
Clustering-Based, Fully Automated
Mixed-Bag Jigsaw Puzzle Solving

Zayd S. Hammoudeh and Chris Pollett

San José State University,
Department of Computer Science

San José CA, USA
{zayd.hammoudeh,chris.pollett}@sjsu.edu

Abstract. The jig swap puzzle is a variant of traditional jigsaw puzzles,
wherein all pieces are equal-sized squares that must be placed adjacent
to one another to reconstruct an original, unknown image. This paper
proposes an agglomerative hierarchical clustering-based solver that can
simultaneously reconstruct multiple, mixed jig swap puzzles. Our solver
requires no additional information beyond an unordered input bag of
puzzle pieces and it significantly outperforms the current state of the art
in terms of both the reconstructed outputs’ quality as well the number
of input puzzles it supports. In addition, we define the first quality met-
rics specifically tailored for multi-puzzle solvers, the Enhanced Direct
Accuracy Score (EDAS), the Shiftable Enhanced Direct Accuracy Score
(SEDAS), and the Enhanced Neighbor Accuracy Score (ENAS).

1 Introduction

The first jigsaw puzzle was introduced over 250 years ago. Despite being con-
sidered a hobby for children, puzzle solving is strongly NP-complete when inter-
piece compatibility is an unreliable metric for determining adjacency [1]. Jigsaw
puzzle techniques have been applied to a variety of disciplines including: archae-
ological artifact reconstruction [4], deleted files analysis [5], image editing [6],
shredded document reconstruction [7], and DNA fragment reassembly [8].

Most recent automated puzzle solving research has focused on the jig swap
puzzle, which is similar to a traditional jigsaw puzzle except that all pieces are
equal-sized squares. This makes them significantly more challenging to solve since
piece shape cannot be used. In addition, the original “ground-truth” solution
image is generally unknown by the solver.

The jig swap puzzle problem is subclassified into three different categories
based off the level of difficulty [13]. The simplest variety is the Type 1 puzzle,
which fixes piece orientation by disallowing their rotation. Likewise, while the
puzzle’s image contents are unknown, the overall dimensions are known as well
as potentially the correct location of one or more pieces. In contrast, Type 2
jig swap puzzles allow piece rotation, which increases the number of possible
solutions by a factor of 4n for puzzles of n pieces; the dimensions for this type of
puzzle may be unknown. Mixed-bag puzzles contain pieces from multiple input

2 Hammoudeh and Pollett

Mixed 6,255 Piece Input

540 Pieces, SEDAS=1 805 Pieces, SEDAS=1

805 Pieces,
SEDAS=0.990

805 Pieces,
SEDAS=0.990

3,300 Pieces, SEDAS=0.998

Fig. 1. Fully-Automated Mixed-Bag Puzzle Solving: Our solver generated these results
without any external information, including the number of input puzzles. The average,
weighted EDAS and ENAS scores were 0.997 and 0.993 respectively.

images as shown in Figure 1. Puzzle piece orientation may be provided, but
image dimensions are unknown and may vary. Most current mixed-bag solving
algorithms require the specification of the number of ground-truth inputs.

In 2011, Pomeranz et al. developed a greedy jig swap puzzle solver that has
been foundational for much of the subsequent research. They introduced the
concept of best buddies, which are two puzzle piece sides (e.g., left, right, top,
bottom) that are mutually more similar to each other than they are to any other
piece’s side. They also defined multiple test datasets, some of which are used in
this paper.

Paikin & Tal [14] advanced the current state of the art in 2015 with their
greedy solver that supports both missing pieces and mixed-bag puzzles. Their
approach has two primary limitations. First, the solver must be provided the
number of ground-truth inputs. In addition, seed piece selection is based on very
localized information (i.e., only 13 pieces), which often results in poor runtime
decisions such as multiple puzzles spawning from the same ground-truth input.
These suboptimal selections can catastrophically degrade solution quality.

This paper’s primary contribution is a novel, clustering-based, mixed-bag
puzzle solver that significantly outperforms the state of the art both in terms of
solution quality and the number of supportable puzzles. Unlike previous work,
our approach requires no externally supplied, “oracle” information including the
number of ground-truth inputs.

