
Residual CNN Image Compression

Kunal Deshmukh1,2[0000−0002−9917−3221] and Chris
Pollett1,3[0000−0002−3546−1654]

1 San Jose State University, San Jose, CA 95192, USA
2 kunaldeshmukh27@gmail.com

3 chris@pollett.org

Abstract. We present a neural network architecture inspired by the
end-to-end compression framework [1]. Our model consists of an image
compression module, an arithmetic encoder, an arithmetic decoder, and
an image reconstruction module. We evaluate the compression rate and
the closeness of the reconstructed image to the original image for this
model. Structural similarity metrics and peak signal to noise ratio are
used to evaluate the image quality. We have also measured the net re-
duction in file size after compression and compared it with other lossy
image compression techniques. Our architecture achieves better results
in terms of these metrics compared to traditional and newly proposed
image compression algorithms. In particular, an average PSNR of 28.48
and SSIM value of 0.86 are obtained as compared to 28.45 PSNR and
0.81 SSIM value in the previously mentioned network.

Keywords: Convolutional Neural Networks · Generative Adversarial
Networks · Structural Similarity Metrics · Peak Signal to Noise Ratio.

1 Introduction

Several recently published articles [1], [2] on image processing and compression
frameworks have used deep learning networks. Parts and ideas from several of
these frameworks seemed like they might augment each other to give better
results. The present paper explore this by developing a new hybrid architecture
which we show improves upon existing architectures for both efficiency and image
quality metrics such as SSIM, PSNR while still being as time efficient as possible.

The first architecture we leveraged was Jiang, et al. [1]. They consider an end
to end image compression network in which a fully convolutional neural network
(CNN) based encoder is used for image compression. Their inspiration was that
that in JPEG to achieve higher compression one uses bigger quantization steps.
Unfortunately, these bigger steps result in blocking artifacts during decoding.
Zhai, et al. [3] and Foi, et al. [4] had previously considered image based hand-
crafted deblocking filters to reduce this problem. Jiang, et al propose instead
that one should try to use a CNN to learn filters which would do the same job
as efficiently as possible.

Jiang, et al.’s architecture serves as our baseline model to compare with our
approach. In Jiang, et al.’s architecture, a smaller image is first constructed by

2 K. Deshmukh, and C. Pollett

the encoder. This image is nothing but a downsampled version of the original
image. The decoder, called the re-constructor, is designed to generate an original
image back from this smaller image.

Cavigelli, et al. [2] propose a different architecture that is efficient at sup-
pressing artifacts that are introduced during the image compression process. To
do this their model makes use of skip connections. Our proposed architecture
also makes use of skip connections. Besides suppressing artifacts, this helped our
model converge 19.65% faster as compared to a network without skip connec-
tions. Space separable CNN layers such as pointwise and depthwise CNN layers
are useful to speedup the training and inference. We used such CNN layers for
some of the levels in our neural network. This further reduced the training as
well as inference time by about 7% and 3% as compared to the network using
vanilla CNN layers. We discuss what these layer types are and these result in
detail in Section 2.3.

Finally, we have also designed a loss function in such a way that the im-
ages generated by the compression module have a very low variance in pixel
values. This limits the pixel values the resultant compressed image can have.
An arithmetic encoder is then used to process this compressed image. Since the
compressed image now has a very small number of distinct values, the arithmetic
encoder can use a lossless data compression algorithms such as entropy coding
or RLE to further compress the results obtained from compression module.

In summary, our architecture at a high level starts with the base model of
Jiang, et al. Compression and decompression neural networks are trained simul-
taneously. The decompression network is larger and makes use of skip connec-
tions and space separable CNN layers which together with the choice of our
loss function speed up training. To improve image quality of our decompression
network we make use of an SRGAN sub-network.

We now discuss the organization of the rest of the paper. In the next section,
we fix the definitions of some of the neural network layers we are considering as
well as discuss prior models that have been considered in more detail. We also
discuss image quality metrics in brief. We then have a section describing our
proposed architecture in detail. This is followed by training methodology and
experiments and, finally, there is a conclusion section.

