
Find me if you can: aligning users in different social networks

1st Priyanka Kasbekar
Department of Computer Science

San Jose State University
San Jose, USA

priyanka.kasbekar@sjsu.edu

2nd Katerina Potika
Department of Computer Science

San Jose State University
San Jose, USA

katerina.potika@sjsu.edu

3rd Chris Pollett
Department of Computer Science

San Jose State University
San Jose, USA

chris@pollett.org

Abstract—Online Social Networks allow users to
share experiences with friends and relatives, make an-
nouncements, find news and jobs, and more. Several
have user bases that number in the hundred of mil-
lions and even billions. Very often, many users belong
to multiple social networks at the same time under
possibly different user names. Identifying a user
from one social network on another social network
gives information about a user’s behavior on each
platform, which in turn can help companies perform
graph mining tasks, such as community detection
and link prediction. The process of identifying or
aligning users in multiple networks is called network
alignment. These similar (or same) users on different
networks are called anchor nodes and the edges
between them are called anchor links. The network
alignment problem aims at finding these anchor links.
In this work we propose two supervised algorithms
and one unsupervised algorithm using thresholds. All
these algorithms use local structural graph features
of users and some of them use additional information
about the users. We present the performance of our
models in various settings using experiments based on
Foursquare-Twitter and Facebook-Twitter data [1].
We show that our approaches perform well even
when we use the neighborhood of the users only,
and the accuracy improves even more given additional
information about a user, such as the username and
the profile image. We further show that our best
approaches perform better at the HR@1 task than
unsupervised and semi-supervised factoid embedding
approaches considered earlier for these datasets.

Keywords-Online Social Networks, Big Data, Graph
structure, Network Alignment, Anchor links, Super-
vised learning, Unsupervised learning, Embeddings.

I. INTRODUCTION

The availability and ease of access to the internet
have made Online Social Networks (OSNs) an
integral part of our lives. OSNs are used for many
purposes ranging from sharing media, reviews,
news, and opinions to finding job opportunities,
cabs, dates, and much more. With so many roles

for OSNs, it is natural that many of them have
acquired large user bases. Users are often members
of multiple such social networks rather than a single
social network as many of these networks have
strengths and weaknesses as to the kind of sharing
that can be done on them. For example, Facebook
might be used to share images, Yelp might be used
to review restaurants, and LinkedIn might be used
to search for jobs.

Given a user (node) in one network, the problem
of identifying the same user (node) or a similar
user (node) in another network is called network
alignment. This graph mining process when applied
to social networks helps identify the same (phys-
ical) user on different social networks. Users that
have been identified through the process of network
alignment are called anchor nodes and the edges
between them across the networks are called anchor
links or anchor edges. If all of the nodes of one
network are aligned with all of the nodes of another
network, then the networks are said to be fully
aligned. Fully aligned social networks are unlikely.
For example, it is not mandatory for a Facebook
user to be a Twitter user too. Social networks are
partially aligned if either user has a node which is
not an anchor node, and some users are unaligned.

Due to the diverse services OSNs offer, they may
contain nodes other than user nodes. For example,
Facebook contains locations and posts as nodes and
has edges between users and users, users and a
posts, users and locations, etc. These other nodes
are called information entities [2]. A social network
of only one type of node is called homogeneous,
otherwise, the network is said to be heterogeneous.

The problem of network alignment in social
networks has generated a lot of interest, see [3]–[7],
as it helps researchers study the social behavioral
patterns of the same user in different social con-
texts. Some applications of aligning social networks

are [2]: community detection, information sharing,
viral marketing, and information diffusion.

To solve the problem of network alignment, we
use various features based on the graph structure
of the networks like friendships (edges), or on
usernames and profile images.

In this paper, we compare supervised and heuris-
tic approaches to network alignment using features
based mostly on the structure of the network.
Additionally, we use other features such as the user
name embedding similarity, and the profile image
feature vector similarity to train our model. We
have performed experiments on two pairs of social
networks, namely the Facebook-Twitter and the
Foursquare-Twitter [1]. For these networks we have
extracted as features some widely available similar-
ity metrics that use the structure of the networks,
but extended to two networks, such as that of the
common neighbors, the Jaccard coefficient, and the
Adamic-Adar. First, each of these structural based
features were independently used for the heuristic
method. Then we train our supervised models by
combining all of the above features. The effects of
using these features separately and in a combined
manner were observed.

