRIFFITH, V. Casper the friendly finality gadget.
CoRR abs/1710.09437 (2017).

[5] CHEN, J., GORBUNOV, S., MICALI, S., AND VLACHOS, G. AL-
GORAND AGREEMENT: super fast and partition resilient byzantine
agreement. IACR Cryptology ePrint Archive 2018 (2018), 377.

[6] DURAND, A., ANCEAUME, E., AND LUDINARD, R. Stakecube: Com-
bining sharding and proof-of-stake to build fork-free secure permis-
sionless distributed ledgers. In Networked Systems - 7th International
Conference, NETYS, Revised Selected Papers (2019), pp. 148–165.

[7] DWORK, C., LYNCH, N., AND STOCKMEYER, L. Consensus in the
presence of partial synchrony. J. ACM 35, 2 (Apr. 1988), 288–323.

[8] Filecoin: A decentralized storage network. Tech. rep., Protocol Labs,
August 2017.

[9] JAIYEOLA, M. O., PATRON, K., SAIA, J., YOUNG, M., AND ZHOU,
Q. M. Tiny groups tackle byzantine adversaries. In 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS)
(2018), IEEE, pp. 1030–1039.

[10] KANDORI, M. Social norms and community enforcement. The Review
of Economic Studies 59, 1 (1992), 63–80.

[11] KIAYIAS, A., RUSSELL, A., DAVID, B., AND OLIYNYKOV, R.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Proceedings, Part I (2017), pp. 357–388.

[12] KING, S. Primecoin: Cryptocurrency with prime number proof-of-work.
http://primecoin.org/static/primecoin-paper.pdf, 2013.

[13] KWON, J. Tendermint: Consensus without mining,
http://jaekwon.com/2014/05/11/tendermint/, 2014.

[14] MERRILL, P., AUSTIN, T. H., THAKKER, J., PARK, Y., AND RIETZ,
J. Lock and load: A model for free blockchain transactions through
token locking. In IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPCON) (2019), IEEE.

[15] MILLER, A., JUELS, A., SHI, E., PARNO, B., AND KATZ, J. Permacoin:
Repurposing bitcoin work for data preservation. In IEEE Symposium on
Security and Privacy (2014), IEEE Computer Society, pp. 475–490.

[16] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system,
https://bitcoin.org/bitcoin.pdf, 2009.

[17] ROSENFELD, M. Analysis of bitcoin pooled mining reward systems.
Computing Research Repository (CoRR) abs/1112.4980 (2011).

[18] Storj: A decentralized cloud storage network framework. Tech. rep.,
Storj Labs Inc., October 2018.

[19] Tendermint documentation. https://tendermint.
com/docs/tendermint-core/running-in-production.html#
dos-exposure-and-mitigation, 2018.

[20] WOOD, G. Ethereum: a secure decentralised generalised transaction
ledger. https://gavwood.com/paper.pdf, 2014.

6

http://primecoin.org/static/primecoin-paper.pdf
https://tendermint.com/docs/tendermint-core/running-in-production.html#dos-exposure-and-mitigation
https://tendermint.com/docs/tendermint-core/running-in-production.html#dos-exposure-and-mitigation
https://tendermint.com/docs/tendermint-core/running-in-production.html#dos-exposure-and-mitigation
https://gavwood.com/paper.pdf