Clustering-Based Multiple Puzzle Solving 3

Algorithm 1 The Mixed-Bag Solver

1: function MixedBagSolver(pieces)
2: segments← Segmentation(pieces)
3: overlap matrix← Stitch(segments, pieces)
4: clusters← Cluster(segments, overlap matrix)
5: seeds← SelectSeeds(clusters)
6: solved puzzles← FinalAssembly(seeds, pieces)
7: return solved puzzles

In addition, metrics previously proposed for comparing the performance of
single puzzle solvers [15] are inadequate when there are multiple simultaneous
inputs. As such, we introduce the first quality metrics tailored for mixed-bag
puzzles. We also enhance the existing single puzzle metric to correct for the
potential to be misleadingly punitive when puzzle dimensions are unknown.

2 Overview of the Mixed-Bag Solver

Humans commonly solve jigsaw puzzles by correctly assembling subregions and
then iteratively merge those smaller reconstructions to form larger ones. This
strategy forms the basis of our Mixed-Bag Solver shown in Algorithm 1. Its only
input is the combined bag of pieces; the number of puzzles, their dimensions,
and piece orientation are all unknown.

The first Mixed-Bag Solver stage identifies disjoint sets of pieces (i.e., seg-
ments) where there is strong confidence of correct placement. Next, the solver
quantifies inter-segment relationships via the stitching process; agglomerative
hierarchical clustering uses these quantified similarity scores to group related
segments. Each resulting segment cluster represents what the solver identified
as a single ground-truth input. A highly-distinct seed piece is selected from each
cluster for use in the final assembly stage, which generates the reconstructed
puzzles output(s).

Although not shown in Algorithm 1, the Mixed-Bag Solver requires a placer,
which organizes (i.e., places) the individual pieces. Our architecture is indepen-
dent of the specific placer used, granting it significant flexibility. For all experi-
ments in this paper, we used the placer algorithm proposed by Paikin & Tal [14]
as it is the current state of the art and due to its multiple puzzle support.

3 Segmentation

Segmentation provides basic structure to the unordered bag of pieces by parti-
tioning it into disjoint, ordered sets, known as segments, which are partial puzzle
assemblies where there is a high degree of confidence of correct piece placement.

Segmentation is performed across one or more rounds. Initially, pieces have no
segment assignment. In each round, all unassigned pieces are assembled together
as though they belong to the same input image as shown in Figure 2, which

4 Hammoudeh and Pollett

(a) Ground-Truth
Images

(b) Reconstruction as a
Single Puzzle

(c) Segmented Output

Fig. 2. Segmentation Example: Three ground-truth inputs of two different sizes are
shown in (a). All pieces are placed in the single, reconstructed output puzzle in (b).
Segmented output in (c) is shown with any contiguous group of matching colored pieces
belonging to the same segment. Stitching pieces are denoted with a white “+” mark.

eliminates the need to make any assumptions regarding the number of input
puzzles. Once the pieces have been placed, the single, reconstructed puzzle is
segmented as described in Algorithm 2, which is partially based on the approach
originally proposed by Pomeranz et al. in [17].

Segments in the single, reconstructed output are found iteratively, with all
pieces eventually assigned to a segment. Each segment’s growth starts by adding
a single seed piece from the unassigned pool to an empty queue. Pieces are
popped from the queue and added to the current, expanding segment. If the
popped piece’s neighbor in the reconstructed output is also its best buddy, then
that neighbor is also added to the queue. A segment’s growth terminates once
no pieces remain in the queue to be popped.

As mentioned previously, best buddies are any two puzzle pieces, pi and pj ,
whose respective sides, sx and sy, are mutually more similar than they are to
any other piece’s side. This is defined formally as:

∀pk 6= pj∀sz, C(pi, sx, pj , sy) > C(pi, sx, pk, sz)
and

∀pk 6= pi∀sz, C(pj , sy, pi, sx) > C(pj , sy, pk, sz)
(1)

This definition differs slightly from that of [14, 17, 18] as we limit best buddies
to between exclusively two piece sides. This change is required because images
with very low variation often have large numbers of “best buddy cliques” that
can significantly degrade segmentation performance.