II. PRELIMINARIES AND METHODOLOGY

Let us start by formally defining our problem
before we describe in detail the features we use.
The network alignment problem takes as input two
graphs 𝐺𝑠 and 𝐺𝑡, as well as a set of anchor
links 𝐴 between these two graphs. In more de-
tail, the inputs consist of graph 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠)
and graph 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡), where the vertex sets
𝑉𝑠, 𝑉𝑡 represent users and the edge sets 𝐸𝑠, 𝐸𝑡

represent friendships between users of 𝐺𝑠 and 𝐺𝑡

respectively. Let us denote with 𝐴 the set of known
anchor links, i.e., 𝐴 = {(𝑣, 𝑢), 𝑣 ∈ 𝑉𝑠, 𝑢 ∈ 𝑉𝑡},
𝐴 is a small set of matches that matches one
user from graph 𝐺𝑠 to a user to other graph 𝐺𝑡.
Given these inputs the network alignment problem
is the task of determining whether a new link
(𝑥, 𝑦) /∈ 𝐴 of users 𝑥 and 𝑦, where 𝑥 ∈ 𝑉𝑠 and
𝑦 ∈ 𝑉𝑡, is an anchor link. In our approach to the
problem we divide it into two phases: (i) Feature
extraction, and (ii) Anchor link prediction. This
problem can be considered an extension to the link
prediction task on a single graph [8]. In this work,
the solution assumes the presence of some already
known anchor links between the source and target
network, i.e., 𝐴 is non-empty.

Feature Description: As we will be using lo-
cal structural features, we choose commonly used
measures for link prediction [8], [9], [10]. For the
anchor link prediction task, we have adapted these
features from their usual single network to a two
network setting. Apart from structural features, we
use two other features, namely the username em-
bedding similarity and the profile image embedding
similarity.

1) Extended Common Neighbors (𝐸𝐶𝑁): For
a pair of users (𝑣, 𝑢) from two different networks
𝑣 ∈ 𝑉𝑠 and 𝑢 ∈ 𝑉𝑡, their 𝐸𝐶𝑁 score is the number
of their neighbors, that contribute to an anchor
link [11]. If Γ(𝑣) represent the set of neighbors
of 𝑣 in 𝐺𝑠 (or 𝐺𝑡), then the Extended Common
Neighbors score is defined by the equation
𝐸𝐶𝑁(𝑣, 𝑢) = |(𝑥, 𝑦) ∈ 𝐴, 𝑥 ∈ Γ(𝑣), 𝑦 ∈ Γ(𝑢)|

Figure 1: Example of two networks with anchor
links

As an example, consider Figure 1, the red lines
are edges from 𝐺𝑠 and 𝐺𝑡 and blue lines are pairs
from 𝐴. The number of neighbors of User 1 in 𝐺𝑠

is 4 and number of neighbors of User 7 in 𝐺𝑡 is
5. Out of these neighbors, the number of anchor
users is four with two anchor links between them.
As these four users are essentially two users, we
see that 𝐸𝐶𝑁(1, 7) = 2.

2) Extended Jaccard Co-Efficient (𝐸𝐽𝐶𝐸):
The Extended Jaccard Co-Efficient of two users is
their ECN score divided by the number of distinct
neighbors of these users [11]. It can be formally
defined as:

𝐸𝐽𝐶𝐸(𝑣, 𝑢) =
|𝐸𝐶𝑁(𝑣, 𝑢)|
|Γ(𝑣) ∪ Γ(𝑢)|

where |Γ(𝑣) ∪ Γ(𝑢)| = |Γ(𝑣)| + |Γ(𝑢)| − |Γ(𝑣) ∩
Γ(𝑢)|. Here the term |Γ(𝑣) ∩ Γ(𝑢)| counts aligned
users.

For example in Figure 1, the 𝐸𝐽𝐶𝐸 of User 1
and User 7 is obtained by dividing the 𝐸𝐶𝑁 by
the distinct neighbors of the user pair, which is 5,
thus 𝐸𝐽𝐶𝐸 = 2/5.