2 Background

We assume the reader is familiar with Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), etc. as well as the fundamental concepts in
deep neural network training such as training and loss functions. Information on
these topics can be found in Goodfellow, et al. [5].

2.1 The Use of Convolutional Neural Networks in Image
Compression

Our architecture relies heavily on CNNs to capture image artifacts. CNNs have
been used recently in many image compression architectures.

Residual CNN Image Compression 3

Jiang, et al. [1] use a fully convolutional auto-encoder to obtain a compressed
representation of an image. Their auto-encoder consists of a series of two kinds
of convolutional layers stacked one after the other to capture features of the
image. The authors claim that, because of the use of multi-layer CNNs, this
architecture maintains the structural composition of the image. The two distinct
convolutional layers networks they use are called the ComCNN and the RecCNN.
The ComCNN network is responsible for compressing images in such a way
that the resultant images can be effectively reconstructed by a reconstruction
network. The ComCNN network consists of three convolutional layers with the
second layer followed by a batch normalization layer. Since the first convolutional
layer uses a stride of two, the image size is reduced by half. The RecCNN layer
uses twenty CNN layers. Apart from the first and the last layer, each layer in
this architecture carries out convolutional and batch normalization operations.
The authors train this network using 400 grayscale images for 50 epochs. The
SSIM and PSNR metrics for these images are better than what is obtained by
using JPEG. PSNR and SSIM values for 28.17 and 0.8206 respectively.

In lossy image compression techniques, artifacts of the compression are often
visible in the images. One example class of artifacts is caused when tiling is
used for quantization. In such images, the tile boundaries are often visible in
the images. The CNN based architecture [2] proposed by Cavigelli, et al. is a
twelve layer image compression architecture designed to suppress such artifacts.
Cavigelli, et al. also give a new way to train deep neural network models which
is adaptable to other low-level computer vision tasks. They propose the use
of hierarchical skip connections together with a multiscale loss functions. Two
advantages of skip connection are: In the forward pass, this method provides
information that allows the network to obtain higher resolution images. In the
backward pass, these skip connections allow gradient flow to skip middle layers
and help train earlier layers more quickly. Using skip connections though does
not eliminate the possibility of very long paths in the network. Hence, they
calculate the loss function on many intermediate low-resolution images. The
authors observes that batch normalization does not reduce the accuracy of their
network.

2.2 The Use of GANs for Image Interpolation

Ledig, et al. [6] use GANs to recover finer detail from an image that are lost
because of compression. Their framework uses a perceptual loss function that
consists of a content loss term and an adversarial loss term. We have used this
idea as an efficient way to do image up-scaling.

Their architecture up-scales the images by a factor of four. The quality of
images generated using this method are close to the quality of original images.
This GAN’s architecture uses a VGG network [7] as a Discriminator.

4 K. Deshmukh, and C. Pollett

2.3 Space Separable Convolutional Neural Betworks

Our architecture makes use of two special types of of CNN Layers: Point-wise
and Depth-wise CNN layers. A point-wise convolutional operation is a special
type of operation where the size of the kernel is always 1 × 1. This operation
returns a layer of the same dimensions as that of its inputs. Depthwise CNNs
work on depth. Each kernel can have any height and width, however, its depth
is always one. Separate kernels act on each depth level. Stacking all these layers
together results in an image.

Point-wise and Depth-wise convolutions involve fewer multiplications, hence,
they are computationally efficient. However, shallow neural networks with space
separable convolutions may fail to learn the underlying function.

2.4 Image Quality Metrics

Image quality metrics are used to measure how well an image compression archi-
tecture performs. Image quality metrics are of two types: Reference image quality
metrics and non-reference image quality metrics. Reference image quality metrics
require a reference image to compute; on the other hand, non-reference image
quality metrics, such as Mean Subtracted Contrast Normalized (MSCN), do not
require such a reference image.

Since we are going to compare the uncompressed image with the original
image anyway for our loss function, we have used only reference image quality
metrics. We next review some of these reference image quality metrics:

Mean Square Error (MSE): MSE calculates the sum of the squared dif-
ferences between pixel values of two images of the same dimensions: MSE =
1

MN

∑M
y=1

∑N
x=1[I(x, y) − I ′(x, y)]2. Here M and N are the width and height

respectively of the images in pixels and I(x, y) is the pixel intensity value at
the image position (x, y). This is perhaps the simplest image quality metric to
understand, however, it is not always a good metric to access image compression
quality as it does not take into account the range of variations in pixel values
in an image or the high and low-frequency components in an image, two factors
which affect human perception of image quality.