Correctly assembled regions from multiple ground-truth inputs commonly
merge into a single segment via very tenuous linking. Our segmentation algo-
rithm trims each segment by removing all articulation points, which is any piece

Clustering-Based Multiple Puzzle Solving 5

Algorithm 2 Pseudocode for segmenting the single, reconstructed puzzle

1: function Segment(puzzle)
2: puzzle segments← {}
3: unassigned← {all pieces in puzzle}
4: while |unassigned| > 0 do
5: segment← new empty segment
6: seed← next piece in unassigned
7: queue← [seed]
8: while |queue| > 0 do
9: piece← next piece in queue

10: add piece to segment
11: for each neighbor in Neighbors(puzzle, piece) do
12: if IsBestBuddy(neighbor, piece) then
13: add neighbor to queue
14: remove neighbor from unassigned

15: remove segment articulation pieces
16: remove segment pieces disconnected from seed
17: add removed pieces back to unassigned
18: add segment to puzzle segments

19: return puzzle segments

whose removal increases the number of connected segment components. Also
removed are any pieces disconnected from the segment’s seed after articulation
point deletion. All pieces no longer part of the segment are returned to the
unassigned pool. Once this is completed, the segment is in its final form.

At the end of a segmentation round, only segments meeting a set of crite-
ria are saved. First, all segments must exceed a minimum size. In our exper-
iments, a minimum segment size of 7 resulted in the best solution quality. If
the largest segment exceeds this minimum size, it is automatically saved. Any
other segment is saved if its size exceeds both the minimum and some fraction, α
(where 0 < α ≤ 1), of the largest segment. We found that α = 0.5 provided ap-
propriate balance between finding the largest possible segments and reducing
segmentation’s execution time.

The only change in subsequent segmentation rounds is the exclusion of all
pieces already assigned to a saved segment. Segmentation terminates once either
all pieces are assigned to a saved segment or when no segment in a given round
exceeds the minimum savable size.

4 Identifying Related Segments

Traditional image stitching involves combining multiple overlapping photographs
to form a single panoramic or higher resolution image. The Mixed-Bag Solver’s
Stitching stage uses a similar technique to identify segments that originate from
the same ground-truth input.

6 Hammoudeh and Pollett

Ground-Truth Segment Images
Segment Grid

Partitioning with
Stitching Pieces

Mini-Assembly

Fig. 3. An input image split into two disjoint segments that are sub-partitioned into
a grid of (colored) cells. Stitching pieces are denoted with a white “+” mark. The
mini-assembly, which uses a stitching piece from the upper segment, is composed of
pieces from both segments (e.g., the building’s roof and columns).

4.1 Stitching

Segmentation commonly partitions a single image into multiple disjoint seg-
ments. If a pair of such segments are adjacent in an original input, it is expected
that they would eventually overlap if allowed to expand. A larger intersection be-
tween these two expanded segments (i.e., puzzle piece sets) indicates a stronger
relationship. In contrast, if a ground-truth image consists of only a single saved
segment, then that segment generally resists growth. Since inter-segment spa-
tial relationships, if any, are unknown by the solver, segment growth must be
allowed, but never forced, to proceed in all directions.

Rather than attempt to grow a segment in its complete form, the Mixed-
Bag Solver performs localized expansion. Figure 3 shows an image that was
partitioned into two segments, both of which are subdivided into multiple, non-
overlapping square grid cells, via a bounding rectangle starting from the seg-
ment’s upper left corner. If a segment’s dimensions are not evenly divisible by
the grid cell target width (e.g., 10 as used in this paper), grid cells along the seg-
ment’s bottom and right boundaries will be narrower than the specified target.
Each grid cell represents a potential candidate for testing segment expansion.

Intuitively, it is obvious that expansion can only occur along a segment’s
boundaries. This is done by focusing on those grid cells that contain at least
one piece next to an open location, which is any puzzle slot not occupied by
a member of the segment including both the segment’s external perimeter and
any internal voids. For each such grid cell, localized expansion is done via a
mini-assembly (MA). Unlike traditional placement, a MA places only a fixed
number of pieces (e.g., 100 for all experiments in this paper). This placement
size partially dictates the solver’s inter-segment relationship sensitivity.

The MA’s placement seed is referred to as a stitching piece and must be a
member of the candidate grid cell. The selection of an appropriate stitching piece
is critical; for example, if a piece too close to a boundary is selected, erroneous
coupling with unrelated segments may occur. As such, the algorithm finds the
set of pieces, if any, from the candidate cell whose distance to the nearest open

Clustering-Based Multiple Puzzle Solving 7

location equals a predefined target (we used a distance of 3 for our experiments).
If no pieces satisfy that distance criteria, the target value is decremented until at
least one satisfying piece is identified. Then from this pool of possible stitching
pieces, the one closest to the grid cell’s center is selected for stitching.