3) Extended Adamic/Adar Measure (𝐸𝐴𝐴𝑀):
For a pair of nodes 𝑣, 𝑢 from two different net-
works, their 𝐸𝐴𝐴𝑀 score is the sum of the inverse
log of the average degree of pairs of neighbors of
these two users [11]. It is defined by the equation:

𝐴𝐴(𝑣, 𝑢) =
∑︁ 1

log
(︀ |Γ(𝑣𝑠)|+|Γ(𝑢𝑡)|

2

)︀
where the measure is calculated over every pair
(𝑣𝑠, 𝑢𝑡) ∈ |Γ(𝑣) ∩ Γ(𝑢)|.

4) Username Embedding Similarity (𝑈𝐸𝑆):
This measures the closeness of username embed-
dings for the user pair under consideration. This
representation is called the factoid embedding of the
user and the object [1]. A given user in one network
might have several username objects in that net-
work. Jaro-Winkler distance, which measures edit
distance, is used to measure the similarity of each
username object of a user from a network to each
username object of either user giving a vector of
scores. The list of username objects from either
user can be sorted, so the coordinates of this vector
are nicely ordered. The cosine distance between
embedding vectors of two users is then used as a
feature in our model. If two users have similar em-
bedding vectors, the cosine distance between them
should be low. Here the cosine distance between
two vectors 𝑥, 𝑦 is defined as 1−Cosine Similarity.

5) Profile Image Embedding Similarity (𝑃𝐼𝐸𝑆):
A user may have similar profile pictures on two
different social networks. Extracting the facial fea-
tures of a person’s image can help in finding simi-
larity between users. The deep learning framework
𝑉 𝐺𝐺16 is used to extract features from profile
images of users, with pre-trained weights from
ImageNet [1].

III. ALGORITHMS

As we described earlier, our network alignment
method first extracts the structural features from the
two networks and then uses various unsupervised or
supervised learning models to predict anchor links
between user pairs. The unsupervised learning can
be done using the feature scores described above
along with a thresholding approach. However, in
order to do the supervised learning we need to
create labeled data consisting of rows of feature
values for pairs of users together with a label for
whether or not they are aligned. We next present
two algorithms to carry these steps out based on
what type of features have been extracted.

A. Algorithm 1 - With structural features

In the first step of the Procedure NetAlignStr of
our Algorithm 1, we go through each known anchor
link pair (𝑣, 𝑢) ∈ 𝐴, where 𝑣 ∈ 𝐺𝑠 and 𝑢 ∈ 𝐺𝑡,
and we create a dictionary, named AnchorLink, that
stores 𝑣 as the key and the corresponding anchor
user 𝑢 as the value. Additionally, we construct a
list that includes all anchor users from 𝐺𝑠 that are
in 𝐴 and similarly construct a list of anchor users
from 𝐺𝑡 that are in A. After that, we call the Pro-
cedure getStructuralFeatures given in Algorithm 1
to extract the structural features for each possible
pair of users of the type (𝑣, 𝑢), where 𝑣 ∈ 𝐺𝑠 and
𝑢 ∈ 𝐺𝑡. The extracted features are used to construct
the training and the test set. A training (test) sample
of a user pair is labelled as positive (1) if the user
pair is present in the ground truth file otherwise it
is labelled as negative (0). Note, that we denote by
𝑑𝑒𝑔(𝑣) the degree of node 𝑣. After that step we can
use a binary classifier to predict anchor links.

B. Algorithm 2 - With structural features, username
and profile image embeddings

Given inputs 𝐺𝑠, 𝐺𝑡, and 𝐴 as well as the
user name and the profile embeddings, we run
Algorithm 1 but in Step 10, we also look up the
username and image embeddings for the users in
the pair and compute the their 𝑈𝐸𝑆 and 𝑃𝐼𝐸𝑆
score. We then add these values as additional fea-
tures in our labeled training data rows.

C. Algorithm 3 - Structural features independently

Every user pair (𝑣, 𝑢), where 𝑣 ∈ 𝐺𝑠 and
𝑢 ∈ 𝐺𝑡, that belongs to the test set, is treated as
a missing link. For each missing link the 𝐸𝐶𝑁 ,
𝐸𝐽𝐶𝐸 and 𝐸𝐴𝐴𝑀 are calculated. The scores
obtained from each of the methods are added
to their respective lists of scores, i.e., 𝐸𝐶𝑁 to
scoresECN, 𝐸𝐽𝐶𝐸 to scoresEJCE and 𝐸𝐴𝐴𝑀 to
scoresEAAM. In the next step, the scores are sorted
in descending order along with the predictions. The
true and false positives are calculated at various
thresholds and an AUC_Score for every method is
calculated using sklearn.metrics.auc.

