Nonmonotonic Reasoning with Quantified Boolean Constraints

Chris Pollett and Jeff Remmel

June 27, 1997
Overview

1. Motivation

2. Quantified Boolean formulas and the polynomial hierarchy

3. Our QBF_k formalisms
 (a) LP_k, CC_k, DL_k

4. Compactness of knowledge representation
 (a) Succinctness results
Motivation

Constraint Logic Programming (JL)
- Allow more general constraints to body of LP clauses. For instance, CLP(ℝ) programs allow real inequalities and equalities as constraints.
- Constraints may be solved by special resources.
- Domain where constraints evaluated is fixed.

Constraint Programs (MNR)
- Is an extension of CLP paradigm.
- Domain is not fixed. An example use is in controlling a plant where set of applicable rules depends on plant’s state at discrete intervals.
- Constraints need to be satisfied before evaluate remainder of clause.
- Constraints true in model consisting of atoms computed in process.
- Can still use special hardware.

Generalized constraints are a new source of complexity to be studied. We will discuss this complexity for the propositional case of a variety of nonmonotonic formalisms.
The Polynomial Hierarchy (PH)

$P = \Delta^p_1$ = deterministic p-time
$NP = \Sigma^p_1$ = nondeterministic p-time
$\Delta^p_{i+1} = P^{\Sigma^p_i}$, $\Sigma^p_{i+1} = NP^{\Sigma^p_i}$, $\Pi^p_i = co - \Sigma^p_i$

$PH = \cup \Sigma^p_k$

Open: $PH \not\subseteq \Sigma^p_2$?

Quantified Boolean Formulas

$\Sigma_0^q = \Pi_0^q$ - propositional formulas
$\Sigma_k^q \supseteq \Pi_k^q$ closed under ($\exists x$) where intended meaning of ($\exists x)A(x, \bar{b})$ is $A(0, \bar{b}) \lor A(1, \bar{b})$.
$\Pi_k^q \supseteq \Sigma_k^q$ closed under ($\forall x$) where intended meaning of ($\forall x)A(x, \bar{b})$ is $A(0, \bar{b}) \land A(1, \bar{b})$.

QBF_k - boolean combinations of Σ_k^q and Π_k^q.

$QBF_k(A)$ - a QBF_k formula where allow atoms $x_1, \ldots, x_n \in A$. View x_1, \ldots, x_n as binary for a number and ask if in set A.

FACT: Validity of Σ_k^q-sentences is Σ_k^p-complete.
Our system for logic programming \(LP_k \)

An \(LP_k \) program \(P \) is a finite list of clauses:

\[
p \leftarrow a_1, \ldots, a_n : B_1(\vec{b}_1), \ldots, B_n(\vec{b}_m) \quad (\star)
\]

where \(p, a_1, \ldots, a_n \) are variables and \(B \in QBF_k \).

\(LP_{\infty} = \cup LP_k \). \(LP_k(A) \) - constraints from \(QBF_k(A) \).

Stable Model Semantics Let \(P \in LP_k \), \(M \) be a subset of \(P \)'s vars. Let \(\nu_M \) be truth assign.
induced by \(M \). Let \(P_M \) be obtained by deleting clauses whose constraints aren’t satisfied by \(\nu_M \) and by deleting the constraints from what’s left. Let \(N_M \) be least model of \(P_M \). \(M \) is a **stable model** of \(P \) if \(M = N_M \).

Supported Model Semantics A supported model of \(P \in LP_k \) is a truth assign. \(\nu \) to vars in \(P \) such that \(\nu(p) = 1 \) iff \(\exists \) a clause \((\star)\) in \(P \) and \((\forall i, j) \)
\(\nu(a_i) = 1, \nu(B(b_j)) = 1 \). We write \(LP_k^{sup} \) if considering supported models. We write \(LP_k^{*} \) for programs with pairwise disjoint supported models.
Theorem
1. LP_0 is equivalent to logic programming with negation.
2. Whether an LP_k program has a model is Σ^p_{k+1}-complete.
3. Whether an LP_∞ program has a model is $PSPACE$-complete.
Our system for circumscription CC_k

Circumscribed models of a prop. formula are minimal models under inclusion. Could look at minimal models of QBF_k formulas. This doesn't separate constraints from computational component. Instead, CC_k program P is a finite list of clauses:

$$B(\vec{a}) \iff C(\vec{b})$$

with $B \in QBF_0$ and $C \in QBF_k$. $CC_\infty = \cup CC_k$. $CC_k(A)$ - constraints from $QBF_k(A)$

Semantics Let S be a subset of vars in P and let ν_S be corresponding var. assignment. Define $\bigwedge P_S := \bigwedge_{B \in P_S} B$ where P_S is

$$\{B \mid B \iff C \in P \land \nu_S(C) = 1\}.$$

A model of P is a model of the 2nd-order formula $\bigwedge P_M \land \neg \exists m[\bigwedge P_m \land m \subset M]$.