Peak Signal to Noise Ratio (PSNR): PSNR is a measure of the peak
error between the two images. It is computed using the equation: PSNR =

10 log10
R2

MSE where R represents the maximum fluctuation in input image pixel
values. Since PSNR uses Mean Square Error in its denominator, higher PSNR
values represent a better quality compression.

Structural Similarity Index (SSIM): SSIM measures image quality degra-
dation due to processing tasks such as compression. SSIM is considered to be a
better metric for accessing degradation of images as it takes into account visible
structures in an image. SSIM is calculated via the following formula:

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(1)

Residual CNN Image Compression 5

Here x and y represent images, µx, µy are the average pixel value for each
image, σxy is the co-variance between x and y, and σ2

x, σ
2
y are the variances of x

and y.

3 Network Design

Our proposed architecture consists of four parts: an Image Compression Module
(ICM), an Arithmetic Encoder, an Arithmetic Decoder, and an Image Recon-
struction Module (IRM). The ICM and IRMs result in lossy image compression
while the Arithmetic Encoder and Decoder are lossless. Both the ICM and the
IRM are based on deep neural networks.

3.1 The Arithmetic Coder and Decoder

Our arithmetic coder and decoder make use of a Python implementation of
Huffman coding [8]. Since the original data can be completely retrieved in the
decoder part, it is a lossless compression algorithm and its introduction or re-
moval does not affect the other neural network-based modules. Thus, for neural
network training, we did not use the arithmetic coder or decoder so as to avoid
unnecessary computational overhead.

3.2 The Image Compression Module

The CNN layers in the ICM are used to learn features and components of the
image helpful for further image reconstruction tasks. These components include
the overall structure of the image as well as some salient features such as edges
and corners that cannot be regenerated by the reconstruction layer unless they
are provided as inputs. Thus, this module acts as a filter through which only a
few critical components are passed to an intermediate image. We have used a
three layer CNN module as shown in Fig. 1. We specify this network in more
detail below:

The first block consists of a CNN layer followed by a rectified linear unit
(ReLU) non-linearity. It uses a 3× 3 kernel of a depth three in the case of RGB
compression and of depth one in the case of grayscale images. This layer has
three feature maps. The second block has a CNN layer, a ReLU activation, and
a layer for batch-normalization. This block’s CNN uses a two padding, resulting
in a tensor of half the size of the original image. This layer thus reduces the size
and resolution of an image by half, when the stride is two.

The resultant tensor is passed through a batch normalization layer which
helps [9] avoid gradient overflow or underflow and makes the neural network less
sensitive to the choice of random initializer and its variation. A single convolution
layer is used for the third block of the network. The number of kernels used in this
layer corresponds to the number of channels in the output image. The output of
this layer is not subject to a non-linearity as the goal of this layer is to reproduce
an image as close to the original image as possible.

6 K. Deshmukh, and C. Pollett

Fig. 1. Image Compression Module

The Image Compression Module was trained simultaneously with the Image
Reconstruction Module. The goal of the compression network is to generate
an intermediate representation of an original image that can be used by the
reconstruction layers to generate an image as close to the original image as
possible. The size of this intermediate result decides the compression factor of
the compression algorithm. This compression factor can be changed by varying
the stride and dilation values in the intermediate layer.

3.3 Image Reconstruction Module

The reconstruction module has two responsibilities: To resize the image to the
original size and to improve the quality of the resized image.

Since this module is tasked with the reconstruction of a facsimile of the orig-
inal image from the minimal information passed on by the compression module,
this module requires more layers to try to detect residual information from the
compressed image that might aid in reconstruction. These residuals are detected
by the feature maps used in its convolutional layers. The first few of these lay-
ers are responsible for the reconstruction of basic shapes such as lines, points,
corners etc. while further layers add more information about higher order combi-
nations of these base features. The size of kernels used in this network is always
3× 3 since all these features are local to a region and are less likely to have any
impact on other parts of an image.