IV. EXPERIMENTAL RESULTS

Our network alignment experiments were con-
ducted using the User Identity Linkage dataset [1].
It consists of data from two pairs of networks
Foursquare-Twitter and Facebook-Twitter. Table I
describes the number of users and the number of

Algorithm 1 Network Alignment with Structural
Based Features

1: procedure NETALIGNSTR(𝐺𝑠, 𝐺𝑡, 𝐴)
2: for each (𝑣, 𝑢) in 𝐴 do
3: AnchorLink[𝑣] = 𝑢
4: Append(ListAnchorSource, 𝑣)
5: Append(ListAnchorTarget, 𝑢)

6: for each 𝑣 ∈ 𝑉𝑠 of the training set do
7: for each 𝑢 ∈ 𝑉𝑡 of the training set do
8: create vector: (𝑣, 𝑢),
9: getStructuralFeatures(𝑣, 𝑢),

10: if (𝑣, 𝑢) ∈ 𝐴 then
11: 𝑙𝑎𝑏𝑒𝑙 = 1
12: else 𝑙𝑎𝑏𝑒𝑙 = 0
13: procedure GETSTRUCTURALFEATURES(𝑣, 𝑢)
14: ECN← 0, EJCE← 0, EAAM← 0
15: for each edge (𝑣𝑠, 𝑥𝑠) ∈ 𝐸𝑠, and 𝑣𝑠 = 𝑣

do
16: if xs in ListAnchorSource then
17: Append(SourceNeigh, 𝑥𝑠)
18: else
19: Append(NonAnchor, 𝑥𝑠)

20: for each edge (𝑢𝑡, 𝑦𝑡) ∈ 𝐸𝑡, and 𝑢𝑡 = 𝑢
do

21: if yt in ListAnchorTarget then
22: Append(TargetNeigh, 𝑦𝑡)
23: else
24: Append(NonAnchor, 𝑦𝑡)

25: for each 𝑤 ∈ SourceNeigh do
26: if AnchorLink[w] ∈ TargetNeigh then
27: ECN++
28: EAAM+ = 1

log−1 deg(w)+deg(AnchorLink[w])
2

29: EJCE = (ECN)/cardinality(NonAnchor)
30: return ECN,EJCE,EAAM

edges in each network in this dataset. This dataset
also comes with a set of known anchor links. The
Foursquare - Twitter has 3602 known anchor links.
The Facebook - Twitter has 1998 known anchor
links. Apart from the structural information, the
username and profile image embedding vectors for
users are included in the datasets.

Table I: Dataset Overview

Dataset Foursquare-Twitter Facebook-Twitter
Network Foursquare | Twitter Facebook | Twitter

Users 21668 25772 17359 20024
Links 312740 405590 224762 165406

We break down the descriptions of each of our
experiments into the following parts: data prepara-
tion, training, and results. In the data preparation
part we detail which pairs of the social networks
are used and which of the algorithms are used.
The training part describes which unsupervised or
supervised training methods are used. Finally, the
results part details how these performed using the
specific previous parts. We next give some of the
nuances of each of these parts before actually going
into our experimental results.

A. Data Preparation

As we have described in Section III for the
anchor link prediction, we have to label the data
so that it can be used by a supervised learning
algorithm. To prepare the training and test data,
we use the ground truth file. Every user pair that
appears in the ground truth file is labelled as a
positive sample. For negative training samples, a
user from 𝐺𝑠 is paired with all other users from 𝐺𝑡,
except the one with which it is paired in the ground
truth file. We can mark this pair as a negative
sample, as we definitely know that there can be
no anchor link between this pair. For example see
Table II, the user pair (𝑓14, 𝑡159) in the ground
truth file is labelled positive (1), and for any other
Twitter user, e.g., 𝑡28, we make a pair, (𝑓14, 𝑡28),
and label the corresponding sample negative (0).

Table II: Supervised Learning Training Sample.

Pair ECN EJ EA UES PI label
CE AM ES

𝑓14, 𝑡159 6 0.09 -33.77 0.90 1 1
𝑓14, 𝑡28 0 0.0 0 1 0.92 0

The ground truth user pairs are divided into two
separate folders called training and testing to ensure
that the data used for training is never used for pre-
diction. For the user pair in the test set, the features
are constructed in the same way but the label field is
stripped off during prediction. We experiment with
different numbers of training samples. We use two
approaches to create these training samples. One
approach creates the positive and negative samples
in a balanced manner. Another approach creates
more negative samples and then we use upsampling
to balance out the data.