By using the grid cell’s center as the target stitching piece location, the
solver is able to enforce an approximate maximum inter-stitching piece spacing.
This ensures that stitching pieces are not too far apart, which would hinder the
detection of subtle inter-segment relationships. It also prevents multiple near-
identical mini-assemblies that contribute little added value caused by stitching
pieces being too close together.

4.2 Quantifying Inter-Segment Relationships

A mini-assembly is performed for each stitching piece, ζx, in segment, Φi, where
ζx ∈ Φi. If the mini-assembly output, MAζx , is composed of pieces from multiple
segments, there is a significantly increased likelihood that those segments come
from the same ground-truth input.

Equation (2) defines the overlap score between segment, Φi, and any other
segment, Φj . The intersection between mini-assembly output, MAζx and seg-
ment, Φj is normalized with respect to the size of both, since the smaller of the
two dictates the maximum possible overlap. Also, this score must use the max-
imum intersection across all of the segment’s mini-assemblies as two segments
may only be adjacent along a small portion of their boundaries.

OverlapΦi,Φj
= max
ζx∈Φi

|MAζx
⋂
Φj |

min(|MAζx |, |Φj |)
(2)

Each segment generally has different mini-assembly outputs, meaning the
overlap scores for each permutation of segment pairs is often asymmetric. All
overlap scores are combined into the m by m, square Segment Overlap Matrix,
whose the order, m, is the number of saved segments.

5 Segment Clustering and Final Assembly

After stitching, the solver performs agglomerative hierarchical clustering of the
saved segments to determine the number of ground-truth inputs. This neces-
sitates that the overlap matrix be triangularized into the Cluster Similarity
Matrix. Each element, ωi,j , in this new matrix represents the similarity (bound
between 0 and 1) of segments, Φi and Φj ; it is calculated via:

ωi,j =
OverlapΦi,Φj

+OverlapΦj ,Φi

2
(3)

In each hierarchical clustering round, the two most similar segment clusters
are combined if their mutual similarity exceeds a minimum threshold. In our
experiments, a minimum similarity of 0.1 provided sufficient clustering accuracy,
without merging unrelated segments.

8 Hammoudeh and Pollett

When two segment clusters, Σx and Σy, are merged, the similarity matrix
is updated via the single-linkage paradigm, wherein the similarity between any
pair of clusters is equal to the similarity of their two most similar members. This
is defined with respect to any other remaining segment cluster, Σz as:

ωx∪y,z = max
Φi∈(Σx∪Σy)

(
max
Φj∈Σz

ωi,j

)
(4)

Only the maximum similarities are considered as two clusters may only be ad-
jacent along two of their member segments. The number of segment clusters
remaining at the end of hierarchical clustering is the Mixed-Bag Solver’s esti-
mate of the ground-truth input count.

Some modern-jigsaw puzzle placers including [14,17,18] use a kernel-growing
technique. If the placer used by the Mixed-Bag Solver requires this additional
step, we select a single seed from each segment cluster. This approach leads to
better seed selection since most other placers make their seed decisions either
randomly or greedily at runtime. Once this is completed, final piece placement
begins simultaneously across all puzzle seeds. The resulting fully reconstructed
puzzles, with all pieces placed, are the Mixed-Bag Solver’s final outputs.

6 Mixed-Bag Quality Metrics

The direct and neighbor accuracy metrics for quantifying the quality of single
puzzle reconstruction were defined in [15], and used by [13,14,17, 18]. However,
both measures are insufficient for mixed-bag puzzles since neither account for
pieces from multiple ground-truth inputs being present in a single generated
output nor for pieces from a single input image being spread across many gen-
erated outputs.

6.1 Enhanced and Shiftable Direct Accuracy

Direct accuracy is the ratio of pieces, c, placed in the same location in both the
ground-truth and solved images with respect to the total number of pieces, n.
It is formally defined as:

DA =
c

n
(5)

A solved image is perfectly reconstructed if the location of all pieces exactly
match the original image (i.e., DA = 1) [13].