The framework in [1] uses a bicubic interpolation method to resize the com-
pressed image to its original size. Our system uses an SRGAN (Super Resolution
Generative Adverserial Network) [6] for this purpose. Our SRGAN network re-
turns an image of size four times the size of the original image. This can be
scaled down to the desired size using an interpolation technique before it is fed
to the reconstruction module. The SRGAN paper shows these networks generate
better quality images as compared to simple interpolation techniques, giving our
network better input data for image enhancement.

Using an SRGAN allows us to use bad quality images to train the network
for image enhancement. Slightly bad quality data is often generated as part of a
data augmentation task for robust training. Using a bicubic interpolation instead
of SRGAN during training alleviated the amount of data augmentation needed
when training the reconstruction network. The SRGAN network that we used,
was trained separately in its original proposed shape on the ImageNet dataset.

Residual CNN Image Compression 7

The IRM consists of five blocks each containing one convolutional layer and
an optional batch normalization or ReLU layer.

Fig. 2. Image reconstruction module.

The first block contains a CNN layer with ReLU activation function. For
this layer, we used 64 features each of which had a 3× 3 kernel with depth 3 for
RGB images and 1 for grayscale. The second block consists of five concatenated
sub-blocks each consisting of a CNN layer, a ReLU activation, and a batch
normalization layer. Hence, overall, this block contains five CNN, ReLU, and
batch normalization layers. The third and fourth blocks are identical to the
second block. Pointwise and depthwise convolution functions are applied to the
second block. The fifth and last block consists of a CNN layer which takes in 64
channels and outputs a tensor of size height× width×# of channels.

After the 2nd, 3rd, and 4th blocks, a skip connection is added as shown in
Fig. 2. Then a ReLU is applied after this.

An interpolated image from the start of the network is added to the out-
put of the fifth block. The resultant tensor is saved as an image. As we have
discussed in previous section, skip connections are useful in backpropagation.
The use of ReLU activations also ensures that the tensors passed in these layers
are subjected to enough non-linearity so that the network weights in successive
layers are not updated in a uniform manner during training. This activation
function also ensures that the resultant values in tensors are restricted to the
desired domain. Since we have used batch normalization layers in the network,
the use of ReLU does not contribute to an exploding gradient problem. For skip
connections, two tensors of same dimension are added and each new tensor is
passed through at least one convolutional layer, this ensures that the convolu-
tional layer weights are adjusted in the training phase so as to accommodate the
values obtained from skip connections.

3.4 Loss Function

A loss function computes an error between the desired values and those output by
a neural network. The training algorithm tries to adjust weights so as to minimize
this function. For our training procedure, the loss function was calculated using

8 K. Deshmukh, and C. Pollett

the following formula:

L =
1

M

M∑
y=1

[(
∑
i,j

Pij(y)− Pij(ŷ))2 + |(Pij(Iin)− Pij(Iout))|] (2)

In Equation 2, M is the number of images and the function Pi,j(I) outputs the
i, jth pixel of image I. The first term in Equation 2 is the mean square error
between the input image to the ICM and the output image from the IRM. The
second term is the mean absolute error between the input image to the first CNN
block of IRM and the output image after the fifth block of the IRM before they
are added together. It can be viewed as a regularization term. Iin is after we have
upscaled the compressed image. We do not want this image to be substantially
different from the final output, so we add this as a penalty term.

4 Experiments

Experiments were conducted using the publicly available image datasets: STL10,
CIFAR10, COCO and CLIC. We varied the dataset, the numbers of epochs and
network sizes during our experiments, however, our best results were obtained
for 50 epochs on the COCO dataset. Training required more than 110 hours
on a Google Cloud instance that had an Nvidia Tesla P 100 GPU. SRGAN
and arithmetic encoder and decoders were not added to the network during
training. We used an Adam optimizer[10] and Xavier initialization [11] for all
experiments.