1) Upsampling and (no Downsampling): To in-
crease the number of training samples, for every
positively labelled training sample, empirically we
observe that we create on average 20 negatively

labelled training samples. This causes the training
data to be skewed towards negative samples [12].
To balance out the data we use an upsampling
technique to increase the positive samples by ran-
domly duplicating existing positive sample rows
in the training file until we balance the positive
and negative samples for training. Alternatively,
we could have performed downsampling of the
negative samples, but this would lead to data loss.

2) No upsampling: For every positively labelled
sample, we create one negatively labelled training
item, thus getting a balanced training set containing
an equal number of positive and negative samples.
We have a smaller but more balanced set.

B. Training

For our experiments, when we use Algorithm 3
as a component of our network alignment algo-
rithm, we only extract the structural features from
the data set. For our experiments involving Al-
gorithm 1 and 2, we considered both structural
features as well as the 𝑈𝐸𝑆 and the 𝑃𝐼𝐸𝑆. In the
latter case, the training rows were just augmented
with additional columns for the added features.

1) Unsupervised Learning Methods: Link pre-
diction tasks lack labelled data. In such scenarios,
we can use an unsupervised approach to predict
links, see Algorithm 3. Some of them include the
Jaccard Co-Efficient, the Extended common neigh-
bors, and the Adamic/Adar scores that form the
basis of some of the generally used unsupervised
link prediction methods. As we described, we have
appropriately modified these scores following [11]
to suit the link prediction problem in a two network
setting. These scores are purely based on the local
structure of the networks under consideration.

To perform unsupervised training, a single link
prediction score mentioned above is calculated for
each pair of users from the two networks being
aligned. A threshold is then chosen based on the
scores of the known anchors links so as to minimize
the number of false positives and maximize the
number of true positives on this subset of pairs.
This threshold is then used to determine the anchor
links amongst the test data. For example, suppose
we set a threshold of 20 for 𝐸𝐶𝑁 . The following
rules are followed to calculate true positives and
false negatives. Any user pair that has 𝐸𝐶𝑁 ≥ 20
and appears in the ground truth links, we classify it
as true positive. Any user pair which is not in the
ground truth links but has 𝐸𝐶𝑁 ≥ 20 is treated

as false positive. Any user pair which is not in the
ground truth links and has 𝐸𝐶𝑁 < 20 is treated as
true positive. Any user pair which is in the ground
truth links and has 𝐸𝐶𝑁 < 20 is treated as false
positive.
Supervised Learning Methods: For the supervised
learning methods, we experiment with two distinct
sets of features for training: One with only local
structural features, see Algorithm 1, and another
one that these also uses 𝑃𝐼𝐸𝑆 and 𝑈𝐸𝑆, see
Algorithm 2. Using each of these features sets we
then examine the effect of using logistic regression,
𝑘 nearest neighbors (𝑘𝑁𝑁) and neural networks as
the training methods. We experimented with two
configurations for each of the 𝑘𝑁𝑁 and the neural
network. For 𝑘𝑁𝑁 , we experimented with two
configurations, 𝑘 = 3 (not shown) and 𝑘 = 5. Our
neural network, when only the structural features
are used, consisted of three input layer neurons. If
also the embeddings are used, the input layer has 5
neurons. We experiment with two types of neural
networks (𝑁𝑁). The first one has a single dense
layer of 7 neurons between the input and the output
layer. The second one has two dense layers with 7
and 5 neurons, respectively. A softmax function fol-
lowed by categorical cross entropy function is used
to measure the loss and accuracy. Using categorical
cross entropy we classify a given training sample as
either close to 0 or close to 1. We used 100 epochs
to train our networks.

C. Results

We perform various experiments on the two
sets of networks Foursquare-Twitter, and Facebook-
Twitter. The results show the performance of var-
ious models with no upsampling (balanced) and
upsampling of the training set.

Python is used as the implementation language
to fetch features. Python libraries such as pandas,
numpy sklearn are used to preprocess data and train
the models. Keras library is used for the neural
network model.

Table III: No upsampling (no up) and with upsam-
pling (up).