Theorem

1. CC_0 is equivalent to prop. circumscription.
2. Whether a variable occurs in all models of a CC_k program is Π_{k+2}^p-complete.
3. The problem for CC_∞ is $PSPACE$-complete.
Our system for default logic DL_k

A DL_k theory is a pair $\langle D, W \rangle$. Here D is a finite collection of default rules:

$$\frac{\alpha : B_1(b_1), \ldots, B_m(b_m)}{\gamma}$$

where $\alpha, \gamma \in QBF_0$ and $B_i \in QBF_k$. W is a finite set of prop. formulas. $DL_\infty = \cup DL_k$.

$DL_k(A)$ - constraints from $QBF_k(A)$

Stable Model Semantics A rule d is **S-applicable** if $B_i \cup S$ is consistent for each constraint in d. Form D_S by deleting non-S-applicable rule from D and deleting constraints from rest. Let $Cn^X(W)$ be all formulas provable from W using rules in X and prop logic. An **extension** for $\langle D, W \rangle$ is a set of formulas S such that $Cn^{DS}(W) = S$. A **stable model** for $\langle D, W \rangle \in DL_k$ is a truth assign. satisfying an extension of $\langle D, W \rangle$.

7
Supported Model Semantics A rule \(d \) is strongly \(S \)-applicable if it is \(S \)-applicable and the prerequisite \(\alpha \) of \(d \) is in \(S \). Form \(D_{S,w} \) as \(D_s \) but use strong \(S \)-applicability. A weak extension for \(\langle D, W \rangle \) is a set of formulas \(S \) such that \(Cn^{D_{S,w}}(W) = S \). A supported model for \(\langle D, W \rangle \in DL_k \) is a truth assign. satisfying an weak extension of \(\langle D, W \rangle \). We write \(DL_k^{sup} \) if considering stable models.

Theorem
1. \(DL_0 \) is the same as usual default logic.
2. Whether \(\langle D, W \rangle \in DL_k \) has an extension is \(\Sigma_{k+2}^p \)-complete.
3. The problem for \(DL_\infty \) it is \(PSPACE \)-complete.
Compactness of knowledge representation

Definition (GKPS, CDS) Let A and B be reasoning formalisms. Then A as succinct as B, written $B \leq_s A$ if: For each ϕ_B in B there is a knowledge base ϕ_A in A such that
(a) ϕ_B and ϕ_A use free variables and have the same models
(b) the size of ϕ_A is polynomial in the size of ϕ_B.
We write $A \not\leq_s B$ if (a) and (b) fail to hold.

Definition We say A is as weak succinct as B, written $B \leq_{ws} A$ if the conditions above hold but condition (a) is replaced with
(a') ϕ_A contains all of ϕ_B's variables and all models of ϕ_A are expansions of models of ϕ_B.

- GKPS give a succinctness hierarchy among
 prop logic, Horn logic, circumscription and default logic which is strict provided PH ≠ L.
Hierarchies of Knowledge Formalisms

(a) $LP_k <_s DL_k$

(b) $LP^*_k <_s CC_k <_s DL_k$

(c) $LP^*_k \equiv_{ws} LP^*_k \equiv_{ws} LP_k <_{ws} CC_k \leq_{ws} CC_k \leq_{ws} DL^*_k \equiv_{ws} DL_k \equiv_{ws} LP_{k+1}$.

- Strictness in above under assumption $PH \not\subseteq \Sigma^p_{k+1}$.

(d) $\exists A, LP_k(A) <_{ws} CC_k(A) <_s DL_k(A)$

(e) $LP_\infty \equiv_{ws} CC_\infty \equiv_{ws} DL_\infty$

Theorem If K is a reasoning formalism with Δ^p_{k+1}-model checking then $CC_k \not\leq_s K$ unless $\Sigma^p_{k+1} \subseteq \Delta^p_{k+1/poly}$.

Theorem Suppose K is a reasoning formalism for which $Model_{\phi_K}(\vec{x})$ can be expressed as a QBF_k formula. Then $K \leq_{ws} LP_k$.

10