Our first experiment was a reimplementation of the baseline model of Jiang,
et al. [1]. We did not achieve exactly the same results as claimed by these authors
as we could not obtain the original dataset for training used by authors. Instead,
we trained our version on the STL10 and COCO datasets, the COCO dataset
giving the better results. We implemented the image augmentation techniques as
described in their paper. That is, we generated images from our starting images
by random horizontal and vertical flips and by rotations of angles between 0 and
360 degrees. Our results below are for the COCO dataset of 330 thousand images.
All training images were 200×200 pixels. The COCO dataset contains a variety
of image sizes 650 × 450, so we also performed image croppings by randomly
choosing a base point from the image and then cropping out a 200× 200 image
at this base point. Each epoch during our training had 330 thousand images,
where each image was generated from the COCO dataset image using the random
processes just described. Twenty percent of the images were used in each epoch
for validation. Finally, for testing we used the Kodak image dataset of 25 images
where we re-scaled these images to 200× 200.

For comparison, Jiang, et al. used images of size 180 × 180. They created
augmentations of 400 starting images and tested using 7 images from the Kodak
dataset. We observe that our network performance increased when we increased
the number of images in our augmented datasets.

Residual CNN Image Compression 9

Table 1. Baseline Model Re-
sults

Image Name PSNR SSIM

Lenna 28.07 0.59
Peppers 27.9088 0.48
Parrots 28.036 0.61

Average 28.00 0.56

Table 2. Examples of Baseline Model Results

Type Lenna Peppers Parrots

Original Image

Reconstructed Image

Our baseline model results are shown in Table 1 and Table 2. Overall, we
obtained a PSNR 28.45 and an SSIM 0.81 for their model; whereas, their paper
obtains a PSNR of 30.17 and an SSIM 0.88. However, to achieve comparable
results we needed to use more data. This might be due to the particularities
of their data set, which we did not have, as well as to tuning and initialization
factors in their training. Table 2 shows some examples of compressed and un-
compressed images we obtained on the test data for this experiment. Table 2
shows results only for grayscale images as only grayscale images were used by
Jiang, et al.

We next describe the experiments we conducted using our proposed neural
network architecture. These experiments were also conducted using the COCO
dataset with the same image augmentations. For these experiments we used color
rather than grayscale images. Our results are given in Table 3 and Table 4.

Table 3. Color Image Results
for the Proposed Model

Image Name PSNR SSIM

Baboon 27.7869 0.89
Lenna 29.26 0.86

Peppers 28.46 0.79
Parrots 28.33 0.69

Average 28.45 0.81

Table 4. Example Color Images Using the Proposed
Model

Type Peppers Parrots Lenna

Original Image

Reconstructed Image

These results show some distortion in the color images as the IRM introduced
errors during image regeneration. This distortion might be reduced if deeper
neural networks were used in tandem with a larger dataset. It might also be
reduced by using smoothing or removal of high-frequency areas. We conducted
experiments for both color and gray scale images. Grayscale was used so we could
compare our results to what was used in the baseline model. To handle grayscale
we slightly modified the first and last layer of our networks so they dealt with
only one channel. The grayscale results are shown in Table 5 and Table 6.

10 K. Deshmukh, and C. Pollett

Table 5. Grayscale Results
for the Proposed Model

Image Name PSNR SSIM

Cameraman 27.34 0.78
Peppers 28.30 0.88
Lenna 29.88 0.87
Parrots 28.23 0.89
House 28.67 0.89

Average 28.48 0.86

Table 6. Example Grayscale Images Using the Pro-
posed Model

Type Peppers Parrots Lenna

Original Image

Reconstructed Image

From our results, we see that the performance of our model on grayscale
is better than on color images. For grayscale, each image pixel is represented
by a single value, for RGB, three values are required to define a single pixel.
This increases the possibility of error in color images. Grayscale images are
generated using a two-dimensional tensor. Since the possibility of error is reduced
by the factor of three, errors in grayscale are not easily perceived by a human
eye. As the SSIM metric is modeled after human perception, understandably
grayscale perform better for the SSIM metric as compared to PSNR. In addition
to comparing the image quality of our proposed model with the baseline model,
we also conducted experiments looking at the time to train our model, the time
to carry out compression and decompression of images using our model, and the
average compression sizes obtained via our model.