Foursquare - Twitter Facebook - Twitter
no up | up no up | up

Training 5763 | 54568 3197 | 30191
Testing 1439 798

Table III shows the number of training and
test samples used for the models with and with

no upsampling on the training set to balance the
positive and negative samples in the training set.

1) Results using Algorithm 1: Table IV shows
the anchor link prediction accuracy of the model
that uses only the three local structural features. No
upsampling was performed on the training set. For
the Foursquare-Twitter dataset 𝑘𝑁𝑁 with 𝑘 = 5
gives the best results. The neural network with a
single dense layer gives the best accuracy for the
Facebook-Twitter dataset.

Table IV: Prediction accuracy for Algorithm 1, no
upsampling.

Methods Foursquare Facebook
- Twitter - Twitter

Log. Regression 0.8700 0.7102
𝑘𝑁𝑁(𝑘 = 5) 0.8769 0.5006
𝑁𝑁 (1 DenseLayer) 0.8601 0.7163
𝑁𝑁 (2 DenseLayers) 0.8601 0.7160

Table V shows the anchor link prediction ac-
curacy for the model that uses the three local
structural features along with upsampling on the
training set to balance out the positive and negative
samples. As can be seen, logistic regression gave
the best results for the Foursquare-Twitter dataset.
The 𝑘𝑁𝑁 classifier performed poorly on both
the datasets. The neural network did best for the
Facebook-Twitter dataset. The logistic regression
and neural network curves show that they did
better for the Foursquare-Twitter, Facebook-Twitter
datasets, respectively.

Table V: Prediction accuracy for Algorithm 1, with
upsampling.

Methods Foursquare Facebook
-Twitter -Twitter

Logistic Regression 0.8756 0.7101
𝑘𝑁𝑁(𝑘 = 5) 0.4808 0.4981
𝑁𝑁 (1DenseLayer) 0.8582 0.7164
𝑁𝑁 (2DenseLayers) 0.8582 0.7164

2) Results using Algorithm 2: Table VI shows
the anchor link prediction accuracy of the model
that uses the three local structural features along
with the username and the image embedding simi-
larity features with no upsampling. As can be seen
from Table VI, the 𝑘𝑁𝑁 classifier with 𝑘 = 5 gives
the best results on the Foursquare-Twitter dataset.
The neural network with two layers did the best for
the Facebook-Twitter dataset.

By comparing Tables IV and Table VI, one can
see that the results are better when the username

Table VI: Prediction Accuracy for Algorithm 2, no
upsampling.

Methods Foursquare Facebook
- Twitter - Twitter

Logistic Regression 0.9478 0.8883
𝑘𝑁𝑁(𝑘 = 5) 0.9513 0.8858
𝑁𝑁 (1DenseLayer) 0.9375 0.8827
𝑁𝑁 (2DenseLayers) 0.9420 0.8962

and profile image embedding similarity are used
as features on top of the structural features. All
the models give considerably better predictions
compared to the models of Algorithm 1.

Table VII shows the anchor link prediction accu-
racy of the model that uses the three local structural
features along with username and image embedding
similarity features and with upsampling. As can be
seen, logistic regression gave the best results on
the Foursquare-Twitter dataset. The neural network
with two layers did the best for the Facebook-
Twitter dataset. Compared to the no upsampling
data of Table VI, the with upsampling data gives
slightly higher results for this dataset.

Table VII: Prediction Accuracy for Algorithm 2,
with upsampling.

Methods Foursquare Facebook
- Twitter - Twitter

Logistic Regression 0.9513 0.8895
KNN(k=5) 0.9284 0.8732
NN(1DenseLayer) 0.9479 0.8981
NN(2DenseLayers) 0.9481 0.8986

From the results in Table VII, the performance of
the models are not greatly affected by upsampling
of the data during training. All the models were
able to give fairly good predictions for the data.

3) Results using Algorithm 3: The results in
Table VIII show that when the 𝐸𝐶𝑁 , 𝐸𝐽𝐶𝐸,
and 𝐸𝐴𝐴𝑀 measures are used as independent
methods, the 𝐴𝑈𝐶 score is lower as compared
to the supervised setting when they are combined
together as seen in Tables IV through VII. The
AUC Scores for 𝐸𝐶𝑁 and 𝐸𝐽𝐶𝐸 are similar, as
𝐸𝐽𝐶𝐸 is the normalized form of 𝐸𝐶𝑁 . When the
AUC score is calculated over a range of thresholds,
the scores for both the methods end up being
similar. Another important observation here is that
the 𝐸𝐴𝐴𝑀 measure performed poorly when used
as an independent approach to the problem.