Enhanced Direct Accuracy Score (EDAS) addresses standard direct accuracy’s
limitations for mixed-bag puzzles. For a puzzle, Pi, in the set of input puzzles P ,
EDAS is defined as:

EDASPi
= max
Sj∈S

ci,j
ni +

∑
k 6=i(mk,j)

(6)

Clustering-Based Multiple Puzzle Solving 9

Since pieces from Pi may be in multiple reconstructed puzzles, EDAS is cal-
culated as the maximum value across all solved puzzles, S, so as to focus on
the best overall reconstruction for input Pi. ci,j is the number of pieces from Pi
correctly placed in Sj . Dividing by ni, the number of pieces in Pi, marks as
incorrect any piece placed in a puzzle other than Sj . Similarly, the summation
of all mk,j penalizes for the placement of any pieces not from Pi that are in Sj .

Both standard and enhanced direct accuracy can be misleadingly punitive
for shifts in the output, in particular when the solved puzzle’s boundaries are not
fixed/known. For example, depending on the location of only a single misplaced
piece, the accuracy can range anywhere from zero to essentially unchanged.
Direct accuracy more meaningfully quantifies solver output quality if the compar-
ison reference point, l, is allowed to shift within a fixed set of possible locations, L.
As such, we define the Shiftable Enhanced Direct Accuracy Score (SEDAS) as:

SEDASPi
= max
Sj∈S

(
max
l∈Lj

ci,j,l
ni +

∑
k 6=i(mk,j)

)
(7)

EDAS’ term, ci,j has been changed to ci,j,l to denote the use of l as a custom
reference point when determining the number of correctly placed pieces. Lj is
the set of all locations in output puzzle Sj from which l can be selected. For
this paper, Lj is the set of all puzzle locations within the radius defined by the
Manhattan distance between the upper left corner of Sj and the nearest puzzle
piece (inclusive). An alternative approach is for L to be the set of all location
in Sj , but that is computationally prohibitive for large puzzles.

6.2 Enhanced Neighbor Accuracy

For a jig swap puzzle composed of n square pieces, neighbor accuracy is the ratio
of puzzle piece sides, a, whose neighbor in the original and solved images are the
same normalized by the total number of puzzle piece sides via:

NA =
a

4n
(8)

Similar to the techniques described for EDAS, our Enhanced Neighbor Accuracy
Score (ENAS), which is defined as:

ENASPi
= max
Sj∈S

ai,j
4(ni +

∑
k 6=i(mk,j))

(9)

addresses standard neighbor accuracy’s limitations for mixed-bag puzzles.

7 Experimental Results

Our experiments followed the standard parameters established by previous work
including [13–15, 17, 18]. All of the square puzzle pieces were 28 pixels wide.
We also used the three, 20 image datasets of sizes 432, 540, and 805 pieces

10 Hammoudeh and Pollett

Table 1. Number of solver experiments for each puzzle input count

Puzzles 2 3 4 5

Iterations 55 25 8 5

from [15, 16, 20]. Only the more challenging Type 2 mixed-bag puzzles were
investigated, meaning piece rotation and puzzle(s) dimensions were unknown.

The current state of the art, Paikin & Tal’s algorithm, was used as the
comparative performance baseline. In each test, two to five images were randomly
selected, without replacement, from the 805 piece dataset [20] and input into the
two solvers. Table I shows the number of tests performed for each input count.

7.1 Determining the Number of Input Puzzles

Most previous solvers including [14, 15, 17, 18] either assumed or were provided
the number of input images. In contrast, the Mixed-Bag Solver determines this
information via hierarchical clustering.

Clustering a Single Input Image: The solver’s accuracy determining the
number of inputs when passed only a single image represents its overall perfor-
mance ceiling. For the 432 [15], 540 [16], and 805 piece [20] datasets, the solver’s
accuracy determining that the pieces came from a single puzzle was 100%, 80%,
and 85% respectively. While there was a degradation in performance for larger
puzzles, it was not significant. In all cases where an error was made, the solver
reported that there were two input images.

Input puzzle count errors are more likely for images with large areas of little
variation (e.g., a clear sky, smooth water, etc.). These incorrectly classified im-
ages have on average lower numbers of best buddies (by 8% and 12% for the 540
and 805 piece datasets respectively), which adversely affected segmentation.

Clustering Multiple Input Images: Figure 6 shows the Mixed-Bag Solver’s
performance identifying the number of input puzzles when randomly selecting,
without replacement, multiple images from the 805 piece dataset. The number
of input images was correctly determined in 65% of tests. Likewise, the solver
overestimated the number of inputs by more than one in less than 8% tests, with
a maximum overestimation of three. Across all experiments, it never underesti-
mated the input puzzle count. This indicates the solver can over-reject cluster
mergers resulting in clusters that are too isolated to merge with others.