On the COCO dataset, the average time to train the baseline framework for
one epoch was 173 min as compared to 139 min for our framework.

Fig. 3. Image file size before and after compression

Compression and decompression speeds were measured in images/second. We
tested 200 images from COCO dataset. The average compression time for the

Residual CNN Image Compression 11

baseline model was 3.2 and for the proposed architecture was 3.3. These were
comparable as these networks were essentially the same. On the other hand, the
average decompression time for the baseline model was 4.1 and for the proposed
architecture was 3.4. The inference time is slower than the baseline model prob-
ably due to the evaluation of the SRGAN portion of the reconstruction as it add
more than twenty layers to the model. Replacing this portion withta simpler
bicubic upscaling, gave a value of 4.3 while worsening the image quality to an
average PSNR of 28.44 and SSIM of 0.85. In terms of compressed files sizes,
Fig. 3 shows that the file size of an image was substantially reduced after going
through the image compression module and the arithmetic encoder. In this fig-
ure, the original size is that of the JPEG (already compressed) image from the
data set.

Fig. 4. Average file size for image file format

Fig. 4 shows the compression achieved for images of various file types. The
compressed image files were obtained by taking the original file, reading it into
our compression neural network, computing its compressed image and then sav-
ing the result in the same file format as was input. So if the original image was
PNG, we read it in, applied our neural network to obtain a compressed image,
and then saved that compressed image as a PNG. Similarly, the decompressed
file sizes were obtained by reading in the compressed image in some format X,
applying our neural network, and writing out an image in format X. It can be
concluded from this that our architecture is useful for a variety of file formats.
The loss and overall quality for the image file formats do not vary substantially
with a change in file formats. The same was true for implementation of a baseline
model as well.

5 Conclusion

Autoencoders seem particularly useful for image compression and reconstruc-
tion. Using residual connections and space separable layers, reduced training

12 K. Deshmukh, and C. Pollett

by approximately 20% over the baseline model [1]’s training. Our model also
achieves slightly better quality with a PSNR of 28.48 and SSIM of 0.86 are ob-
tained as compared to 28.45 PSNR and 0.81 SSIM, with only a slight change
in decompression time. A slightly lower quality version of our model where the
SRGAN portion is replaced with bicubic interpolation actually gives a faster
decompression time than the baseline with only a slightly reduction in quality
of the output. Our method provides a way to achieve image compression after it
is processed by traditional image compression algorithms such as JPEG. Hence,
it can be used to supplement traditional image compression and encoding algo-
rithms. We expect that in the future a variety of interesting experiments and
improvements can be made in the field of neural network compression. For ex-
ample, even without changing our model we might obtain faster training times
for our network and potentially higher compression ratios by focusing on images
coming from a single category such as just car images.

References

1. F. Jiang, W. Tao, S. Liu, J. Ren, X. Guo, and D. Zhao, “An end-to-end compres-
sion framework based on convolutional neural networks,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 28, no. 10, pp. 3007–3018, 2018.

2. L. Cavigelli, P. Hager, and L. Benini, “Cas-cnn: A deep convolutional neural net-
work for image compression artifact suppression,” International Joint Conference
on Neural Networks (IJCNN), pp. 752–759, 2017.

3. G. Zhai, W. Zhang, X. Yang, W. Lin, and Y. Xu, “Efficient image deblocking based
on postfiltering in shifted windows,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 18, pp. 122 – 126, 02 2008.

4. A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-adaptive dct denoising
with structure preservation in luminance-chrominance space,” IEEE Transaction
on Image Processing, pp. 1395 – 1411, 04 2006.

5. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

6. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-
resolution using a generative adversarial network,” IEEE conference on computer
vision and pattern recognition, pp. 4681–4690, 2017.

7. A. Krizhevsky, I. Sutskever, and G. Hinton, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

8. D. Knuth, “Dynamic huffman coding,” Journal of algorithms, vol. 6, no. 2, pp. 163–
80, 1985.

9. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

10. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 12 2014.

11. G. Thimm and E. Fiesler, “Neural network initialization,” International Workshop
on Artificial Neural Networks, pp. 535–542, 1995.