4) Comparison between supervised and unsu-
pervised approaches: For the Foursquare - Twit-
ter dataset when these unsupervised features were

Table VIII: AUC Scores of Unsupervised methods.

Methods Foursquare - Twitter Facebook - Twitter
ECN 0.85 0.68
EJCE 0.85 0.68
EAAM 0.15 0.32

combined for training, the highest 𝐴𝑈𝐶 score of
0.88 was obtained with the neural network model
and the 𝑘𝑁𝑁 model. Among the unsupervised
methods, the highest 𝐴𝑈𝐶 score we obtained was
0.85 with 𝐸𝐶𝑁 and 𝐸𝐽𝑁 . For the Facebook -
Twitter network, the highest 𝐴𝑈𝐶 score of 0.71
with logistic regression and neural network models;
whereas, the highest 𝐴𝑈𝐶 score obtained with un-
supervised methods was 0.68. Figure IX compares
our results against the results of [1] that use of
factoid embedding (𝐹𝐸) with 𝐻𝑅@1 (HitRate@K
(𝐻𝑅@𝐾, 𝐾 ranking) for the same datasets.

Table IX: Comparison of our HR@1 versus Factoid
Embedding [1].

Methods Foursquare Facebook
- Twitter - Twitter

Semi-Supervised [1] 0.55 0.68
Unsupervised [1] 0.54 0.68
Our Unsupervised 0.85 0.68
Our Supervised 0.88 0.71

The 𝐻𝑅@1 score of both semi-supervised and
unsupervised approaches in [1] on the Foursquare-
Twitter dataset is far below the predictions we could
achieve through our approach. The 𝐻𝑅@1 score on
the Facebook-Twitter dataset is comparable to our
unsupervised approach. The predictions, though, of
our supervised approach are slightly higher.

V. RELATED WORK

The network alignment problem is similar to the
maximum sub-graph problem or the bipartite graph
matching problem. The problem has application
also in bioinformatics, for protein-protein inter-
action networks [13]. Such networks are mainly
homogeneous. Earlier, matrix based computations
were used in order to solve network alignment
problems [14]. In our setting there are several
factors, which make whole graph approaches, such
as matrix approaches, less practical. The most im-
portant reason is that many social networks are in
the big data realm and the associated matrices are
huge, and therefore hard/impractical to work with.
Additionally, access to the data might be bandwidth
limited and thus not available in its entirety for

use in a feasibly timely manner. Therefore, we
aim to explore the supervised, and unsupervised
approaches to network alignment in OSNs using
only the local structural setting. Below we review
some related work that use similar approaches.

The supervised approaches typically make use of
feature vectors constructed from node attributes. At
a high level, the feature vectors are used to train
models and to obtain similarity scores. Based on
these similarity scores, anchor links can be inferred
using different matching techniques.

Following this approach is the work by X. Kong
et al. [11]. They assume the presence of some exist-
ing anchor links between the networks to be aligned
as we do. Social features similar to ours are used
as unsupervised forms of training. Two additional
features, the location vectors of a user’s posts on
two different social networks and the timestamp of
the posts, are added. Additionally, they use stable
matching techniques for full alignments.

Z. Jiawei et al [3] propose a solution to network
alignment in partially aligned networks. They use
the concept of anchor meta paths constructed us-
ing the relationship between various heterogeneous
components to perform alignments. This work as-
sumes that the networks are partially aligned. As
the networks are heterogeneous in nature, different
types of nodes like user, location, timestamp are
present and various types of relation exists between
nodes like follow, create, check-in.

Komamizu et al. [12] study the problem of
network alignment between Github and Stack Over-
flow users. They construct anchor links through
the common email addresses of the users between
the two networks. Similar attributes like username,
terms from the project description, terms from
posted questions, and account creation date were
extracted from both networks. Then cosine simi-
larity between bag of words vectors are computed.
Date and time are also compared using inverse of
duration between the dates. A number of classifi-
cation methods are used.

Several unsupervised approaches to OSN net-
work alignment have also been explored. Wei Xie,
et al. [1] consider available information like user-
name and profile image to construct factoids.