7.2 Comparison of Solver Output Quality for Multiple Input
Images

Table II contains the comparative results for when both solvers were supplied
multiple input images. The values for each of the three metrics, namely SEDAS,
ENAS, and percentage of puzzles reassembled perfectly, are averaged. The Mixed-
Bag Solver (MBS) results are subdivided between when the number of input

Clustering-Based Multiple Puzzle Solving 11

0 1 2 3
0

20

40

60

80 75

16
7

2

44 48

4 4

50 50

0 0

60

20 20

0

Size of Input Puzzle Count Error

F
re

q
u
en

cy
(%

)

2 Puzzles 3 Puzzles 4 Puzzles 5 Puzzles

Fig. 4. Multiple Input Puzzle Clustering Accuracy: A correct estimation of the input
puzzle count is an error of “0.” An overestimation of a single puzzle is an error of “1.”

puzzles was correctly determined (denoted with a “†”) versus all combined re-
sults (“‡”); the former value represents the performance ceiling had our solver
been provided the input puzzle count like Paikin & Tal’s algorithm.

Despite receiving less information, the quality of our results exceeded that of
Paikin & Tal by between 2.5 to 8 times for SEDAS and up to four times ENAS.
The Mixed-Bag Solver was also substantially more likely to perfectly reconstruct
the images. Furthermore, unlike Paikin & Tal our algorithm showed no signifi-
cant degradation in performance as the number of input puzzles increased.

It should also be noted the Mixed-Bag Solver’s performance scores are sim-
ilar irrespective of whether the input puzzle count estimation was correct. This
indicates that any extra puzzles generated were relatively insignificant in size.

Ten Puzzle Solving: The previous maximum number of puzzles recon-
structed simultaneously was five by Paikin & Tal. In contrast, our solver re-
constructed the 10 image dataset in [21], with a SEDAS and ENAS greater
than 0.9 for all images. In contrast, despite being provided the input puzzle
count, Paikin & Tal’s algorithm only had a SEDAS and ENAS of 0.9 for a single
image as their solver struggled to select quality seeds for each output puzzle.

Table 2. Solver performance comparison for multiple input puzzles. Results with “†”
indicate the Mixed-Bag Solver (MBS) correctly estimated the input puzzle count
while “‡” values include all MBS results.

Puzzle Average SEDAS Average ENAS Perfect Reconstruction
Count MBS† MBS‡ Paikin MBS† MBS‡ Paikin MBS† MBS‡ Paikin

2 0.850 0.757 0.321 0.933 0.874 0.462 29.3% 23.6% 5.5%

3 0.953 0.800 0.203 0.955 0.869 0.364 18.5% 18.8% 1.4%

4 0.881 0.778 0.109 0.920 0.862 0.260 25.0% 15.6% 0%

5 0.793 0.828 0.099 0.868 0.877 0.204 20.0% 24% 0%

12 Hammoudeh and Pollett

8 Conclusion and Future Work

We presented an algorithm for simultaneous reassembly of multiple jig swap
puzzles without any prior knowledge. Despite the fact that the current state of
the art requires specification of the input puzzle count, our algorithm still out-
performs it in terms of both the generated outputs’ quality and the supportable
number of input puzzles.

Potential improvements to our solver remain that merit further investigation.
First, rather performing segmentation through placement, it may be faster and
yield better, larger segments if the entire set of puzzle pieces were treated as
nodes in an undirected graph with edges being the best buddy relationships. This
would enable segment identification through the the use of well-studied graph
partition techniques. In addition, our approach required that stitching pieces
be members of a saved segment. Superior results may be achieved if pieces not
assigned to a segment were also used as they may better bridge inter-segment
gaps.

References

[1] T. Altman, “Solving the jigsaw puzzle problem in linear time,” Applied Artificial
Intelligence, vol. 3, no. 4, pp. 453–462, Jan. 1990.

[2] E. D. Demaine and M. L. Demaine, “Jigsaw puzzles, edge matching, and poly-
omino packing: Connections and complexity,” Graphs and Combinatorics, vol. 23
(Supplement), pp. 195–208, June 2007.

[3] B. J. Brown, C. Toler-Franklin, D. Nehab, M. Burns, D. Dobkin, A. Vlachopoulos,
C. Doumas, S. Rusinkiewicz, and T. Weyrich, “A system for high-volume acqui-
sition and matching of fresco fragments: Reassembling Theran wall paintings,”
ACM Transactions on Graphics, vol. 27, no. 3, Aug. 2008.

[4] M. L. David Koller, “Computer-aided reconstruction and new matches in the
Forma Urbis Romae,” Bullettino Della Commissione Archeologica Comunale di
Roma, vol. 2, pp. 103–125, 2006.

[5] S. L. Garfinkel, “Digital forensics research: The next 10 years,” Digital Investiga-
tion, vol. 7, Aug. 2010.

[6] T. S. Cho, M. Butman, S. Avidan, and W. T. Freeman, “The patch transform
and its applications to image editing,” Proceedings of the 2008 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2008.

[7] L. Zhu, Z. Zhou, and D. Hu, “Globally consistent reconstruction of ripped-up
documents,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, pp. 1–13, 2008.

[8] W. Marande and G. Burger, “Mitochondrial DNA as a genomic jigsaw puzzle,”
Science, vol. 318, no. 5849, pp. 415–415, 2007.

[9] Y.-X. Zhao, M.-C. Su, Z.-L. Chou, and J. Lee, “A puzzle solver and its applica-
tion in speech descrambling,” in Proceedings of the 2007 International Conference
on Computer Engineering and Applications. World Scientific and Engineering
Academy and Society, 2007, pp. 171–176.

[10] H. Freeman and L. Garder, “Apictorial jigsaw puzzles: The computer solution of
a problem in pattern recognition,” IEEE Transactions on Electronic Computers,
vol. 13, pp. 118–127, 1964.

Clustering-Based Multiple Puzzle Solving 13

[11] D. Goldberg, C. Malon, and M. Bern, “A global approach to automatic solu-
tion of jigsaw puzzles,” in Proceedings of the Eighteenth Annual Symposium on
Computational Geometry, ser. SCG ’02, 2002, pp. 82–87.

[12] T. R. Nielsen, P. Drewsen, and K. Hansen, “Solving jigsaw puzzles using image
features,” Pattern Recogn. Lett., vol. 29, no. 14, pp. 1924–1933, Oct. 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.patrec.2008.05.027

[13] A. C. Gallagher, “Jigsaw puzzles with pieces of unknown orientation,” in Proceed-
ings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), ser. CVPR ’12. IEEE Computer Society, 2012, pp. 382–389.

[14] G. Paikin and A. Tal, “Solving multiple square jigsaw puzzles with missing pieces,”
in Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), ser. CVPR ’15. IEEE Computer Society, 2015.

[15] T. S. Cho, S. Avidan, and W. T. Freeman, “A probabilistic image jigsaw puzzle
solver,” in Proceedings of the 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), ser. CVPR ’10. IEEE Computer Society, 2010,
pp. 183–190.

[16] A. Olmos and F. A. A. Kingdom, “McGill calibrated colour image database,”
http://tabby.vision.mcgill.ca/, 2005, (Accessed on 05/01/2016).

[17] D. Pomeranz, M. Shemesh, and O. Ben-Shahar, “A fully automated greedy square
jigsaw puzzle solver,” in Proceedings of the 2011 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), ser. CVPR ’11. IEEE Computer Soci-
ety, 2011, pp. 9–16.

[18] D. Sholomon, O. David, and N. S. Netanyahu, “A genetic algorithm-based solver
for very large jigsaw puzzles,” in Proceedings of the 2013 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), ser. CVPR ’13. IEEE Com-
puter Society, 2013, pp. 1767–1774.

[19] K. Son, J. Hays, and D. B. Cooper, “Solving square jigsaw puzzles with loop
constraints,” in Proceedings of the 2014 European Conference on Computer Vision
(ECCV). Springer, 2014, pp. 32–46.

[20] D. Pomeranz, M. Shemesh, and O. Ben-Shahar, “Computational
jigsaw puzzle solving,” https://www.cs.bgu.ac.il/∼icvl/icvl projects/
automatic-jigsaw-puzzle-solving/, 2011, (Accessed on 05/01/2016).

[21] Z. S. Hammoudeh, “Ten puzzle dataset.” [Online]. Available: http://www.cs.
sjsu.edu/faculty/pollett/masters/Semesters/Spring16/zayd/?10 puzzles.html