Recently, many graph-based machine learning
tasks rely on the use of appropriate feature-based
learning representations of the graph that produce
node embeddings. REGAL [15] is an unsupervised
learning representation for the network alignment

problem.

VI. CONCLUSION

Our approach primarily considers solving the
network alignment problem using structural based
features, that use only local parts of a network and
not the whole network, and thus can be computed
efficiently. In the version we are considering we as-
sume that the anchor links are between two nodes,
each one from a different network. From the results
and related work on the same problem, it is evident
that just the topological based features may not be
sufficient to make good predictions in a supervised
setting. Adding some additional attributes that are
widely available, like the username and profile
images can improve the results. We anticipate that
the availability of more information entities will
give better results. The solution we propose and
evaluate also makes the assumption that we have
some known anchor links. One future direction is
to solve the problem in a cold start setting, without
any prior knowledge of known anchor links. A
further future direction would be to find efficient
ways to extract more information related to users,
such as location and language, and then evaluate
their effect on the performance of our models.

REFERENCES

[1] W. Xie, X. Mu, R. K. Lee, F. Zhu, and E. Lim,
“Unsupervised user identity linkage via factoid
embedding,” in IEEE International Conference on
Data Mining, pp. 1338–1343, Nov 2018.

[2] J. Zhang and P. Yu, “Broad learning: An emerging
area in social network analysis,” ACM SIGKDD
Explorations Newsletter, vol. 20, pp. 24–50, 2018.

[3] J. Zhang, W. Shao, S. Wang, X. Kong, and P. S.
Yu, “PNA: partial network alignment with generic
stable matching,” in 2015 IEEE International Con-
ference on Information Reuse and Integration,
pp. 166–173, 2015.

[4] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi,
and Y. Wang, “Algorithms for large, sparse network
alignment problems,” in 9th IEEE International
Conference on Data Mining, pp. 705–710, 2009.

[5] D. Koutra, H. Tong, and D. Lubensky, “BIG-
ALIGN: fast bipartite graph alignment,” in 13th
IEEE International Conference on Data Mining,
pp. 389–398, 2013.

[6] S. Zhang and H. Tong, “Final: Fast attributed net-
work alignment,” in 22nd ACM International Con-
ference on Knowledge Discovery and Data Mining,
pp. 1345–1354, 2016.

[7] H. T. Trung, N. T. Toan, T. Van Vinh, H. T.
Dat, D. C. Thang, N. Q. V. Hung, and A. Sattar,
“A comparative study on network alignment tech-
niques,” Expert Systems with Applications, vol. 140,
p. 112883, 2020.

[8] D. Liben-Nowell and J. Kleinberg, “The link-
prediction problem for social networks,” Journal of
the American society for information science and
technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[9] L. A. Adamic and E. Adar, “Friends and neigh-
bors on the web,” Social networks, vol. 25, no. 3,
pp. 211–230, 2003.

[10] L. Lü, C.-H. Jin, and T. Zhou, “Similarity index
based on local paths for link prediction of com-
plex networks,” Physical Review E, vol. 80, no. 4,
p. 046122, 2009.

[11] X. Kong, J. Zhang, and P. S. Yu, “Inferring an-
chor links across multiple heterogeneous social net-
works,” in 22nd ACM International Conference on
Information & Knowledge Management, pp. 179–
188, 2013.

[12] T. Komamizu, Y. Hayase, T. Amagasa, and H. Kita-
gawa, “Exploring identical users on github and
stack overflow,” in 29th International Conference
on Software Engineering and Knowledge Engineer-
ing, pp. 584–589, 2017.

[13] R. Singh, J. Xu, and B. Berger, “Global align-
ment of multiple protein interaction networks with
application to functional orthology detection,” the
National Academy of Sciences of the USA, vol. 105
35, pp. 12763–12768, 2008.

[14] G. Kollias, S. Mohammadi, and A. Grama, “Net-
work similarity decomposition (NSD): A fast and
scalable approach to network alignment,” IEEE
Transactions on Knowledge and Data Engineering,
vol. 24, pp. 2232–2243, Dec 2012.

[15] M. Heimann, H. Shen, T. Safavi, and D. Koutra,
“Regal: Representation learning-based graph align-
ment,” in 27th ACM International Conference on
Information and Knowledge Management, pp. 117–
126, 2018.

